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SECTION I

1I Number Theory
Show that the continued fraction for

√
13 is [3; 1, 1, 1, 1, 6].

Hence, or otherwise, find a solution to the equation x2−13y2 = 1 in positive integers
x and y. Write down an expression for another solution.

2F Topics in Analysis
State a version of the Baire category theorem for a complete metric space. Let T be the set
of real numbers x with the property that, for each positive integer n, there exist integers
p and q with q > 2 such that

0 <

∣∣∣∣x− p

q

∣∣∣∣ <
1

qn
.

Is T an open subset of R? Is T a dense subset of R? Justify your answers.

3G Geometry and Groups

Let G be a crystallographic group of the Euclidean plane. Define the lattice and

the point group of G. Suppose that the lattice for G is {(k, 0) : k ∈ Z}. Show that there

are five different possibilities for the point group. Show that at least one of these point

groups can arise from two groups G that are not conjugate in the group of all isometries

of the Euclidean plane.

4G Coding and Cryptography
Let A and B be alphabets of sizes m and a respectively. What does it mean to say

that c : A → B∗ is a decodable code? State Kraft’s inequality.

Suppose that a source emits letters from the alphabet A = {1, 2, . . . ,m}, each letter
j occurring with (known) probability pj > 0. Let S be the codeword-length random
variable for a decodable code c : A → B∗, where |B| = a. It is desired to find a
decodable code that minimizes the expected value of aS . Establish the lower bound
E(aS) > (

∑m
j=1

√
pj)

2, and characterise when equality occurs. [Hint. You may use without
proof the Cauchy-Schwarz inequality, that (for positive xi, yi)

m∑

i=1

xiyi 6 (

m∑

i=1

x2i )
1/2(

m∑

i=1

y2i )
1/2 ,

with equality if and only if xi = λyi for all i.]
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5K Statistical Modelling
Let Y1, . . . , Yn be independent with Yi ∼ 1

ni
Bin(ni, µi), i = 1, . . . , n, and

log

(
µi

1− µi

)
= x⊤i β , (1)

where xi is a p × 1 vector of regressors and β is a p × 1 vector of parameters. Write
down the likelihood of the data Y1, . . . , Yn as a function of µ = (µ1, . . . , µn). Find the
unrestricted maximum likelihood estimator of µ, and the form of the maximum likelihood
estimator µ̂ = (µ̂1, . . . , µ̂n) under the logistic model (1).

Show that the deviance for a comparison of the full (saturated) model to the
generalised linear model with canonical link (1) using the maximum likelihood estimator

β̂ can be simplified to

D(y; µ̂) = −2
n∑

i=1

[
niyix

⊤
i β̂ − ni log(1− µ̂i)

]
.

Finally, obtain an expression for the deviance residual in this generalised linear
model.

6C Mathematical Biology
Krill is the main food source for baleen whales. The following model has been

proposed for the coupled evolution of populations of krill and whales, with x(t) being the
number of krill and y(t) being the number of whales:

dx

dt
= rx

(
1− x

K

)
− axy ,

dy

dt
= sy

(
1− y

bx

)
,

where r, s, a, b and K are positive constants.

Give a biological interpretation for the form of the two differential equations.

Show that a steady state is possible with x > 0 and y > 0 and write down expressions
for the steady-state values of x and y.

Determine whether this steady state is stable.
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7D Dynamical Systems
State the Poincaré–Bendixson theorem.

A model of a chemical process obeys the second-order system

ẋ = 1− x(1 + a) + x2y, ẏ = ax− x2y ,

where a > 0. Show that there is a unique fixed point at (x, y) = (1, a) and that it is
unstable if a > 2. Show that trajectories enter the region bounded by the lines x = 1/q,
y = 0, y = aq and x+ y = 1 + aq, provided q > (1 + a). Deduce that there is a periodic
orbit when a > 2.

8E Further Complex Methods
Recall that if f(z) is analytic in a neighbourhood of z0 6= 0, then

f(z) + f(z0) = 2u

(
z + z0

2
,
z − z0
2i

)
,

where u(x, y) is the real part of f(z). Use this fact to construct the imaginary part of an
analytic function whose real part is given by

u(x, y) = y

∫ ∞

−∞

g(t) dt

(t− x)2 + y2
, x, y ∈ R, y 6= 0 ,

where g(t) is real and has sufficient smoothness and decay.

9A Classical Dynamics
Consider a heavy symmetric top of mass M , pinned at point P , which is a distance

l from the centre of mass.

(a) Working in the body frame (e1, e2, e3) (where e3 is the symmetry axis of the top)
define the Euler angles (ψ, θ, φ) and show that the components of the angular velocity
can be expressed in terms of the Euler angles as

ω = (φ̇ sin θ sinψ + θ̇ cosψ, φ̇ sin θ cosψ − θ̇ sinψ, ψ̇ + φ̇ cos θ) .

(b) Write down the Lagrangian of the top in terms of the Euler angles and the principal
moments of inertia I1, I3.

(c) Find the three constants of motion.

Part II, Paper 1
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10E Cosmology
The number density of photons in equilibrium at temperature T is given by

n =
8π

(hc)3

∫ ∞

0

ν2dν

eβhν − 1
,

where β = 1/(kBT ) (kB is Boltzmann’s constant). Show that n ∝ T 3. Show further that
ǫ ∝ T 4, where ǫ is the photon energy density.

Write down the Friedmann equation for the scale factor a(t) of a flat homogeneous
and isotropic universe. State the relation between a and the mass density ρ for a
radiation-dominated universe and hence deduce the time-dependence of a. How does
the temperature T depend on time?
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SECTION II

11G Geometry and Groups

Define the axis of a loxodromic Möbius transformation acting on hyperbolic 3-space.

When do two loxodromic transformations commute? Justify your answer.

Let G be a Kleinian group that contains a loxodromic transformation. Show that

the fixed point of any loxodromic transformation in G lies in the limit set of G. Prove

that the set of such fixed points is dense in the limit set. Give examples to show that the

set of such fixed points can be equal to the limit set or a proper subset.

12G Coding and Cryptography
Define a cyclic binary code of length n.

Show how codewords can be identified with polynomials in such a way that
cyclic binary codes correspond to ideals in the polynomial ring with a suitably chosen
multiplication rule.

Prove that any cyclic binary code C has a unique generator, that is, a polynomial
c(X) of minimum degree, such that the code consists of the multiples of this polynomial.
Prove that the rank of the code equals n− deg c(X), and show that c(X) divides Xn − 1.

Show that the repetition and parity check codes are cyclic, and determine their
generators.

Part II, Paper 1
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13K Statistical Modelling
The treatment for a patient diagnosed with cancer of the prostate depends on whether
the cancer has spread to the surrounding lymph nodes. It is common to operate on the
patient to obtain samples from the nodes which can then be analysed under a microscope.
However it would be preferable if an accurate assessment of nodal involvement could
be made without surgery. For a sample of 53 prostate cancer patients, a number of
possible predictor variables were measured before surgery. The patients then had surgery
to determine nodal involvement. We want to see if nodal involvement can be accurately
predicted from the available variables and determine which ones are most important. The
variables take the values 0 or 1.

r An indicator 0=no/1=yes of nodal involvement.

aged The patient’s age, split into less than 60 (=0) and 60 or over (=1).

stage A measurement of the size and position of the tumour observed by palpation with
the fingers. A serious case is coded as 1 and a less serious case as 0.

grade Another indicator of the seriousness of the cancer which is determined by a pathology
reading of a biopsy taken by needle before surgery. A value of 1 indicates a more
serious case of cancer.

xray Another measure of the seriousness of the cancer taken from an X-ray reading. A
value of 1 indicates a more serious case of cancer.

acid The level of acid phosphatase in the blood serum where 1=high and 0=low.

A binomial generalised linear model with a logit link was fitted to the data to predict
nodal involvement and the following output obtained:

Deviance Residuals:

Min 1Q Median 3Q Max

-2.332 -0.665 -0.300 0.639 2.150

Coefficients:

Estimate Std. Error t value Pr(>|z|)

(Intercept) -3.079 0.987 -3.12 0.0018

aged -0.292 0.754 -0.39 0.6988

grade 0.872 0.816 1.07 0.2850

stage 1.373 0.784 1.75 0.0799

xray 1.801 0.810 2.22 0.0263

acid 1.684 0.791 2.13 0.0334

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 70.252 on 52 degrees of freedom

Residual deviance: 47.611 on 47 degrees of freedom

AIC: 59.61

Number of Fisher Scoring iterations: 5
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(a) Give an interpretation of the coefficient of xray.

(b) Give the numerical value of the sum of the squared deviance residuals.

(c) Suppose that the predictors, stage, grade and xray are positively correlated.
Describe the effect that this correlation is likely to have on our ability to determine
the strength of these predictors in explaining the response.

(d) The probability of observing a value of 70.252 under a Chi-squared distribution with
52 degrees of freedom is 0.047. What does this information tell us about the null
model for this data? Justify your answer.

(e) What is the lowest predicted probability of the nodal involvement for any future
patient?

(f) The first plot in Figure 1 shows the (Pearson) residuals and the fitted values. Explain
why the points lie on two curves.

(g) The second plot in Figure 1 shows the value of β̂ − β̂(i) where (i) indicates that
patient i was dropped in computing the fit. The values for each predictor, including
the intercept, are shown. Could a single case change our opinion of which predictors
are important in predicting the response?

Part II, Paper 1
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14E Further Complex Methods
(a) Suppose that F (z), z = x+ iy, x, y ∈ R, is analytic in the upper-half complex

z-plane and O (1/z) as z → ∞, y > 0. Show that the real and imaginary parts of F (x),
denoted by U(x) and V (x) respectively, satisfy the so-called Kramers–Kronig formulae:

U(x) = HV (x) , V (x) = −HU(x) , x ∈ R .

Here, H denotes the Hilbert transform, i.e.,

(Hf) (x) =
1

π
PV

∫ ∞

−∞

f(ξ)

ξ − x
dξ ,

where PV denotes the principal value integral.

(b) Let the real function u(x, y) satisfy the Laplace equation in the upper-half
complex z-plane, i.e.,

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 0 , −∞ < x < ∞, y > 0 .

Assuming that u(x, y) decays for large |x| and for large y, show that F = uz is an analytic
function for Im z > 0, z = x+iy. Then, find an expression for uy(x, 0) in terms of ux(x, 0).
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15E Cosmology
The Friedmann equation for the scale factor a(t) of a homogeneous and isotropic

universe of mass density ρ is (
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
,

where ȧ = da/dt. Explain how the value of the constant k affects the late-time (t → ∞)
behaviour of a.

Explain briefly why ρ ∝ 1/a3 in a matter-dominated (zero-pressure) universe. By
considering the scale factor a of a closed universe as a function of conformal time τ , defined
by dτ = a−1dt, show that

a(τ) =
Ω0

2(Ω0 − 1)

[
1− cos

(√
kcτ

)]
,

where Ω0 is the present (τ = τ0) density parameter, with a(τ0) = 1. Use this result to
show that

t(τ) =
Ω0

2H0(Ω0 − 1)3/2

[√
kcτ − sin

(√
kcτ

)]
,

whereH0 is the present Hubble parameter. Find the time tBC at which this model universe
ends in a “big crunch”.

Given that
√
kcτ0 ≪ 1, obtain an expression for the present age of the universe in

terms of H0 and Ω0, according to this model. How does it compare with the age of a flat
universe?

16H Logic and Set Theory
State Zorn’s lemma, and show how it may be deduced from the Axiom of Choice

using the Bourbaki–Witt theorem (which should be clearly stated but not proved).

Show that, if a and b are distinct elements of a distributive lattice L, there is a
lattice homomorphism f : L → {0, 1} with f(a) 6= f(b). Indicate briefly how this result
may be used to prove the completeness theorem for propositional logic.
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17F Graph Theory
State Markov’s inequality and Chebyshev’s inequality.

Let G(2)(n, p) denote the probability space of bipartite graphs with vertex classes
U = {1, 2, . . . , n} and V = {−1,−2, . . . ,−n}, with each possible edge uv (u ∈ U ,
v ∈ V ) present, independently, with probability p. Let X be the number of subgraphs of
G ∈ G(2)(n, p) that are isomorphic to the complete bipartite graph K2,2. Write down EX
and Var (X). Hence show that p = 1/n is a threshold for G ∈ G(2)(n, p) to contain K2,2,
in the sense that if np → ∞ then a. e. G ∈ G(2)(n, p) contains a K2,2, whereas if np → 0
then a. e. G ∈ G(2)(n, p) does not contain a K2,2.

By modifying a random G ∈ G(2)(n, p) for suitably chosen p, show that, for each
n, there exists a bipartite graph H with n vertices in each class such that K2,2 6⊂ H but

e(H) > 3
4

(
n

3√n−1

)2
.

18H Galois Theory
List all subfields of the cyclotomic field Q(µ20) obtained by adjoining all 20th roots

of unity to Q, and draw the lattice diagram of inclusions among them. Write all the
subfields in the form Q(α) or Q(α, β). Briefly justify your answer.

[The description of the Galois group of cyclotomic fields and the fundamental theorem of
Galois theory can be used freely without proof.]

19H Representation Theory
Write down the character table of D10.

Suppose that G is a group of order 60 containing 24 elements of order 5, 20 elements
of order 3 and 15 elements of order 2. Calculate the character table of G, justifying your
answer.

[You may assume the formula for induction of characters, provided you state it
clearly.]

20F Number Fields
Let K be a number field, and OK its ring of integers. Write down a characterisation

of the units in OK in terms of the norm. Without assuming Dirichlet’s units theorem,
prove that for K a quadratic field the quotient of the unit group by {±1} is cyclic (i.e.
generated by one element). Find a generator in the cases K = Q(

√
−3) and K = Q(

√
11).

Determine all integer solutions of the equation x2 − 11y2 = n for n = −1, 5, 14.
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21G Algebraic Topology
Define the notions of covering projection and of locally path-connected space. Show

that a locally path-connected space is path-connected if it is connected.

Suppose f : Y → X and g : Z → X are continuous maps, the space Y is connected
and locally path-connected and that g is a covering projection. Suppose also that we
are given base-points x0, y0, z0 satisfying f(y0) = x0 = g(z0). Show that there is a
continuous f̃ : Y → Z satisfying f̃(y0) = z0 and gf̃ = f if and only if the image of
f∗ : Π1(Y, y0) → Π1(X,x0) is contained in that of g∗ : Π1(Z, z0) → Π1(X,x0). [You may
assume the path-lifting and homotopy-lifting properties of covering projections.]

Now suppose X is locally path-connected, and both f : Y → X and g : Z → X are
covering projections with connected domains. Show that Y and Z are homeomorphic as
spaces over X if and only if the images of their fundamental groups under f∗ and g∗ are
conjugate subgroups of Π1(X,x0).

22G Linear Analysis
What is meant by the dual X∗ of a normed space X? Show that X∗ is a Banach

space.

Let X = C1(0, 1), the space of functions f : (0, 1) → R possessing a bounded,
continuous first derivative. Endow X with the sup norm ‖f‖∞ = supx∈(0,1) |f(x)|. Which
of the following maps T : X → R are elements of X∗? Give brief justifications or
counterexamples as appropriate.

1. Tf = f(12);

2. Tf = ‖f‖∞;

3. Tf =
∫ 1
0 f(x) dx;

4. Tf = f ′(12).

Now suppose that X is a (real) Hilbert space. State and prove the Riesz represen-
tation theorem. Describe the natural map X → X∗∗ and show that it is surjective.

[All normed spaces are over R. You may assume that if Y is a closed subspace of a
Hilbert space X then X = Y ⊕ Y ⊥.]
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23I Riemann Surfaces
(i) Let f(z) =

∑∞
n=1 z

2n . Show that the unit circle is the natural boundary of the
function element (D(0, 1), f).

(ii) Let U = {z ∈ C : Re(z) > 0} ⊂ C; explain carefully how a holomorphic
function f may be defined on U satisfying the equation

(f(z)2 − 1)2 = z .

Let F denote the connected component of the space of germs G (of holomorphic functions
on C \ {0}) corresponding to the function element (U, f), with associated holomorphic
map π : F → C \ {0}. Determine the number of points of F in π−1(w) when
(a) w = 1

2 , and (b) w = 1.

[You may assume any standard facts about analytic continuations that you may need.]

24I Algebraic Geometry

(a) Let X be an affine variety, k[X] its ring of functions, and let p ∈ X. Assume k

is algebraically closed. Define the tangent space TpX at p. Prove the following

assertions.

(i) A morphism of affine varieties f : X → Y induces a linear map

df : TpX → Tf(p)Y.

(ii) If g ∈ k[X] and U := {x ∈ X | g(x) 6= 0}, then U has the natural

structure of an affine variety, and the natural morphism of U into X induces

an isomorphism TpU → TpX for all p ∈ U .

(iii) For all s > 0, the subset {x ∈ X | dimTxX > s} is a Zariski-closed subvariety

of X.

(b) Show that the set of nilpotent 2× 2 matrices

X = {x ∈ Mat2(k) |x2 = 0}

may be realised as an affine surface in A3, and determine its tangent space at all

points x ∈ X.

Define what it means for two varieties Y1 and Y2 to be birationally equivalent, and

show that the variety X of nilpotent 2× 2 matrices is birationally equivalent to A2.
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25I Differential Geometry
Define the geodesic curvature kg of a regular curve in an oriented surface S ⊂ R3.

When is kg = 0 along a curve?

Explain briefly what is meant by the Euler characteristic χ of a compact surface
S ⊂ R3. State the global Gauss–Bonnet theorem with boundary terms.

Let S be a surface with positive Gaussian curvature that is diffeomorphic to the
sphere S2 and let γ1,γ2 be two disjoint simple closed curves in S. Can both γ1 and γ2 be
geodesics? Can both γ1 and γ2 have constant geodesic curvature? Justify your answers.

[You may assume that the complement of a simple closed curve in S2 consists of two open
connected regions.]

26J Probability and Measure
Carefully state and prove Jensen’s inequality for a convex function c : I → R, where

I ⊆ R is an interval. Assuming that c is strictly convex, give necessary and sufficient
conditions for the inequality to be strict.

Let µ be a Borel probability measure on R, and suppose µ has a strictly positive
probability density function f0 with respect to Lebesgue measure. Let P be the family of
all strictly positive probability density functions f on R with respect to Lebesgue measure
such that log(f/f0) ∈ L1(µ). Let X be a random variable with distribution µ. Prove that
the mapping

f 7→ E
[
log

f

f0
(X)

]

has a unique maximiser over P, attained when f = f0 almost everywhere.

27K Applied Probability
(a) Give the definition of a Poisson process (Nt, t > 0) with rate λ, using its

transition rates. Show that for each t > 0, the distribution of Nt is Poisson with a
parameter to be specified.

Let J0 = 0 and let J1, J2, . . . denote the jump times of (Nt, t > 0). What is the
distribution of (Jn+1 − Jn, n > 0) ? (You do not need to justify your answer.)

(b) Let n > 1. Compute the joint probability density function of (J1, J2, . . . , Jn)
given {Nt = n}. Deduce that, given {Nt = n}, (J1, . . . , Jn) has the same distribution as
the nondecreasing rearrangement of n independent uniform random variables on [0, t].

(c) Starting from time 0, passengers arrive on platform 9B at King’s Cross station,
with constant rate λ > 0, in order to catch a train due to depart at time t > 0. Using
the above results, or otherwise, find the expected total time waited by all passengers (the
sum of all passengers’ waiting times).
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28K Principles of Statistics
Prove that, if T is complete sufficient for Θ, and S is a function of T , then S is the

minimum variance unbiased estimator of E(S |Θ).

When the parameter Θ takes a value θ > 0, observables (X1, . . . ,Xn) arise
independently from the exponential distribution E(θ), having probability density function

p(x | θ) = θe−θx (x > 0) .

Show that the family of distributions

Θ ∼ Gamma (α, β) (α > 0, β > 0) , (1)

with probability density function

π(θ) =
βα

Γ(α)
θα−1e−βθ (θ > 0) ,

is a conjugate family for Bayesian inference about Θ (where Γ(α) is the Gamma function).

Show that the expectation of Λ := log Θ, under prior distribution (1), is ψ(α)−log β,
where ψ(α) := (d/dα) log Γ(α). What is the prior variance of Λ? Deduce the posterior
expectation and variance of Λ, given (X1, . . . ,Xn).

Let Λ̃ denote the limiting form of the posterior expectation of Λ as α, β ↓ 0. Show
that Λ̃ is the minimum variance unbiased estimator of Λ. What is its variance?

29J Stochastic Financial Models
Consider a multi-period binomial model with a risky asset (S0, . . . , ST ) and a riskless

asset (B0, . . . , BT ). In each period, the value of the risky asset S is multiplied by u if the
period was good, and by d otherwise. The riskless asset is worth Bt = (1 + r)t at time
0 6 t 6 T , where r > 0.

(i) Assuming that T = 1 and that

d < 1 + r < u , (1)

show how any contingent claim to be paid at time 1 can be priced and exactly replicated.
Briefly explain the significance of the condition (1), and indicate how the analysis of the
single-period model extends to many periods.

(ii) Now suppose that T = 2. We assume that u = 2, d = 1/3, r = 1/2, and that
the risky asset is worth S0 = 27 at time zero. Find the time-0 value of an American put
option with strike price K = 28 and expiry at time T = 2, and find the optimal exercise
policy. (Assume that the option cannot be exercised immediately at time zero.)
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30B Partial Differential Equations
Let u0 : R → R, u0 ∈ C1(R), u0(x) > 0 for all x ∈ R. Consider the partial differential
equation for u = u(x, y),

4yux + 3uy = u2, (x, y) ∈ R2

subject to the Cauchy condition u(x, 0) = u0(x).

i) Compute the solution of the Cauchy problem by the method of characteristics.

ii) Prove that the domain of definition of the solution contains

(x, y) ∈ R×
(
−∞,

3

supx∈R (u0(x))

)
.

31B Asymptotic Methods
What precisely is meant by the statement that

f(x) ∼
∞∑

n=0

dn x
n (∗)

as x → 0?

Consider the Stieltjes integral

I(x) =

∫ ∞

1

ρ(t)

1 + xt
dt ,

where ρ(t) is bounded and decays rapidly as t → ∞, and x > 0. Find an asymptotic series
for I(x) of the form (∗), as x → 0, and prove that it has the asymptotic property.

In the case that ρ(t) = e−t, show that the coefficients dn satisfy the recurrence
relation

dn = (−1)n
1

e
− n dn−1 (n > 1)

and that d0 =
1

e
. Hence find the first three terms in the asymptotic series.
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32D Integrable Systems
State the Arnold–Liouville theorem.

Consider an integrable system with six-dimensional phase space, and assume that
∇∧ p = 0 on any Liouville tori pi = pi(qj , cj), where ∇ = (∂/∂q1, ∂/∂q2, ∂/∂q3).

(a) Define the action variables and use Stokes’ theorem to show that the actions are
independent of the choice of the cycles.

(b) Define the generating function, and show that the angle coordinates are periodic
with period 2π.

33A Principles of Quantum Mechanics
Let a and a† be the simple harmonic oscillator annihilation and creation operators,

respectively. Write down the commutator [a, a†].

Consider a new operator b = ca + sa†, where c ≡ cosh θ, s ≡ sinh θ with θ a real
constant. Show that

[b, b†] = 1.

Consider the Hamiltonian

H = ǫa†a+
1

2
λ(a†

2
+ a2) ,

where ǫ and λ are real and such that ǫ > λ > 0. Assuming that ǫc − λs = Ec and
λc− ǫs = Es, with E a real constant, show that

[b,H] = Eb .

Thus, calculate the energy of b|Ea〉 in terms of E and Ea, where Ea is an eigenvalue of H.

Assuming that b|Emin〉 = 0, calculate Emin in terms of λ, s and c. Find the possible
values of x = s/c. Finally, show that the energy eigenvalues of the system are

En = − ǫ

2
+ (n +

1

2
)
√

ǫ2 − λ2 .
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34E Applications of Quantum Mechanics
Give an account of the variational principle for establishing an upper bound on the

ground-state energy E0 of a particle moving in a potential V (x) in one dimension.

A particle of unit mass moves in the potential

V (x) =

{
∞ x 6 0
λx x > 0

,

with λ a positive constant. Explain why it is important that any trial wavefunction used
to derive an upper bound on E0 should be chosen to vanish for x 6 0.

Use the trial wavefunction

ψ(x) =

{
0 x 6 0
xe−ax x > 0

,

where a is a positive real parameter, to establish an upper bound E0 6 E(a, λ) for the
energy of the ground state, and hence derive the lowest upper bound on E0 as a function
of λ.

Explain why the variational method cannot be used in this case to derive an upper
bound for the energy of the first excited state.

35C Statistical Physics
A meson consists of two quarks, attracted by a linear potential energy

V = αx ,

where x is the separation between the quarks and α is a constant. Treating the quarks
classically, compute the vibrational partition function that arises from the separation of
quarks. What is the average separation of the quarks at temperature T ?

Consider an ideal gas of these mesons that have the orientation of the quarks fixed
so the mesons do not rotate. Compute the total partition function of the gas. What is its
heat capacity CV ?

[Note:
∫ +∞
−∞ dx e−ax2

=
√

π/a.]
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36B Electrodynamics
A particle of mass m and charge q moves relativistically under the influence of a

constant electric field E in the positive z-direction, and a constant magnetic field B also
in the positive z-direction.

In some inertial observer’s coordinate system, the particle starts at

x = R, y = 0, z = 0, t = 0,

with velocity given by
ẋ = 0, ẏ = u, ż = 0,

where the dot indicates differentiation with respect to the proper time of the particle.
Show that the subsequent motion of the particle, as seen by the inertial observer, is a
helix.

a) What is the radius of the helix as seen by the inertial observer?

b) What are the x and y coordinates of the axis of the helix?

c) What is the z coordinate of the particle after a proper time τ has elapsed, as
measured by the particle?
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37B General Relativity
(i) Using the condition that the metric tensor gab is covariantly constant, derive an

expression for the Christoffel symbol Γa
bc = Γa

cb.

(ii) Show that

Γa
ba =

1

2
gacgac,b .

Hence establish the covariant divergence formula

V a
;a =

1√−g

∂

∂xa
(√−g V a

)
,

where g is the determinant of the metric tensor.

[It may be assumed that ∂a(log detM) = trace (M−1∂aM) for any invertible matrix M ].

(iii) The Kerr-Newman metric, describing the spacetime outside a rotating black
hole of mass M , charge Q and angular momentum per unit mass a, is given in appropriate
units by

ds2 =− (dt− a sin2 θ dφ)2
∆

ρ2

+
(
(r2 + a2)dφ− a dt

)2 sin2 θ
ρ2

+

(
dr2

∆
+ dθ2

)
ρ2 ,

where ρ2 = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2 + Q2. Explain why this metric is
stationary, and make a choice of one of the parameters which reduces it to a static metric.

Show that, in the static metric obtained, the equation

(gabΦ,b);a = 0

for a function Φ = Φ(t, r) admits solutions of the form

Φ = sin(ωt)R(r) ,

where ω is constant and R(r) satisfies an ordinary differential equation which should be
found.
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38C Fluid Dynamics II
Define the strain-rate tensor eij in terms of the velocity components ui. Write down

the relation between eij , the pressure p and the stress σij in an incompressible Newtonian
fluid of viscosity µ. Show that the local rate of stress-working σij∂ui/∂xj is equal to the
local rate of dissipation 2µeijeij .

An incompressible fluid of density ρ and viscosity µ occupies the semi-infinite region
y > 0 above a rigid plane boundary y = 0 which oscillates with velocity (V cosωt, 0, 0).
The fluid is at rest at infinity. Determine the velocity field produced by the boundary
motion after any transients have decayed.

Show that the time-averaged rate of dissipation is

1
4

√
2V 2 (µρω)1/2

per unit area of the boundary. Verify that this is equal to the time average of the rate of
working by the boundary on the fluid per unit area.

39D Waves
Write down the linearized equations governing motion in an inviscid compressible

fluid and, assuming an adiabatic relationship p = p(ρ), derive the wave equation for the
velocity potential φ(x, t). Obtain from these linearized equations the energy equation

∂E

∂t
+∇ · I = 0 ,

and give expressions for the acoustic energy density E and the acoustic intensity, or energy-
flux vector, I.

An inviscid compressible fluid occupies the half-space y > 0, and is bounded by a
very thin flexible membrane of negligible mass at an undisturbed position y = 0. Small
acoustic disturbances with velocity potential φ(x, y, t) in the fluid cause the membrane to
be deflected to y = η(x, t). The membrane is supported by springs that, in the deflected
state, exert a restoring force Kη δx on an element δx of the membrane. Show that the
dispersion relation for waves proportional to exp(ikx − iωt) propagating freely along the
membrane is (

k2 − ω2

c20

)1/2

− ρ0ω
2

K
= 0 ,

where ρ0 is the density of the fluid and c0 is the sound speed. Show that in such a wave
the component 〈Iy〉 of mean acoustic intensity perpendicular to the membrane is zero.
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40D Numerical Analysis
The Poisson equation uxx = f in the unit interval Ω = [0, 1], u = 0 on ∂Ω is

discretised with the formula

ui−1 + ui+1 − 2ui = h2fi ,

where 1 6 i 6 n, ui ≈ u(ih) and ih are the grid points.

(i) Define the above system of equations in vector form Au = b and describe the
relaxed Jacobi method with relaxation parameter ω for solving this linear system.
For x∗ and x(ν) being the exact solution and the iterated solution respectively, let
e(ν) = x(ν) − x∗ be the error and Hω the iteration matrix, so that

e(ν+1) = Hωe
(ν) .

Express Hω in terms of the matrix A, the diagonal part D of A and ω, and find the
eigenvectors vk and the eigenvalues λk(ω) of Hω.

(ii) For A as above, let

e(ν) =

n∑

k=1

a
(ν)
k vk

be the expansion of the error with respect to the eigenvectors of Hω. Derive
conditions on ω such that the method converges for any n, and prove that, for
any such ω, the rate of convergence of e(ν) → 0 is not faster than (1− c/n2)ν .

(iii) Show that, for some ω, the high frequency components (n+1
2 6 k 6 n) of the error

e(ν) tend to zero much faster than (1 − c/n2)ν . Determine the optimal parameter
ω∗ which provides the largest suppression of the high frequency components per
iteration, and find the corresponding attenuation factor µ∗ (i.e., the least µω such

that |a(ν+1)
k | 6 µω|a(ν)k | for n+1

2 6 k 6 n).

END OF PAPER
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