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Paper 3, Section I

2F Analysis II
For each of the following sequences of functions on [0, 1], indexed by n = 1, 2, . . .,

determine whether or not the sequence has a pointwise limit, and if so, determine whether
or not the convergence to the pointwise limit is uniform.

1. fn(x) = 1/(1 + n2x2)

2. gn(x) = nx(1− x)n

3. hn(x) =
√
nx(1− x)n

Paper 4, Section I

3F Analysis II
State and prove the chain rule for differentiable mappings F : Rn → Rm and

G : Rm → Rk.

Suppose now F : R2 → R2 has image lying on the unit circle in R2. Prove that the
determinant det(DF |x) vanishes for every x ∈ R2.

Paper 2, Section I

3F Analysis II
Let C[a, b] denote the vector space of continuous real-valued functions on the interval

[a, b], and let C′[a, b] denote the subspace of continuously differentiable functions.

Show that ‖f‖1 = max |f |+ max |f ′| defines a norm on C′[a, b]. Show furthermore
that the map Φ : f 7→ f ′((a + b)/2) takes the closed unit ball {‖f‖1 6 1} ⊂ C′[a, b] to a
bounded subset of R.

If instead we had used the norm ‖f‖0 = max |f | restricted from C[a, b] to C′[a, b],
would Φ take the closed unit ball {‖f‖0 6 1} ⊂ C′[a, b] to a bounded subset of R ? Justify
your answer.
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Paper 1, Section II

11F Analysis II
Define what it means for a sequence of functions kn : A → R, n = 1, 2, . . ., to

converge uniformly on an interval A ⊂ R.

By considering the functions kn(x) = sin(nx)√
n

, or otherwise, show that uniform

convergence of a sequence of differentiable functions does not imply uniform convergence
of their derivatives.

Now suppose kn(x) is continuously differentiable on A for each n, that kn(x0)
converges as n → ∞ for some x0 ∈ A, and moreover that the derivatives k′n(x) converge
uniformly on A. Prove that kn(x) converges to a continuously differentiable function k(x)
on A, and that

k′(x) = lim
n→∞

k′n(x).

Hence, or otherwise, prove that the function

∞∑

n=1

xn sin(nx)

n3 + 1

is continuously differentiable on (−1, 1).

Paper 4, Section II

12F Analysis II
State the contraction mapping theorem.

A metric space (X, d) is bounded if {d(x, y) |x, y ∈ X} is a bounded subset of R.
Suppose (X, d) is complete and bounded. Let Maps(X,X) denote the set of continuous
maps from X to itself. For f, g ∈ Maps(X,X), let

δ(f, g) = sup
x∈X

d(f(x), g(x)).

Prove that (Maps(X,X), δ) is a complete metric space. Is the subspace C ⊂ Maps(X,X)
of contraction mappings a complete subspace?

Let τ : C → X be the map which associates to any contraction its fixed point. Prove
that τ is continuous.
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Paper 3, Section II

12F Analysis II
For each of the following statements, provide a proof or justify a counterexample.

1. The norms ‖x‖1 =
∑n

i=1 |xi| and ‖x‖∞ = max16i6n|xi| on Rn are Lipschitz
equivalent.

2. The norms ‖x‖1 =
∑∞

i=1 |xi| and ‖x‖∞ = maxi|xi| on the vector space of sequences
(xi)i>1 with

∑ |xi| < ∞ are Lipschitz equivalent.

3. Given a linear function φ : V → W between normed real vector spaces, there is
some N for which ‖φ(x)‖ 6 N for every x ∈ V with ‖x‖ 6 1.

4. Given a linear function φ : V → W between normed real vector spaces for which
there is some N for which ‖φ(x)‖ 6 N for every x ∈ V with ‖x‖ 6 1, then φ is
continuous.

5. The uniform norm ‖f‖ = supx∈R|f(x)| is complete on the vector space of continuous
real-valued functions f on R for which f(x) = 0 for |x| sufficiently large.

6. The uniform norm ‖f‖ = supx∈R|f(x)| is complete on the vector space of continuous
real-valued functions f on R which are bounded.
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Paper 2, Section II

12F Analysis II
Let f : U → R be continuous on an open set U ⊂ R2. Suppose that on U the

partial derivatives D1f , D2f , D1D2f and D2D1f exist and are continuous. Prove that
D1D2 f = D2D1 f on U.

If f is infinitely differentiable, and m ∈ N, what is the maximum number of distinct
m-th order partial derivatives that f may have on U ?

Let f : R2 → R be defined by

f(x, y) =





x2y2

x4 + y4
(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Let g : R2 → R be defined by

g(x, y) =





xy(x4 − y4)

x4 + y4
(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

For each of f and g, determine whether they are (i) differentiable, (ii) infinitely differen-
tiable at the origin. Briefly justify your answers.
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Paper 4, Section I

4E Complex Analysis
State Rouché’s theorem. How many roots of the polynomial z8 + 3z7 + 6z2 + 1 are

contained in the annulus 1 < |z| < 2?

Paper 3, Section II

13E Complex Analysis
Let D = {z ∈ C | |z| < 1} be the open unit disk, and let C be its boundary (the

unit circle), with the anticlockwise orientation. Suppose φ : C → C is continuous. Stating
clearly any theorems you use, show that

gφ(w) =
1

2πi

∫

C

φ(z)

z − w
dz

is an analytic function of w for w ∈ D.

Now suppose φ is the restriction of a holomorphic function F defined on some
annulus 1− ǫ < |z| < 1 + ǫ. Show that gφ(w) is the restriction of a holomorphic function
defined on the open disc |w| < 1 + ǫ.

Let fφ : [0, 2π] → C be defined by fφ(θ) = φ(eiθ). Express the coefficients in the
power series expansion of gφ centered at 0 in terms of fφ.

Let n ∈ Z. What is gφ in the following cases?

1. φ(z) = zn.

2. φ(z) = zn.

3. φ(z) = (Re z)2.
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Paper 1, Section I

2D Complex Analysis or Complex Methods
Classify the singularities (in the finite complex plane) of the following functions:

(i)
1

(cosh z)2
;

(ii)
1

cos(1/z)
;

(iii)
1

log z
(−π < arg z < π) ;

(iv)
z

1
2 − 1

sinπz
(−π < arg z < π) .

Paper 1, Section II

13E Complex Analysis or Complex Methods
Suppose p(z) is a polynomial of even degree, all of whose roots satisfy |z| < R.

Explain why there is a holomorphic (i.e. analytic) function h(z) defined on the region
R < |z| < ∞ which satisfies h(z)2 = p(z). We write h(z) =

√
p(z).

By expanding in a Laurent series or otherwise, evaluate

∫

C

√
z4 − z dz

where C is the circle of radius 2 with the anticlockwise orientation. (Your answer will be
well-defined up to a factor of ±1, depending on which square root you pick.)
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Paper 2, Section II

13D Complex Analysis or Complex Methods
Let

I =

∮

C

eiz
2/π

1 + e−2z
dz ,

where C is the rectangle with vertices at ±R and ± R+ iπ, traversed anti-clockwise.

(i) Show that I =
π(1 + i)√

2
.

(ii) Assuming that the contribution to I from the vertical sides of the rectangle is
negligible in the limit R → ∞, show that

∫ ∞

−∞
eix

2/πdx =
π(1 + i)√

2
.

(iii) Justify briefly the assumption that the contribution to I from the vertical sides
of the rectangle is negligible in the limit R → ∞.
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Paper 3, Section I

4D Complex Methods
Let y(t) = 0 for t < 0, and let lim

t→0+
y(t) = y0.

(i) Find the Laplace transforms of H(t) and tH(t), where H(t) is the Heaviside step
function.

(ii) Given that the Laplace transform of y(t) is ŷ(s), find expressions for the Laplace
transforms of ẏ(t) and y(t− 1).

(iii) Use Laplace transforms to solve the equation

ẏ(t)− y(t− 1) = H(t)− (t− 1)H(t− 1)

in the case y0 = 0.

Paper 4, Section II

14D Complex Methods
Let C1 and C2 be the circles x2 + y2 = 1 and 5x2 − 4x+ 5y2 = 0, respectively, and

let D be the (finite) region between the circles. Use the conformal mapping

w =
z − 2

2z − 1

to solve the following problem:

∇2φ = 0 in D with φ = 1 on C1 and φ = 2 on C2.
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Paper 2, Section I

6D Electromagnetism
Use Maxwell’s equations to obtain the equation of continuity

∂ρ

∂t
+∇ · J = 0 .

Show that, for a body made from material of uniform conductivity σ, the charge
density at any fixed internal point decays exponentially in time. If the body is finite and
isolated, explain how this result can be consistent with overall charge conservation.

Paper 4, Section I

7D Electromagnetism
The infinite plane z = 0 is earthed and the infinite plane z = d carries a charge of σ

per unit area. Find the electrostatic potential between the planes.

Show that the electrostatic energy per unit area (of the planes z = constant) between
the planes can be written as either 1

2σ
2d/ǫ0 or 1

2ǫ0V
2/d, where V is the potential at z = d.

The distance between the planes is now increased by αd, where α is small. Show that
the change in the energy per unit area is 1

2σV α if the upper plane (z = d) is electrically
isolated, and is approximately −1

2σV α if instead the potential on the upper plane is
maintained at V . Explain briefly how this difference can be accounted for.
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Paper 1, Section II

16D Electromagnetism
Briefly explain the main assumptions leading to Drude’s theory of conductivity.

Show that these assumptions lead to the following equation for the average drift velocity
〈v(t)〉 of the conducting electrons:

d〈v〉
dt

= −τ−1〈v〉 + (e/m)E

where m and e are the mass and charge of each conducting electron, τ−1 is the probability
that a given electron collides with an ion in unit time, and E is the applied electric field.

Given that 〈v〉 = v0e
−iωt and E = E0e

−iωt, where v0 and E0 are independent of t,
show that

J = σE . (∗)
Here, σ = σs/(1 − iωτ), σs = ne2τ/m and n is the number of conducting electrons per
unit volume.

Now let v0 = ṽ0e
ik·x and E0 = Ẽ0e

ik·x, where ṽ0 and Ẽ0 are constant. Assuming
that (∗) remains valid, use Maxwell’s equations (taking the charge density to be everywhere
zero but allowing for a non-zero current density) to show that

k2 =
ω2

c2
ǫr

where the relative permittivity ǫr = 1 + iσ/(ωǫ0) and k = |k|.
In the case ωτ ≫ 1 and ω < ωp, where ω2

p = σs/τǫ0, show that the wave decays
exponentially with distance inside the conductor.
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Paper 3, Section II

17D Electromagnetism
Three sides of a closed rectangular circuit C are fixed and one is moving. The circuit

lies in the plane z = 0 and the sides are x = 0, y = 0, x = a(t), y = b, where a(t) is a
given function of time. A magnetic field B = (0, 0, ∂f∂x) is applied, where f(x, t) is a given
function of x and t only. Find the magnetic flux Φ of B through the surface S bounded
by C.

Find an electric field E0 that satisfies the Maxwell equation

∇×E = −∂B

∂t

and then write down the most general solution E in terms of E0 and an undetermined
scalar function independent of f .

Verify that ∮

C
(E+ v ×B) · dr = −dΦ

dt
,

where v is the velocity of the relevant side of C. Interpret the left hand side of this
equation.

If a unit current flows round C, what is the rate of work required to maintain the
motion of the moving side of the rectangle? You should ignore any electromagnetic fields
produced by the current.
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Paper 2, Section II

18D Electromagnetism
Starting with the expression

A(r) =
µ0

4π

∫
J(r′) dV ′

|r− r′|

for the magnetic vector potential at the point r due to a current distribution of density
J(r), obtain the Biot-Savart law for the magnetic field due to a current I flowing in a
simple loop C:

B(r) = −µ0I

4π

∮

C

dr′ × (r′ − r)

|r′ − r|3 (r /∈ C).

Verify by direct differentiation that this satisfies ∇×B = 0. You may use without proof
the identity ∇ × (a × v) = a(∇ · v) − (a · ∇)v, where a is a constant vector and v is a
vector field.

Given that C is planar, and is described in cylindrical polar coordinates by z = 0,
r = f(θ), show that the magnetic field at the origin is

ẑ
µ0I

4π

∮
dθ

f(θ)
.

If C is the ellipse r(1 − e cos θ) = ℓ, find the magnetic field at the focus due to a
current I.
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Paper 1, Section I

5A Fluid Dynamics
A two-dimensional flow is given by

u = (x,−y + t) .

Show that the flow is both irrotational and incompressible. Find a stream function

ψ(x, y) such that u =
(
∂ψ
∂y ,−

∂ψ
∂x

)
. Sketch the streamlines at t = 0.

Find the pathline of a fluid particle that passes through (x0, y0) at t = 0 in the form
y = f(x, x0, y0) and sketch the pathline for x0 = 1, y0 = 1.

Paper 2, Section I

7A Fluid Dynamics
An incompressible, inviscid fluid occupies the region beneath the free surface

y = η(x, t) and moves with a velocity field determined by the velocity potential φ(x, y, t).
Gravity acts in the −y direction. You may assume Bernoulli’s integral of the equation of
motion:

p

ρ
+

∂φ

∂t
+

1

2
|∇φ|2 + gy = F (t) .

Give the kinematic and dynamic boundary conditions that must be satisfied by φ on
y = η(x, t).

In the absence of waves, the fluid has constant uniform velocity U in the x direction.
Derive the linearised form of the boundary conditions for small amplitude waves.

Assume that the free surface and velocity potential are of the form:

η = aei(kx−ωt)

φ = Ux+ ibekyei(kx−ωt)

(where implicitly the real parts are taken). Show that

(ω − kU)2 = gk .
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Paper 1, Section II

17A Fluid Dynamics
Starting from the Euler momentum equation, derive the form of Bernoulli’s equation

appropriate for an unsteady irrotational motion of an inviscid incompressible fluid.

Water of density ρ is driven through a horizontal tube of length L and internal radius
a from a water-filled balloon attached to one end of the tube. Assume that the pressure
exerted by the balloon is proportional to its current volume (in excess of atmospheric
pressure). Also assume that water exits the tube at atmospheric pressure, and that gravity
may be neglected. Show that the time for the balloon to empty does not depend on its
initial volume. Find the maximum speed of water exiting the pipe.

Paper 4, Section II

18A Fluid Dynamics
The axisymmetric, irrotational flow generated by a solid sphere of radius a translat-

ing at velocity U in an inviscid, incompressible fluid is represented by a velocity potential
φ(r, θ). Assume the fluid is at rest far away from the sphere. Explain briefly why ∇2φ = 0.

By trying a solution of the form φ(r, θ) = f(r) g(θ), show that

φ = −Ua3 cos θ

2r2

and write down the fluid velocity.

Show that the total kinetic energy of the fluid is kMU2/4 where M is the mass of
the sphere and k is the ratio of the density of the fluid to the density of the sphere.

A heavy sphere (i.e. k < 1) is released from rest in an inviscid fluid. Determine its
speed after it has fallen a distance h in terms of M , k, g and h.

Note, in spherical polars:

∇φ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ

∇2φ =
1

r2
∂

∂r

(
r2

∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
.
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Paper 3, Section II

18A Fluid Dynamics
A layer of incompressible fluid of density ρ and viscosity µ flows steadily down a

plane inclined at an angle θ to the horizontal. The layer is of uniform thickness h measured
perpendicular to the plane and the viscosity of the overlying air can be neglected. Using
coordinates x parallel to the plane (in steepest downwards direction) and y normal to the
plane, write down the equations of motion and the boundary conditions on the plane and
on the free top surface. Determine the pressure and velocity fields and show that the
volume flux down the plane is

ρgh3 sin θ

3µ
.

Consider now the case where a second layer of fluid, of uniform thickness αh,
viscosity βµ and density ρ, flows steadily on top of the first layer. Explain why one
of the appropriate boundary conditions between the two fluids is

µ
∂

∂y
u(h−) = βµ

∂

∂y
u(h+) ,

where u is the component of velocity in the x direction and h− and h+ refer to just below
and just above the boundary respectively. Determine the velocity field in each layer.

Part IB, 2013 List of Questions



17

Paper 1, Section I

3F Geometry
Let l1 and l2 be ultraparallel geodesics in the hyperbolic plane. Prove that the li

have a unique common perpendicular.

Suppose now l1, l2, l3 are pairwise ultraparallel geodesics in the hyperbolic plane.
Can the three common perpendiculars be pairwise disjoint? Must they be pairwise
disjoint? Briefly justify your answers.

Paper 3, Section I

5F Geometry
Let S be a surface with Riemannian metric having first fundamental form

du2 +G(u, v)dv2. State a formula for the Gauss curvature K of S.

Suppose that S is flat, so K vanishes identically, and that u = 0 is a geodesic on S
when parametrised by arc-length. Using the geodesic equations, or otherwise, prove that
G(u, v) ≡ 1, i.e. S is locally isometric to a plane.

Paper 2, Section II

14F Geometry
Let A and B be disjoint circles in C. Prove that there is a Möbius transformation

which takes A and B to two concentric circles.

A collection of circles Xi ⊂ C, 0 6 i 6 n− 1, for which

1. Xi is tangent to A, B and Xi+1, where indices are mod n;

2. the circles are disjoint away from tangency points;

is called a constellation on (A,B). Prove that for any n > 2 there is some pair (A,B) and
a constellation on (A,B) made up of precisely n circles. Draw a picture illustrating your
answer.

Given a constellation on (A,B), prove that the tangency points Xi ∩ Xi+1 for
0 6 i 6 n − 1 all lie on a circle. Moreover, prove that if we take any other circle Y0

tangent to A and B, and then construct Yi for i > 1 inductively so that Yi is tangent to
A, B and Yi−1, then we will have Yn = Y0, i.e. the chain of circles will again close up to
form a constellation.
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Paper 3, Section II

14F Geometry
Show that the set of all straight lines in R2 admits the structure of an abstract

smooth surface S. Show that S is an open Möbius band (i.e. the Möbius band without its
boundary circle), and deduce that S admits a Riemannian metric with vanishing Gauss
curvature.

Show that there is no metric d : S × S → R>0, in the sense of metric spaces, which

1. induces the locally Euclidean topology on S constructed above;

2. is invariant under the natural action on S of the group of translations of R2.

Show that the set of great circles on the two-dimensional sphere admits the structure
of a smooth surface S′. Is S′ homeomorphic to S ? Does S′ admit a Riemannian metric
with vanishing Gauss curvature? Briefly justify your answers.

Paper 4, Section II

15F Geometry
Let η be a smooth curve in the xz-plane η(s) = (f(s), 0, g(s)), with f(s) > 0 for

every s ∈ R and f ′(s)2 + g′(s)2 = 1. Let S be the surface obtained by rotating η around
the z-axis. Find the first fundamental form of S.

State the equations for a curve γ : (a, b) → S parametrised by arc-length to be a
geodesic.

A parallel on S is the closed circle swept out by rotating a single point of η. Prove
that for every n ∈ Z>0 there is some η for which exactly n parallels are geodesics. Sketch
possible such surfaces S in the cases n = 1 and n = 2.

If every parallel is a geodesic, what can you deduce about S ? Briefly justify your
answer.
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Paper 3, Section I

1G Groups, Rings and Modules
Define the notion of a free module over a ring. When R is a PID, show that every

ideal of R is free as an R-module.

Paper 4, Section I

2G Groups, Rings and Modules
Let p be a prime number, and G be a non-trivial finite group whose order is a power

of p. Show that the size of every conjugacy class in G is a power of p. Deduce that the
centre Z of G has order at least p.

Paper 2, Section I

2G Groups, Rings and Modules
Show that every Euclidean domain is a PID. Define the notion of a Noetherian ring,

and show that Z[i] is Noetherian by using the fact that it is a Euclidean domain.

Paper 1, Section II

10G Groups, Rings and Modules
(i) Consider the group G = GL2(R) of all 2 by 2 matrices with entries in R and

non-zero determinant. Let T be its subgroup consisting of all diagonal matrices, and N

be the normaliser of T in G. Show that N is generated by T and

(
0 1
1 0

)
, and determine

the quotient group N/T .

(ii) Now let p be a prime number, and F be the field of integers modulo p. Consider
the group G = GL2(F ) as above but with entries in F , and define T and N similarly.
Find the order of the group N .

Part IB, 2013 List of Questions [TURN OVER



20

Paper 4, Section II

11G Groups, Rings and Modules
Let R be an integral domain, and M be a finitely generated R-module.

(i) Let S be a finite subset of M which generates M as an R-module. Let T be a
maximal linearly independent subset of S, and let N be the R-submodule of M generated
by T . Show that there exists a non-zero r ∈ R such that rx ∈ N for every x ∈ M .

(ii) Now assume M is torsion-free, i.e. rx = 0 for r ∈ R and x ∈ M implies r = 0 or
x = 0. By considering the map M → N mapping x to rx for r as in (i), show that every
torsion-free finitely generated R-module is isomorphic to an R-submodule of a finitely
generated free R-module.

Paper 3, Section II

11G Groups, Rings and Modules
Let R = C[X,Y ] be the polynomial ring in two variables over the complex numbers,

and consider the principal ideal I = (X3 − Y 2) of R.

(i) Using the fact that R is a UFD, show that I is a prime ideal of R. [Hint:
Elements in C[X,Y ] are polynomials in Y with coefficients in C[X].]

(ii) Show that I is not a maximal ideal of R, and that it is contained in infinitely
many distinct proper ideals in R.

Paper 2, Section II

11G Groups, Rings and Modules
(i) State the structure theorem for finitely generated modules over Euclidean

domains.

(ii) Let C[X] be the polynomial ring over the complex numbers. Let M be a C[X]-
module which is 4-dimensional as a C-vector space and such that (X − 2)4 · x = 0 for
all x ∈ M . Find all possible forms we obtain when we write M ∼=

⊕m
i=1C[X]/(Pni

i ) for
irreducible Pi ∈ C[X] and ni > 1.

(iii) Consider the quotient ring M = C[X]/(X3 + X) as a C[X]-module. Show
that M is isomorphic as a C[X]-module to the direct sum of three copies of C. Give the
isomorphism and its inverse explicitly.
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Paper 4, Section I

1E Linear Algebra
What is a quadratic form on a finite dimensional real vector space V ? What does it

mean for two quadratic forms to be isomorphic (i.e. congruent)? State Sylvester’s law of
inertia and explain the definition of the quantities which appear in it. Find the signature
of the quadratic form on R3 given by q(v) = vTAv, where

A =



−2 1 6
1 −1 −3
6 −3 1


 .

Paper 2, Section I

1E Linear Algebra
If A is an n× n invertible Hermitian matrix, let

UA = {U ∈ Mn×n(C) |UT
AU = A}.

Show that UA with the operation of matrix multiplication is a group, and that detU has
norm 1 for any U ∈ UA. What is the relation between UA and the complex Hermitian
form defined by A?

If A = In is the n×n identity matrix, show that any element of UA is diagonalizable.

Paper 1, Section I

1E Linear Algebra
What is the adjugate of an n× n matrix A? How is it related to A−1? Suppose all

the entries of A are integers. Show that all the entries of A−1 are integers if and only if
detA = ±1.
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Paper 1, Section II

9E Linear Algebra
If V1 and V2 are vector spaces, what is meant by V1⊕V2? If V1 and V2 are subspaces

of a vector space V , what is meant by V1 + V2?

Stating clearly any theorems you use, show that if V1 and V2 are subspaces of a
finite dimensional vector space V , then

dimV1 + dimV2 = dim(V1 ∩ V2) + dim(V1 + V2).

Let V1, V2 ⊂ R4 be subspaces with bases

V1 = 〈(3, 2, 4,−1), (1, 2, 1,−2), (−2, 3, 3, 2)〉
V2 = 〈(1, 4, 2, 4), (−1, 1,−1,−1), (3, 1, 2, 0)〉.

Find a basis 〈v1,v2〉 for V1 ∩V2 such that the first component of v1 and the second
component of v2 are both 0.

Paper 4, Section II

10E Linear Algebra
What does it mean for an n × n matrix to be in Jordan form? Show that if

A ∈ Mn×n(C) is in Jordan form, there is a sequence (Am) of diagonalizable n×n matrices
which converges to A, in the sense that the (ij)th component of Am converges to the (ij)th
component of A for all i and j. [Hint: A matrix with distinct eigenvalues is diagonalizable.]
Deduce that the same statement holds for all A ∈ Mn×n(C).

Let V = M2×2(C). Given A ∈ V , define a linear map TA : V → V by
TA(B) = AB+BA. Express the characteristic polynomial of TA in terms of the trace and
determinant of A. [Hint: First consider the case where A is diagonalizable.]

Paper 3, Section II

10E Linear Algebra
Let V and W be finite dimensional real vector spaces and let T : V → W be a linear

map. Define the dual space V ∗ and the dual map T ∗. Show that there is an isomorphism
ι : V → (V ∗)∗ which is canonical, in the sense that ι ◦S = (S∗)∗ ◦ ι for any automorphism
S of V .

Now let W be an inner product space. Use the inner product to show that there is
an injective map from imT to imT ∗. Deduce that the row rank of a matrix is equal to its
column rank.
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Paper 2, Section II

10E Linear Algebra
Define what it means for a set of vectors in a vector space V to be linearly dependent.

Prove from the definition that any set of n+ 1 vectors in Rn is linearly dependent.

Using this or otherwise, prove that if V has a finite basis consisting of n elements,
then any basis of V has exactly n elements.

Let V be the vector space of bounded continuous functions on R. Show that V is
infinite dimensional.
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Paper 4, Section I

9H Markov Chains
Suppose P is the transition matrix of an irreducible recurrent Markov chain with

state space I. Show that if x is an invariant measure and xk > 0 for some k ∈ I, then
xj > 0 for all j ∈ I.

Let

γkj = pkj +

∞∑

t=1

∑

i1 6=k,...,it 6=k

pkitpitit−1 · · · pi1j.

Give a meaning to γkj and explain why γkk = 1.

Suppose x is an invariant measure with xk = 1. Prove that xj > γkj for all j.

Paper 3, Section I

9H Markov Chains
Prove that if a distribution π is in detailed balance with a transition matrix P then

it is an invariant distribution for P .

Consider the following model with 2 urns. At each time, t = 0, 1, . . . one of the
following happens:

• with probability β a ball is chosen at random and moved to the other urn (but
nothing happens if both urns are empty);

• with probability γ a ball is chosen at random and removed (but nothing happens if
both urns are empty);

• with probability α a new ball is added to a randomly chosen urn,

where α + β + γ = 1 and α < γ. State (i, j) denotes that urns 1, 2 contain i and j balls
respectively. Prove that there is an invariant measure

λi,j =
(i+ j)!

i!j!
(α/2γ)i+j .

Find the proportion of time for which there are n balls in the system.
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Paper 1, Section II

20H Markov Chains
A Markov chain has state space {a, b, c} and transition matrix

P =




0 3/5 2/5
3/4 0 1/4
2/3 1/3 0


 ,

where the rows 1,2,3 correspond to a, b, c, respectively. Show that this Markov chain is
equivalent to a random walk on some graph with 6 edges.

Let k(i, j) denote the mean first passage time from i to j.

(i) Find k(a, a) and k(a, b).

(ii) Given X0 = a, find the expected number of steps until the walk first completes
a step from b to c.

(iii) Suppose the distribution of X0 is (π1, π2, π3) = (5, 4, 3)/12. Let τ(a, b) be the
least m such that {a, b} appears as a subsequence of {X0,X1, . . . ,Xm}. By comparing the
distributions of {X0,X1, . . . ,Xm} and {Xm, . . . ,X1,X0} show that Eτ(a, b) = Eτ(b, a)
and that

k(b, a)− k(a, b) =
∑

i∈{a,b,c}
πi
[
k(i, a) − k(i, b)

]
.
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Paper 2, Section II

20H Markov Chains
(i) Suppose (Xn)n>0 is an irreducible Markov chain and

fij = P (Xn = j for some n > 1 | X0 = i). Prove that fii > fijfji and that

∞∑

n=0

Pi(Xn = i) =
∞∑

n=1

fn−1
ii .

(ii) Let (Xn)n>0 be a symmetric random walk on the Z2 lattice. Prove that (Xn)n>0

is recurrent. You may assume, for n > 1,

1/2 < 2−2n√n

(
2n

n

)
< 1.

(iii) A princess and monster perform independent random walks on the Z2 lattice.
The trajectory of the princess is the symmetric random walk (Xn)n>0. The monster’s
trajectory, denoted (Zn)n>0, is a sleepy version of an independent symmetric random walk
(Yn)n>0. Specifically, given an infinite sequence of integers 0 = n0 < n1 < · · · , the monster
sleeps between these times, so Zni+1 = · · · = Zni+1 = Yi+1. Initially, X0 = (100, 0) and
Z0 = Y0 = (0, 100). The princess is captured if and only if at some future time she and
the monster are simultaneously at (0, 0).

Compare the capture probabilities for an active monster, who takes ni+1 = ni + 1
for all i, and a sleepy monster, who takes ni spaced sufficiently widely so that

P
(
Xk = (0, 0) for some k ∈ {ni + 1, . . . , ni+1}

)
> 1/2.
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Paper 2, Section I

5B Methods
Consider the equation

xux + (x+ y)uy = 1

subject to the Cauchy data u(1, y) = y. Using the method of characteristics, obtain a
solution to this equation.

Paper 4, Section I

5C Methods
Show that the general solution of the wave equation

1

c2
∂2y

∂t2
− ∂2y

∂x2
= 0

can be written in the form

y(x, t) = f(ct− x) + g(ct + x) .

For the boundary conditions

y(0, t) = y(L, t) = 0, t > 0 ,

find the relation between f and g and show that they are 2L-periodic. Hence show that

E(t) =
1

2

∫ L

0

(
1

c2

(
∂y

∂t

)2

+

(
∂y

∂x

)2
)
dx

is independent of t.
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Paper 3, Section I

7C Methods
The solution to the Dirichlet problem on the half-space D = {x = (x, y, z) : z > 0}:

∇2u(x) = 0, x ∈ D , u(x) → 0 as |x| → ∞, u(x, y, 0) = h(x, y),

is given by the formula

u(x0) = u(x0, y0, z0) =

∫ ∞

−∞

∫ ∞

−∞
h(x, y)

∂

∂n
G(x,x0) dx dy ,

where n is the outward normal to ∂D.

State the boundary conditions on G and explain how G is related to G3, where

G3(x,x0) = − 1

4π

1

|x− x0|

is the fundamental solution to the Laplace equation in three dimensions.

Using the method of images find an explicit expression for the function ∂
∂nG(x,x0)

in the formula.

Paper 1, Section II

14B Methods
(i) Let f(x) = x, 0 < x 6 π. Obtain the Fourier sine series and sketch the odd and

even periodic extensions of f(x) over the interval −2π 6 x 6 2π. Deduce that

∞∑

n=1

1

n2
=

π2

6
.

(ii) Consider the eigenvalue problem

Ly = −d2y

dx2
− 2

dy

dx
= λy, λ ∈ R

with boundary conditions y(0) = y(π) = 0. Find the eigenvalues and corresponding
eigenfunctions. Recast L in Sturm-Liouville form and give the orthogonality condition for
the eigenfunctions. Using the Fourier sine series obtained in part (i), or otherwise, and
assuming completeness of the eigenfunctions, find a series for y that satisfies

Ly = xe−x

for the given boundary conditions.
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Paper 3, Section II

15C Methods
The Laplace equation in plane polar coordinates has the form

∇2φ =

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

]
φ(r, θ) = 0 .

Using separation of variables, derive the general solution to the equation that is single-
valued in the domain 1 < r < 2.

For

f(θ) =

∞∑

n=1

An sinnθ ,

solve the Laplace equation in the annulus with the boundary conditions:

∇2φ = 0, 1 < r < 2, φ(r, θ) =

{
f(θ), r = 1

f(θ) + 1, r = 2.

Paper 2, Section II

16B Methods
The steady-state temperature distribution u(x) in a uniform rod of finite length

satisfies the boundary value problem

−D
d2

dx2
u(x) = f(x) , 0 < x < l

u(0) = 0 , u(l) = 0

where D > 0 is the (constant) diffusion coefficient. Determine the Green’s function G(x, ξ)
for this problem. Now replace the above homogeneous boundary conditions with the
inhomogeneous boundary conditions u(0) = α, u(l) = β and give a solution to the new
boundary value problem. Hence, obtain the steady-state solution for the following problem
with the specified boundary conditions:

−D
∂2

∂x2
u(x, t) +

∂

∂t
u(x, t) = x , 0 < x < 1 ,

u(0, t) = 1/D , u(1, t) = 2/D , t > 0 .

[You may assume that a steady-state solution exists.]
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Paper 4, Section II

17C Methods
Find the inverse Fourier transform G(x) of the function

g(k) = e−a|k|, a > 0, −∞ < k <∞ .

Assuming that appropriate Fourier transforms exist, determine the solution ψ(x, y) of

∇2ψ = 0, −∞ < x <∞, 0 < y < 1,

with the following boundary conditions

ψ(x, 0) = δ(x), ψ(x, 1) =
1

π

1

x2 + 1
.

Here δ(x) is the Dirac delta-function.
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Paper 3, Section I

3G Metric and Topological Spaces
Let X be a metric space with the metric d : X ×X → R.

(i) Show that if X is compact as a topological space, then X is complete.

(ii) Show that the completeness of X is not a topological property, i.e. give an
example of two metrics d, d′ on a set X, such that the associated topologies are the same,
but (X, d) is complete and (X, d′) is not.

Paper 2, Section I

4G Metric and Topological Spaces
Let X be a topological space. Prove or disprove the following statements.

(i) If X is discrete, then X is compact if and only if it is a finite set.

(ii) If Y is a subspace of X and X,Y are both compact, then Y is closed in X.

Paper 1, Section II

12G Metric and Topological Spaces
Consider the sphere S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}, a subset of R3, as a

subspace of R3 with the Euclidean metric.

(i) Show that S2 is compact and Hausdorff as a topological space.

(ii) Let X = S2/ ∼ be the quotient set with respect to the equivalence relation
identifying the antipodes, i.e.

(x, y, z) ∼ (x′, y′, z′) ⇐⇒ (x′, y′, z′) = (x, y, z) or (−x,−y,−z).

Show that X is compact and Hausdorff with respect to the quotient topology.
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Paper 4, Section II

13G Metric and Topological Spaces
Let X be a topological space. A connected component of X means an equivalence

class with respect to the equivalence relation on X defined as:

x ∼ y ⇐⇒ x, y belong to some connected subspace of X.

(i) Show that every connected component is a connected and closed subset of X.

(ii) If X,Y are topological spaces and X × Y is the product space, show that every
connected component of X × Y is a direct product of connected components of X and Y .
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Paper 1, Section I

6C Numerical Analysis
Determine the nodes x1, x2 of the two-point Gaussian quadrature

∫ 1

0
f(x)w(x) dx ≈ a1f(x1) + a2f(x2), w(x) = x,

and express the coefficients a1, a2 in terms of x1, x2. [You don’t need to find numerical
values of the coefficients.]

Paper 4, Section I

8C Numerical Analysis
For a continuous function f , and k + 1 distinct points {x0, x1, . . . , xk}, define the

divided difference f [x0, . . . , xk] of order k.

Given n+ 1 points {x0, x1, . . . , xn}, let pn ∈ Pn be the polynomial of degree n that
interpolates f at these points. Prove that pn can be written in the Newton form

pn(x) = f(x0) +
n∑

k=1

f [x0, . . . , xk]
k−1∏

i=0

(x− xi) .

Paper 1, Section II

18C Numerical Analysis
Define the QR factorization of an m×n matrix A and explain how it can be used to

solve the least squares problem of finding the vector x∗ ∈ Rn which minimises ‖Ax − b‖,
where b ∈ Rm, m > n, and the norm is the Euclidean one.

Define a Givens rotation Ω[p,q] and show that it is an orthogonal matrix.

Using a Givens rotation, solve the least squares problem for

A =




2 1 1
0 4 1
0 3 2
0 0 0


 , b =




2
3
1
2


 ,

giving both x∗ and ‖Ax∗ − b‖.
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Paper 3, Section II

19C Numerical Analysis
Let

f ′(0) ≈ a0f(0) + a1f(1) + a2f(2) =: λ(f)

be a formula of numerical differentiation which is exact on polynomials of degree 2, and
let

e(f) = f ′(0)− λ(f)

be its error.

Find the values of the coefficients a0, a1, a2.

Using the Peano kernel theorem, find the least constant c such that, for all functions
f ∈ C3[0, 2], we have

|e(f)| 6 c ‖f ′′′‖∞ .

Paper 2, Section II

19C Numerical Analysis
Explain briefly what is meant by the convergence of a numerical method for solving

the ordinary differential equation

y′(t) = f(t, y), t ∈ [0, T ], y(0) = y0 .

Prove from first principles that if the function f is sufficiently smooth and satisfies
the Lipschitz condition

|f(t, x)− f(t, y)| 6 L |x− y|, x, y ∈ R, t ∈ [0, T ],

for some L > 0, then the backward Euler method

yn+1 = yn + hf(tn+1, yn+1) ,

converges and find the order of convergence.

Find the linear stability domain of the backward Euler method.

Part IB, 2013 List of Questions



35

Paper 1, Section I

8H Optimization
State sufficient conditions for p and q to be optimal mixed strategies for the row

and column players in a zero-sum game with payoff matrix A and value v.

Rowena and Colin play a hide-and-seek game. Rowena hides in one of 3 locations,
and then Colin searches them in some order. If he searches in order i, j, k then his search
cost is ci, ci + cj or ci + cj + ck, depending upon whether Rowena hides in i, j or k,
respectively, and where c1, c2, c3 are all positive. Rowena (Colin) wishes to maximize
(minimize) the expected search cost.

Formulate the payoff matrix for this game.

Let c = c1+c2+c3. Suppose that Colin starts his search in location i with probability
ci/c, and then, if he does not find Rowena, he searches the remaining two locations in
random order. What bound does this strategy place on the value of the game?

Guess Rowena’s optimal hiding strategy, show that it is optimal and find the value
of the game.

Paper 2, Section I

9H Optimization
Given a network with a source A, a sink B, and capacities on directed arcs, define

what is meant by a minimum cut.

The m streets and n intersections of a town are represented by sets of edges E and
vertices V of a connected graph. A city planner wishes to make all streets one-way while
ensuring it possible to drive away from each intersection along at least k different streets.

Use a theorem about min-cut and max-flow to prove that the city planner can
achieve his goal provided that the following is true:

d(U) > k|U | for all U ⊆ V,

where |U | is the size of U and d(U) is the number edges with at least one end in U . How
could the planner find street directions that achieve his goal?

[Hint: Consider a network having nodes A, B, nodes a1, . . . , am for the streets and
nodes b1, . . . , bn for the intersections. There are directed arcs from A to each ai, and from
each bi to B. From each ai there are two further arcs, directed towards bj and bj′ that
correspond to endpoints of street i.]

Part IB, 2013 List of Questions [TURN OVER



36

Paper 4, Section II

20H Optimization
Given real numbers a and b, consider the problem P of minimizing

f(x) = ax11 + 2x12 + 3x13 + bx21 + 4x22 + x23

subject to xij > 0 and

x11 + x12 + x13 = 5

x21 + x22 + x23 = 5

x11 + x21 = 3

x12 + x22 = 3

x13 + x23 = 4.

List all the basic feasible solutions, writing them as 2× 3 matrices (xij).

Let f(x) =
∑

ij cijxij. Suppose there exist λi, µj such that

λi + µj 6 cij for all i ∈ {1, 2}, j ∈ {1, 2, 3} .

Prove that if x and x′ are both feasible for P and λi + µj = cij whenever xij > 0, then
f(x) 6 f(x′).

Let x∗ be the initial feasible solution that is obtained by formulating P as a
transportation problem and using a greedy method that starts in the upper left of the
matrix (xij). Show that if a+ 2 6 b then x∗ minimizes f .

For what values of a and b is one step of the transportation algorithm sufficient to
pivot from x∗ to a solution that maximizes f?
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Paper 3, Section II

21H Optimization
Use the two phase method to find all optimal solutions to the problem

maximize 2x1 + 3x2 + x3

subject to x1 + x2 + x3 6 40

2x1 + x2 − x3 > 10

−x2 + x3 > 10

x1, x2, x3 > 0.

Suppose that the values (40, 10, 10) are perturbed to (40, 10, 10) + (ǫ1, ǫ2, ǫ3). Find
an expression for the change in the optimal value, which is valid for all sufficiently small
values of ǫ1, ǫ2, ǫ3.

Suppose that (ǫ1, ǫ2, ǫ3) = (θ,−2θ, 0). For what values of θ is your expression valid?
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Paper 4, Section I

6B Quantum Mechanics
The components of the three-dimensional angular momentum operator L̂ are defined

as follows:

L̂x = −i~
(
y
∂

∂z
− z

∂

∂y

)
L̂y = −i~

(
z
∂

∂x
− x

∂

∂z

)
L̂z = −i~

(
x
∂

∂y
− y

∂

∂x

)
.

Given that the wavefunction
ψ = (f(x) + iy)z

is an eigenfunction of L̂z, find all possible values of f(x) and the corresponding eigenvalues
of ψ. Letting f(x) = x, show that ψ is an eigenfunction of L̂2 and calculate the
corresponding eigenvalue.

Paper 3, Section I

8B Quantum Mechanics
If α, β and γ are linear operators, establish the identity

[αβ, γ] = α[β, γ] + [α, γ]β.

In what follows, the operators x and p are Hermitian and represent position and momentum
of a quantum mechanical particle in one-dimension. Show that

[xn, p] = i~nxn−1

and
[x, pm] = i~mpm−1

where m,n ∈ Z+. Assuming [xn, pm] 6= 0, show that the operators xn and pm are
Hermitian but their product is not. Determine whether xnpm + pmxn is Hermitian.
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Paper 1, Section II

15B Quantum Mechanics
A particle with momentum p̂ moves in a one-dimensional real potential with

Hamiltonian given by

Ĥ =
1

2m
(p̂+ isA)(p̂ − isA), −∞ < x <∞

where A is a real function and s ∈ R+. Obtain the potential energy of the system. Find
χ(x) such that (p̂− isA)χ(x) = 0. Now, putting A = xn, for n ∈ Z+, show that χ(x) can
be normalised only if n is odd. Letting n = 1, use the inequality

∫ ∞

−∞
ψ∗(x)Ĥψ(x)dx > 0

to show that

∆x∆p > ~
2

assuming that both 〈p̂〉 and 〈x̂〉 vanish.

Paper 3, Section II

16B Quantum Mechanics
Obtain, with the aid of the time-dependent Schrödinger equation, the conservation

equation
∂

∂t
ρ(x, t) +∇ · j(x, t) = 0

where ρ(x, t) is the probability density and j(x, t) is the probability current. What have
you assumed about the potential energy of the system?

Show that if the potential U(x, t) is complex the conservation equation becomes

∂

∂t
ρ(x, t) +∇ · j(x, t) = 2

~
ρ(x, t) ImU(x, t).

Take the potential to be time-independent. Show, with the aid of the divergence theorem,
that

d

dt

∫

R3

ρ(x, t) dV =
2

~

∫

R3

ρ(x, t) ImU(x) dV.

Assuming the wavefunction ψ(x, 0) is normalised to unity, show that if ρ(x, t) is expanded
about t = 0 so that ρ(x, t) = ρ0(x) + tρ1(x) + · · · , then

∫

R3

ρ(x, t) dV = 1 +
2t

~

∫

R3

ρ0(x) ImU(x) dV + · · · .

As time increases, how does the quantity on the left of this equation behave if ImU(x) < 0?
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Paper 2, Section II

17B Quantum Mechanics
(i) Consider a particle of mass m confined to a one-dimensional potential well of

depth U > 0 and potential

V (x) =

{
−U, |x| < l

0, |x| > l.

If the particle has energy E where −U 6 E < 0, show that for even states

α tanαl = β

where α = [2m~2 (U + E)]1/2 and β = [−2m
~2 E]1/2.

(ii) A particle of mass m that is incident from the left scatters off a one-dimensional
potential given by

V (x) = kδ(x)

where δ(x) is the Dirac delta. If the particle has energy E > 0 and k > 0, obtain the
reflection and transmission coefficients R and T , respectively. Confirm that R+ T = 1.

For the case k < 0 and E < 0 show that the energy of the only even parity bound
state of the system is given by

E = −mk2

2~2
.

Use part (i) to verify this result by taking the limit U → ∞, l → 0 with Ul fixed.
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Paper 1, Section I

7H Statistics
Let x1, . . . , xn be independent and identically distributed observations from a

distribution with probability density function

f(x) =

{
λe−λ(x−µ), x > µ,

0, x < µ,

where λ and µ are unknown positive parameters. Let β = µ + 1/λ. Find the maximum
likelihood estimators λ̂, µ̂ and β̂.

Determine for each of λ̂, µ̂ and β̂ whether or not it has a positive bias.

Paper 2, Section I

8H Statistics
State and prove the Rao–Blackwell theorem.

Individuals in a population are independently of three types {0, 1, 2}, with unknown
probabilities p0, p1, p2 where p0 + p1 + p2 = 1. In a random sample of n people the ith
person is found to be of type xi ∈ {0, 1, 2}.

Show that an unbiased estimator of θ = p0p1p2 is

θ̂ =

{
1, if (x1, x2, x3) = (0, 1, 2),

0, otherwise.

Suppose that ni of the individuals are of type i. Find an unbiased estimator of θ,
say θ∗, such that var(θ∗) < θ(1− θ).
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Paper 4, Section II

19H Statistics
Explain the notion of a sufficient statistic.

Suppose X is a random variable with distribution F taking values in {1, . . . , 6},
with P (X = i) = pi. Let x1, . . . , xn be a sample from F . Suppose ni is the number of
these xj that are equal to i. Use a factorization criterion to explain why (n1, . . . , n6) is
sufficient for θ = (p1, . . . , p6).

Let H0 be the hypothesis that pi = 1/6 for all i. Derive the statistic of the
generalized likelihood ratio test of H0 against the alternative that this is not a good
fit.

Assuming that ni ≈ n/6 when H0 is true and n is large, show that this test can be
approximated by a chi-squared test using a test statistic

T = −n+
6

n

6∑

i=1

n2
i .

Suppose n = 100 and T = 8.12. Would you reject H0? Explain your answer.
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Paper 1, Section II

19H Statistics
Consider the general linear model Y = Xθ + ǫ where X is a known n× p matrix, θ

is an unknown p×1 vector of parameters, and ǫ is an n×1 vector of independent N(0, σ2)
random variables with unknown variance σ2. Assume the p× p matrix XTX is invertible.
Let

θ̂ = (XTX)−1XTY

ǫ̂ = Y −Xθ̂.

What are the distributions of θ̂ and ǫ̂? Show that θ̂ and ǫ̂ are uncorrelated.

Four apple trees stand in a 2 × 2 rectangular grid. The annual yield of the tree at
coordinate (i, j) conforms to the model

yij = αi + βxij + ǫij, i, j ∈ {1, 2},

where xij is the amount of fertilizer applied to tree (i, j), α1, α2 may differ because of
varying soil across rows, and the ǫij are N(0, σ2) random variables that are independent
of one another and from year to year. The following two possible experiments are to be
compared:

I :
(
xij

)
=

(
0 1
2 3

)
and II :

(
xij

)
=

(
0 2
3 1

)
.

Represent these as general linear models, with θ = (α1, α2, β). Compare the variances of
estimates of β under I and II.

With II the following yields are observed:

(
yij

)
=

(
100 300
600 400

)
.

Forecast the total yield that will be obtained next year if no fertilizer is used. What is the
95% predictive interval for this yield?
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Paper 3, Section II

20H Statistics
Suppose x1 is a single observation from a distribution with density f over [0, 1]. It

is desired to test H0 : f(x) = 1 against H1 : f(x) = 2x.

Let δ : [0, 1] → {0, 1} define a test by δ(x1) = i ⇐⇒ ‘accept Hi’. Let
αi(δ) = P (δ(x1) = 1− i | Hi). State the Neyman-Pearson lemma using this notation.

Let δ be the best test of size 0.10. Find δ and α1(δ).

Consider now δ : [0, 1] → {0, 1, ⋆} where δ(x1) = ⋆ means ‘declare the test to be
inconclusive’. Let γi(δ) = P (δ(x) = ⋆ | Hi). Given prior probabilities π0 for H0 and
π1 = 1− π0 for H1, and some w0, w1, let

cost(δ) = π0
(
w0α0(δ) + γ0(δ)

)
+ π1

(
w1α1(δ) + γ1(δ)

)
.

Let δ∗(x1) = i ⇐⇒ x1 ∈ Ai, where A0 = [0, 0.5), A⋆ = [0.5, 0.6), A1 = [0.6, 1].
Prove that for each value of π0 ∈ (0, 1) there exist w0, w1 (depending on π0) such that
cost(δ∗) = minδ cost(δ). [Hint : w0 = 1 + 2(0.6)(π1/π0).]

Hence prove that if δ is any test for which

αi(δ) 6 αi(δ
∗), i = 0, 1

then γ0(δ) > γ0(δ
∗) and γ1(δ) > γ1(δ

∗).
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Paper 1, Section I

4A Variational Principles
(a) Define what it means for a function g : R → R to be convex. Assuming g′′ exists,

state an equivalent condition. Let f(x) = x log x, defined on x > 0. Show that f(x) is
convex.

(b) Find the Legendre transform f∗(p) of f(x) = x log x. State the domain of f∗(p).
Without further calculation, explain why (f∗)∗ = f in this case.

Paper 3, Section I

6A Variational Principles
A cylindrical drinking cup has thin curved sides with density ρ per unit area, and

a disk-shaped base with density kρ per unit area. The cup has capacity to hold a fixed
volume V of liquid. Use the method of Lagrange multipliers to find the minimum mass of
the cup.

Paper 2, Section II

15A Variational Principles
Starting from the Euler–Lagrange equation, show that a condition for

∫
f(y, y′)dx

to be stationary is

f − y′
∂f

∂y′
= constant.

In the half-plane y > 0, light has speed c(y) = y + c0 where c0 > 0. Find the
equation for a light ray between (−a, 0) and (a, 0). Sketch the solution.
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Paper 4, Section II

16A Variational Principles
Derive the Euler–Lagrange equation for the integral

∫ b

a
f(x, y, y′, y′′) dx

where prime denotes differentiation with respect to x, and both y and y′ are specified at
x = a, b.

Find y(x) that extremises the integral

∫ π

0

(
y +

1

2
y2 − 1

2
y′′2

)
dx

subject to y(0) = −1, y′(0) = 0, y(π) = coshπ and y′(π) = sinhπ.

Show that your solution is a global maximum. You may use the result that

∫ π

0
φ2(x)dx 6

∫ π

0
φ′2(x)dx

for any (suitably differentiable) function φ which satisfies φ(0) = 0 and φ(π) = 0.
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