
MATHEMATICAL TRIPOS Part II 2012

List of Courses

Algebraic Geometry

Algebraic Topology

Applications of Quantum Mechanics

Applied Probability

Asymptotic Methods

Classical Dynamics

Coding and Cryptography

Cosmology

Differential Geometry

Dynamical Systems

Electrodynamics

Fluid Dynamics II

Further Complex Methods

Galois Theory

General Relativity

Geometry and Groups

Graph Theory

Integrable Systems

Linear Analysis

Logic and Set Theory

Mathematical Biology

Number Fields

Number Theory

Numerical Analysis

Optimization and Control

Partial Differential Equations

Principles of Quantum Mechanics

Principles of Statistics

Probability and Measure

Representation Theory

Part II, 2012 List of Questions [TURN OVER



2

Riemann Surfaces

Statistical Modelling

Statistical Physics

Stochastic Financial Models

Topics in Analysis

Waves

Part II, 2012 List of Questions



3

Paper 4, Section II

23I Algebraic Geometry

Let X be a smooth projective curve of genus 2, defined over the complex numbers.

Show that there is a morphism f : X → P1 which is a double cover, ramified at six points.

Explain briefly why X cannot be embedded into P2.

For any positive integer n, show that there is a smooth affine plane curve which is

a double cover of A1 ramified at n points.

[State clearly any theorems that you use.]

Paper 3, Section II

23I Algebraic Geometry

Let X ⊂ P2(C) be the projective closure of the affine curve y3 = x4 + 1. Let ω

denote the differential dx/y2. Show that X is smooth, and compute vp(ω) for all p ∈ X.

Calculate the genus of X.
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Paper 2, Section II

24I Algebraic Geometry

Let k be a field, J an ideal of k[x1, . . . , xn], and let R = k[x1, . . . , xn]/J . Define the

radical
√
J of J and show that it is also an ideal.

The Nullstellensatz says that if J is a maximal ideal, then the inclusion k ⊆ R is an

algebraic extension of fields. Suppose from now on that k is algebraically closed. Assuming

the above statement of the Nullstellensatz, prove the following.

(i) If J is a maximal ideal, then J = (x1 − a1, . . . , xn − an), for some (a1, . . . , an) ∈ kn.

(ii) If J 6= k[x1, . . . , xn], then Z(J) 6= ∅, where

Z(J) = {a ∈ kn | f(a) = 0 for all f ∈ J}.

(iii) For V an affine subvariety of kn, we set

I(V ) = {f ∈ k[x1, . . . , xn] | f(a) = 0 for all a ∈ V }.

Prove that J = I(V ) for some affine subvariety V ⊆ kn, if and only if J =
√
J .

[Hint. Given f ∈ J , you may wish to consider the ideal in k[x1, . . . , xn, y] generated

by J and yf − 1.]

(iv) If A is a finitely generated algebra over k, and A does not contain nilpotent elements,

then there is an affine variety V ⊆ kn, for some n, with A = k[x1, . . . , xn]/I(V ).

Assuming char(k) 6= 2, find
√
J when J is the ideal (x(x− y)2, y(x+ y)2) in k[x, y].

Part II, 2012 List of Questions



5

Paper 1, Section II

24I Algebraic Geometry

(a) Let X be an affine variety, k[X] its ring of functions, and let p ∈ X. Assume k

is algebraically closed. Define the tangent space TpX at p. Prove the following

assertions.

(i) A morphism of affine varieties f : X → Y induces a linear map

df : TpX → Tf(p)Y.

(ii) If g ∈ k[X] and U := {x ∈ X | g(x) 6= 0}, then U has the natural

structure of an affine variety, and the natural morphism of U into X induces

an isomorphism TpU → TpX for all p ∈ U .

(iii) For all s > 0, the subset {x ∈ X | dimTxX > s} is a Zariski-closed subvariety

of X.

(b) Show that the set of nilpotent 2× 2 matrices

X = {x ∈ Mat2(k) |x2 = 0}

may be realised as an affine surface in A3, and determine its tangent space at all

points x ∈ X.

Define what it means for two varieties Y1 and Y2 to be birationally equivalent, and

show that the variety X of nilpotent 2× 2 matrices is birationally equivalent to A2.
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Paper 3, Section II

20G Algebraic Topology
State the Mayer–Vietoris Theorem for a simplicial complex K expressed as the

union of two subcomplexes L and M . Explain briefly how the connecting homomorphism
δ∗ : Hn(K) → Hn−1(L∩M), which appears in the theorem, is defined. [You should include
a proof that δ∗ is well-defined, but need not verify that it is a homomorphism.]

Now suppose that |K| ∼= S3, that |L| is a solid torus S1×B2, and that |L∩M | is the
boundary torus of |L|. Show that δ∗ : H3(K) → H2(L ∩M) is an isomorphism, and hence
calculate the homology groups of M . [You may assume that a generator of H3(K) may
be represented by a 3-cycle which is the sum of all the 3-simplices of K, with ‘matching’
orientations.]

Paper 4, Section II

21G Algebraic Topology
State and prove the Lefschetz fixed-point theorem. Hence show that the n-sphere

Sn does not admit a topological group structure for any even n > 0. [The existence and
basic properties of simplicial homology with rational coefficients may be assumed.]

Paper 2, Section II

21G Algebraic Topology
State the Seifert–Van Kampen Theorem. Deduce that if f : S1 → X is a continuous

map, where X is path-connected, and Y = X ∪f B2 is the space obtained by adjoining
a disc to X via f , then Π1(Y ) is isomorphic to the quotient of Π1(X) by the smallest
normal subgroup containing the image of f∗ : Π1(S

1) → Π1(X).

State the classification theorem for connected triangulable 2-manifolds. Use the
result of the previous paragraph to obtain a presentation of Π1(Mg), where Mg denotes
the compact orientable 2-manifold of genus g > 0.
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Paper 1, Section II

21G Algebraic Topology
Define the notions of covering projection and of locally path-connected space. Show

that a locally path-connected space is path-connected if it is connected.

Suppose f : Y → X and g : Z → X are continuous maps, the space Y is connected
and locally path-connected and that g is a covering projection. Suppose also that we
are given base-points x0, y0, z0 satisfying f(y0) = x0 = g(z0). Show that there is a
continuous f̃ : Y → Z satisfying f̃(y0) = z0 and gf̃ = f if and only if the image of
f∗ : Π1(Y, y0) → Π1(X,x0) is contained in that of g∗ : Π1(Z, z0) → Π1(X,x0). [You may
assume the path-lifting and homotopy-lifting properties of covering projections.]

Now suppose X is locally path-connected, and both f : Y → X and g : Z → X are
covering projections with connected domains. Show that Y and Z are homeomorphic as
spaces over X if and only if the images of their fundamental groups under f∗ and g∗ are
conjugate subgroups of Π1(X,x0).
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Paper 4, Section II

33E Applications of Quantum Mechanics
Consider a one-dimensional crystal lattice of lattice spacing a with the n-th atom

having position rn = na+xn and momentum pn, for n = 0, 1, . . . , N−1. The atoms interact
with their nearest neighbours with a harmonic force and the classical Hamiltonian is

H =
∑

n

p2n
2m

+
1

2
λ(xn − xn−1)

2 ,

where we impose periodic boundary conditions: xN = x0. Show that the normal mode
frequencies for the classical harmonic vibrations of the system are given by

ωl = 2

√
λ

m

∣∣∣∣ sin
(
kla

2

)∣∣∣∣ ,

where kl = 2πl/Na, with l integer and (for N even, which you may assume) −N/2 < l 6
N/2. What is the velocity of sound in this crystal?

Show how the system may be quantized to give the quantum operator

xn(t) = X0(t) +
∑

l 6=0

√
~

2Nmωl

[
ale

−i(ωlt−klna) + a†l e
i(ωlt−klna)

]
,

where a†l and al are creation and annihilation operators, respectively, whose commutation
relations should be stated. Briefly describe the spectrum of energy eigenstates for this
system, stating the definition of the ground state |0〉 and giving the expression for the
energy eigenvalue of any eigenstate.

The Debye–Waller factor e−W (Q) associated with Bragg scattering from this crystal
is defined by the matrix element

e−W (Q) = 〈0|eiQx0(0)|0〉 .

In the case where 〈0|X0|0〉 = 0, calculate W (Q).
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Paper 3, Section II

34E Applications of Quantum Mechanics
A simple model of a crystal consists of a 1D linear array of sites at positions x = na,

for all integer n and separation a, each occupied by a similar atom. The potential due to
the atom at the origin is U(x), which is symmetric: U(−x) = U(x). The Hamiltonian,
H0, for the atom at the n-th site in isolation has electron eigenfunction ψn(x) with energy
E0. Write down H0 and state the relationship between ψn(x) and ψ0(x).

The Hamiltonian H for an electron moving in the crystal is H = H0 + V (x). Give
an expression for V (x).

In the tight-binding approximation for this model the ψn are assumed to be
orthonormal, (ψn, ψm) = δnm, and the only non-zero matrix elements of H0 and V are

(ψn,H0ψn) = E0, (ψn, V ψn) = α, (ψn, V ψn±1) = −A ,

where A > 0. By considering the trial wavefunction Ψ(x, t) =
∑

n cn(t)ψn(x), show that
the time-dependent Schrödinger equation governing the amplitudes cn(t) is

i~ċn = (E0 + α)cn −A(cn+1 + cn−1) .

By examining a solution of the form

cn = ei(kna−Et/~) ,

show that E, the energy of the electron in the crystal, lies in a band given by

E = E0 + α− 2A cos ka .

Using the fact that ψ0(x) is a parity eigenstate show that

(ψn, xψn) = na .

The electron in this model is now subject to an electric field E in the direction of
increasing x, so that V (x) is replaced by V (x)−eEx, where−e is the charge on the electron.
Assuming that (ψn, xψm) = 0, n 6= m, write down the new form of the time-dependent
Schrödinger equation for the probability amplitudes cn. Verify that it has solutions of the
form

cn = exp

[
− i

~

∫ t

0
ǫ(t′)dt′ + i

(
k +

eEt
~

)
na

]
,

where

ǫ(t) = E0 + α− 2A cos

[(
k +

eEt
~

)
a

]
.

Use this result to show that the dynamical behaviour of an electron near the bottom of
an energy band is the same as that for a free particle in the presence of an electric field
with an effective mass m∗ = ~2/(2Aa2).
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Paper 2, Section II

34E Applications of Quantum Mechanics
A solution of the S-wave Schrödinger equation at large distances for a particle of

mass m with momentum ~k and energy E = ~2k2/2m, has the form

ψ0(r) ∼ A

r
[sin kr + g(k) cos kr] .

Define the phase shift δ0 and verify that tan δ0(k) = g(k).

Write down a formula for the cross-section σ, for a particle of momentum ~k
scattering on a radially symmetric potential of finite range, as a function of the phase
shifts δl for the partial waves with quantum number l.

(i) Suppose that g(k) = −k/K for K > 0. Show that there is a bound state of energy
EB = −~2K2/2m. Neglecting the contribution from partial waves with l > 0 show that
the cross section is

σ =
4π

K2 + k2
.

(ii) Suppose now that g(k) = γ/(K0 − k) with K0 > 0, γ > 0 and γ ≪ K0. Neglecting the
contribution from partial waves with l > 0, derive an expression for the cross section σ,
and show that it has a local maximum when E ≈ ~2K2

0/2m. Discuss the interpretation of
this phenomenon in terms of resonant behaviour and derive an expression for the decay
width of the resonant state.
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Paper 1, Section II

34E Applications of Quantum Mechanics
Give an account of the variational principle for establishing an upper bound on the

ground-state energy E0 of a particle moving in a potential V (x) in one dimension.

A particle of unit mass moves in the potential

V (x) =

{
∞ x 6 0
λx x > 0

,

with λ a positive constant. Explain why it is important that any trial wavefunction used
to derive an upper bound on E0 should be chosen to vanish for x 6 0.

Use the trial wavefunction

ψ(x) =

{
0 x 6 0
xe−ax x > 0

,

where a is a positive real parameter, to establish an upper bound E0 6 E(a, λ) for the
energy of the ground state, and hence derive the lowest upper bound on E0 as a function
of λ.

Explain why the variational method cannot be used in this case to derive an upper
bound for the energy of the first excited state.
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Paper 4, Section II

26K Applied Probability
(a) Define the Moran model and Kingman’s n-coalescent. State and prove a theorem

which describes the relationship between them. [You may use without proof a construction
of the Moran model for all −∞ < t < ∞.]

(b) Let θ > 0. Suppose that a population of N > 2 individuals evolves according
to the rules of the Moran model. Assume also that each individual in the population
undergoes a mutation at constant rate u = θ/(N − 1). Each time a mutation occurs, we
assume that the allelic type of the corresponding individual changes to an entirely new
type, never seen before in the population. Let p(θ) be the homozygosity probability, i.e.,
the probability that two individuals sampled without replacement from the population
have the same genetic type. Give an expression for p(θ).

(c) Let q(θ) denote the probability that a sample of size n consists of one allelic
type (monomorphic population). Show that q(θ) = E(exp{−(θ/2)Ln}), where Ln denotes
the sum of all the branch lengths in the genealogical tree of the sample — that is,
Ln =

∑n
i=2 i(τi − τi−1), where τi is the first time that the genealogical tree of the sample

has i lineages. Deduce that

q(θ) =
(n − 1)!∏n−1
i=1 (θ + i)

.
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Paper 3, Section II

26K Applied Probability
We consider a system of two queues in tandem, as follows. Customers arrive in the

first queue at rate λ. Each arriving customer is immediately served by one of infinitely
many servers at rate µ1. Immediately after service, customers join a single-server second
queue which operates on a first-come, first-served basis, and has a service rate µ2. After
service in this second queue, each customer returns to the first queue with probability
0 < 1 − p < 1, and otherwise leaves the system forever. A schematic representation is
given below:

λ

µ1

µ2

p

1− p

...

1 2

(a) Let Mt and Nt denote the number of customers at time t in queues number 1
and 2 respectively, including those currently in service at time t. Give the transition rates
of the Markov chain (Mt, Nt)t>0.

(b) Write down an equation satisfied by any invariant measure π for this Markov
chain. Let α > 0 and β ∈ (0, 1). Define a measure π by

π(m,n) := e−αα
m

m!
βn(1− β), m, n ∈ {0, 1, . . .}.

Show that it is possible to find α > 0, β ∈ (0, 1) so that π is an invariant measure of
(Mt, Nt)t>0, if and only if λ < µ2p. Give the values of α and β in this case.

(c) Assume now that λp > µ2. Show that the number of customers is not positive
recurrent.

[Hint. One way to solve the problem is as follows. Assume it is positive recurrent.
Observe that Mt is greater than a M/M/∞ queue with arrival rate λ. Deduce that Nt

is greater than a M/M/1 queue with arrival rate λp and service rate µ2. You may use
without proof the fact that the departure process from the first queue is then, at equilibrium,
a Poisson process with rate λ, and you may use without proof properties of thinned Poisson
processes.]
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Paper 2, Section II

27K Applied Probability
(a) A colony of bacteria evolves as follows. Let X be a random variable with values

in the positive integers. Each bacterium splits into X copies of itself after an exponentially
distributed time of parameter λ > 0. Each of the X daughters then splits in the same way
but independently of everything else. This process keeps going forever. Let Zt denote the
number of bacteria at time t. Specify the Q-matrix of the Markov chain Z = (Zt, t > 0).
[It will be helpful to introduce pn = P(X = n), and you may assume for simplicity that
p0 = p1 = 0.]

(b) Using the Kolmogorov forward equation, or otherwise, show that if u(t) =
E(Zt|Z0 = 1), then u′(t) = αu(t) for some α to be explicitly determined in terms of X.
Assuming that E(X) < ∞, deduce the value of u(t) for all t > 0, and show that Z does not
explode. [You may differentiate series term by term and exchange the order of summation
without justification.]

(c) We now assume that X = 2 with probability 1. Fix 0 < q < 1 and let
φ(t) = E(qZt |Z0 = 1). Show that φ satisfies

φ(t) = qe−λt +

∫ t

0
λe−λsφ(t− s)2ds .

By making the change of variables u = t− s, show that dφ/dt = λφ(φ − 1). Deduce that
for all n > 1, P(Zt = n|Z0 = 1) = βn−1(1− β) where β = 1− e−λt.

Paper 1, Section II

27K Applied Probability
(a) Give the definition of a Poisson process (Nt, t > 0) with rate λ, using its

transition rates. Show that for each t > 0, the distribution of Nt is Poisson with a
parameter to be specified.

Let J0 = 0 and let J1, J2, . . . denote the jump times of (Nt, t > 0). What is the
distribution of (Jn+1 − Jn, n > 0) ? (You do not need to justify your answer.)

(b) Let n > 1. Compute the joint probability density function of (J1, J2, . . . , Jn)
given {Nt = n}. Deduce that, given {Nt = n}, (J1, . . . , Jn) has the same distribution as
the nondecreasing rearrangement of n independent uniform random variables on [0, t].

(c) Starting from time 0, passengers arrive on platform 9B at King’s Cross station,
with constant rate λ > 0, in order to catch a train due to depart at time t > 0. Using
the above results, or otherwise, find the expected total time waited by all passengers (the
sum of all passengers’ waiting times).
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Paper 4, Section II

31B Asymptotic Methods
The stationary Schrödinger equation in one dimension has the form

ǫ2
d2ψ

dx2
= −(E − V (x))ψ,

where ǫ can be assumed to be small. Using the Liouville–Green method, show that two
approximate solutions in a region where V (x) < E are

ψ(x) ∼ 1

(E − V (x))1/4
exp

{
± i

ǫ

∫ x

c
(E − V (x′))1/2dx′

}
,

where c is suitably chosen.

Without deriving connection formulae in detail, describe how one obtains the
condition

1

ǫ

∫ b

a
(E − V (x′))1/2 dx′ =

(
n+

1

2

)
π (∗)

for the approximate energies E of bound states in a smooth potential well. State the
appropriate values of a, b and n.

Estimate the range of n for which (∗) gives a good approximation to the true bound
state energies in the cases

(i) V (x) = |x|,

(ii) V (x) = x2 + λx6 with λ small and positive,

(iii) V (x) = x2 − λx6 with λ small and positive.

Paper 3, Section II

31B Asymptotic Methods
Find the two leading terms in the asymptotic expansion of the Laplace integral

I(x) =

∫ 1

0
f(t)ext

4
dt

as x → ∞, where f(t) is smooth and positive on [0, 1].
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Paper 1, Section II

31B Asymptotic Methods
What precisely is meant by the statement that

f(x) ∼
∞∑

n=0

dn x
n (∗)

as x → 0?

Consider the Stieltjes integral

I(x) =

∫ ∞

1

ρ(t)

1 + xt
dt ,

where ρ(t) is bounded and decays rapidly as t → ∞, and x > 0. Find an asymptotic series
for I(x) of the form (∗), as x → 0, and prove that it has the asymptotic property.

In the case that ρ(t) = e−t, show that the coefficients dn satisfy the recurrence
relation

dn = (−1)n
1

e
− n dn−1 (n > 1)

and that d0 =
1

e
. Hence find the first three terms in the asymptotic series.
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Paper 4, Section I

9A Classical Dynamics
Consider a one-dimensional dynamical system with generalized coordinate and

momentum (q, p).

(a) Define the Poisson bracket {f, g} of two functions f(q, p, t) and g(q, p, t).

(b) Find the Poisson brackets {q, q}, {p, p} and {q, p}.

(c) Assuming Hamilton’s equations of motion prove that

df

dt
= {f,H}+ ∂f

∂t
.

(d) State the condition for a transformation (q, p) → (Q,P ) to be canonical in terms of
the Poisson brackets found in (b). Use this to determine whether or not the following
transformations are canonical:

(i) Q = sin q, P = p−a
cos q ,

(ii) Q = cos q, P = p−a
sin q ,

where a is constant.

Paper 3, Section I

9A Classical Dynamics
The motion of a particle of charge q and mass m in an electromagnetic field with

scalar potential φ(r, t) and vector potential A(r, t) is characterized by the Lagrangian

L =
mṙ2

2
− q(φ− ṙ ·A).

(a) Show that the Euler–Lagrange equation is invariant under the gauge transformation

φ → φ− ∂Λ

∂t
, A → A+∇Λ,

for an arbitrary function Λ(r, t).

(b) Derive the equations of motion in terms of the electric and magnetic fields E(r, t) and
B(r, t).

[Recall that B = ∇×A and E = −∇φ− ∂A
∂t .]
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Paper 2, Section I

9A Classical Dynamics

(a) The action for a system with a generalized coordinate q is given by

S =

∫ t2

t1

L(q, q̇, t)dt .

State the Principle of Least Action and state the Euler–Lagrange equation.

(b) Consider a light rigid circular wire of radius a and centre O. The wire lies in a
vertical plane, which rotates about the vertical axis through O. At time t the plane
containing the wire makes an angle φ(t) with a fixed vertical plane. A bead of mass
m is threaded onto the wire. The bead slides without friction along the wire, and its
location is denoted by A. The angle between the line OA and the downward vertical
is θ(t).

Show that the Lagrangian of this system is

ma2

2
θ̇2 +

ma2

2
φ̇2 sin2 θ +mga cos θ .

Calculate two independent constants of the motion, and explain their physical signif-
icance.

Paper 1, Section I

9A Classical Dynamics
Consider a heavy symmetric top of mass M , pinned at point P , which is a distance

l from the centre of mass.

(a) Working in the body frame (e1, e2, e3) (where e3 is the symmetry axis of the top)
define the Euler angles (ψ, θ, φ) and show that the components of the angular velocity
can be expressed in terms of the Euler angles as

ω = (φ̇ sin θ sinψ + θ̇ cosψ, φ̇ sin θ cosψ − θ̇ sinψ, ψ̇ + φ̇ cos θ) .

(b) Write down the Lagrangian of the top in terms of the Euler angles and the principal
moments of inertia I1, I3.

(c) Find the three constants of motion.
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Paper 4, Section II

15A Classical Dynamics
A homogenous thin rod of mass M and length l is constrained to rotate in a

horizontal plane about its centre O. A bead of mass m is set to slide along the rod
without friction. The bead is attracted to O by a force resulting in a potential kx2/2,
where x is the distance from O.

(a) Identify suitable generalized coordinates and write down the Lagrangian of the system.

(b) Identify all conserved quantities.

(c) Derive the equations of motion and show that one of them can be written as

mẍ = −∂Veff(x)

∂x
,

where the form of the effective potential Veff(x) should be found explicitly.

(d) Sketch the effective potential. Find and characterize all points of equilibrium.

(e) Find the frequencies of small oscillations around the stable equilibria.
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Paper 2, Section II

15A Classical Dynamics
Consider a rigid body with principal moments of inertia I1, I2, I3.

(a) Derive Euler’s equations of torque-free motion

I1ω̇1 = (I2 − I3)ω2ω3 ,

I2ω̇2 = (I3 − I1)ω3ω1 ,

I3ω̇3 = (I1 − I2)ω1ω2 ,

with components of the angular velocity ω = (ω1, ω2, ω3) given in the body frame.

(b) Show that rotation about the second principal axis is unstable if (I2−I3)(I1−I2) > 0.

(c) The principal moments of inertia of a uniform cylinder of radius R, height h and mass
M about its centre of mass are

I1 = I2 =
MR2

4
+

Mh2

12
; I3 =

MR2

2
.

The cylinder has two identical cylindrical holes of radius r drilled along its length.
The axes of symmetry of the holes are at a distance a from the axis of symmetry of
the cylinder such that r < R/2 and r < a < R− r. All three axes lie in a single plane.

Compute the principal moments of inertia of the body.
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Paper 4, Section I

4G Coding and Cryptography
Describe the BB84 protocol for quantum key exchange.

Suppose we attempt to implement the BB84 protocol but cannot send single
photons. Instead we send K photons at a time all with the same polarization. An enemy
can separate one of these photons from the other K − 1. Explain briefly how the enemy
can intercept the key exchange without our knowledge.

Show that an enemy can find our common key if K = 3. Can she do so when K = 2
(with suitable equipment)?

Paper 3, Section I

4G Coding and Cryptography
Describe the RSA system with public key (N, e) and private key d. Give a simple

example of how the system is vulnerable to a homomorphism attack. Explain how a
signature system prevents such an attack.

Paper 2, Section I

4G Coding and Cryptography
What is a (binary) linear code? What does it mean to say that a linear code has

length n and minimum weight d? When is a linear code perfect? Show that, if n = 2r−1,
there exists a perfect linear code of length n and minimum weight 3.

Part II, 2012 List of Questions [TURN OVER



22

Paper 1, Section I

4G Coding and Cryptography
Let A and B be alphabets of sizes m and a respectively. What does it mean to say

that c : A → B∗ is a decodable code? State Kraft’s inequality.

Suppose that a source emits letters from the alphabet A = {1, 2, . . . ,m}, each letter
j occurring with (known) probability pj > 0. Let S be the codeword-length random
variable for a decodable code c : A → B∗, where |B| = a. It is desired to find a
decodable code that minimizes the expected value of aS . Establish the lower bound
E(aS) > (

∑m
j=1

√
pj)

2, and characterise when equality occurs. [Hint. You may use without
proof the Cauchy-Schwarz inequality, that (for positive xi, yi)

m∑

i=1

xiyi 6 (

m∑

i=1

x2i )
1/2(

m∑

i=1

y2i )
1/2 ,

with equality if and only if xi = λyi for all i.]

Paper 2, Section II

12G Coding and Cryptography
What does it mean to say that f : Fd

2 → Fd
2 is a linear feedback shift register?

Let (xn)n>0 be a stream produced by such a register. Show that there exist N,M with
N +M 6 2d − 1 such that xr+N = xr for all r > M .

Describe and justify the Berlekamp–Massey method for ‘breaking’ a cipher stream
arising from a linear feedback register of unknown length.

Let xn, yn, zn be three streams produced by linear feedback registers. Set

kn = xn if yn = zn

kn = yn if yn 6= zn .

Show that kn is also a stream produced by a linear feedback register. Sketch proofs of any
theorems you use.
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Paper 1, Section II

12G Coding and Cryptography
Define a cyclic binary code of length n.

Show how codewords can be identified with polynomials in such a way that
cyclic binary codes correspond to ideals in the polynomial ring with a suitably chosen
multiplication rule.

Prove that any cyclic binary code C has a unique generator, that is, a polynomial
c(X) of minimum degree, such that the code consists of the multiples of this polynomial.
Prove that the rank of the code equals n− deg c(X), and show that c(X) divides Xn − 1.

Show that the repetition and parity check codes are cyclic, and determine their
generators.
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10E Cosmology
The number density of a species ⋆ of non-relativistic particles of mass m, in

equilibrium at temperature T and chemical potential µ, is

n⋆ = g⋆

(
2πmkT

h2

)3/2

e(µ−mc2)/kT ,

where g⋆ is the spin degeneracy. During primordial nucleosynthesis, deuterium, D, forms
through the nuclear reaction

p+ n ↔ D ,

where p and n are non-relativistic protons and neutrons. Write down the relationship
between the chemical potentials in equilibrium.

Using the fact that gD = 4, and explaining the approximations you make, show that

nD

nnnp
≈

(
h2

πmpkT

)3/2

exp

(
BD

kT

)
,

where BD is the deuterium binding energy, i.e. BD = (mn +mp −mD)c
2.

Let X⋆ = n⋆/nB where nB is the baryon number density of the universe. Using the
fact that nγ ∝ T 3, show that

XD

XnXp
∝ T 3/2η exp

(
BD

kT

)
,

where η is the baryon asymmetry parameter

η =
nB

nγ
.

Briefly explain why primordial deuterium does not form until temperatures well below
kT ∼ BD.
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10E Cosmology
For an ideal Fermi gas in equilibrium at temperature T and chemical potential µ,

the average occupation number of the kth energy state, with energy Ek, is

n̄k =
1

e(Ek−µ)/kBT + 1
.

Discuss the limit T → 0. What is the Fermi energy ǫF ? How is it related to the Fermi
momentum pF ? Explain why the density of states with momentum between p and p+ dp
is proportional to p2dp and use this fact to deduce that the fermion number density at
zero temperature takes the form

n ∝ p3F .

Consider an ideal Fermi gas that, at zero temperature, is either (i) non-relativistic
or (ii) ultra-relativistic. In each case show that the fermion energy density ǫ takes the
form

ǫ ∝ nγ ,

for some constant γ which you should compute.
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10E Cosmology
The Friedmann equation for the scale factor a(t) of a homogeneous and isotropic

universe of mass density ρ is

H2 =
8πGρ

3
− kc2

a2
,

(
H =

ȧ

a

)

where ȧ = da/dt and k is a constant. The mass conservation equation for a fluid of mass
density ρ and pressure P is

ρ̇ = −3
(
ρ+ P/c2

)
H .

Conformal time τ is defined by dτ = a−1dt. Show that

H = aH ,

(
H =

a′

a

)
,

where a′ = da/dτ . Hence show that the acceleration equation can be written as

H′ = −4π

3
G (ρ+ 3P/c2) a2 .

Define the density parameter Ωm and show that in a matter-dominated era, in which
P = 0, it satisfies the equation

Ω′
m = HΩm(Ωm − 1) .

Use this result to briefly explain the “flatness problem” of cosmology.

Paper 1, Section I

10E Cosmology
The number density of photons in equilibrium at temperature T is given by

n =
8π

(hc)3

∫ ∞

0

ν2dν

eβhν − 1
,

where β = 1/(kBT ) (kB is Boltzmann’s constant). Show that n ∝ T 3. Show further that
ǫ ∝ T 4, where ǫ is the photon energy density.

Write down the Friedmann equation for the scale factor a(t) of a flat homogeneous
and isotropic universe. State the relation between a and the mass density ρ for a
radiation-dominated universe and hence deduce the time-dependence of a. How does
the temperature T depend on time?
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15E Cosmology
In a flat expanding universe with scale factor a(t), average mass density ρ̄ and

average pressure P̄ ≪ ρ̄c2, the fractional density perturbations δk(t) at co-moving
wavenumber k satisfy the equation

δ̈k = −2

(
ȧ

a

)
δ̇k + 4πGρ̄δk −

c2sk
2

a2
δk . (∗)

Discuss briefly the meaning of each term on the right hand side of this equation. What is
the Jeans length λJ , and what is its significance? How is it related to the Jeans mass?

How does the equation (∗) simplify at λ ≫ λJ in a flat universe? Use your result to
show that density perturbations can grow. For a growing density perturbation, how does
δ̇/δ compare to the inverse Hubble time?

Explain qualitatively why structure only forms after decoupling, and why cold dark
matter is needed for structure formation.

Paper 1, Section II

15E Cosmology
The Friedmann equation for the scale factor a(t) of a homogeneous and isotropic

universe of mass density ρ is (
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
,

where ȧ = da/dt. Explain how the value of the constant k affects the late-time (t → ∞)
behaviour of a.

Explain briefly why ρ ∝ 1/a3 in a matter-dominated (zero-pressure) universe. By
considering the scale factor a of a closed universe as a function of conformal time τ , defined
by dτ = a−1dt, show that

a(τ) =
Ω0

2(Ω0 − 1)

[
1− cos

(√
kcτ

)]
,

where Ω0 is the present (τ = τ0) density parameter, with a(τ0) = 1. Use this result to
show that

t(τ) =
Ω0

2H0(Ω0 − 1)3/2

[√
kcτ − sin

(√
kcτ

)]
,

whereH0 is the present Hubble parameter. Find the time tBC at which this model universe
ends in a “big crunch”.

Given that
√
kcτ0 ≪ 1, obtain an expression for the present age of the universe in

terms of H0 and Ω0, according to this model. How does it compare with the age of a flat
universe?
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24I Differential Geometry
For manifolds X,Y ⊂ Rn, define the terms tangent space to X at a point x ∈ X

and derivative dfx of a smooth map f : X → Y . State the Inverse Function Theorem for
smooth maps between manifolds without boundary.

Now let X be a submanifold of Y and f : X → Y the inclusion map. By considering
the map f−1 : f(X) → X, or otherwise, show that dfx is injective for each x ∈ X.

Show further that there exist local coordinates around x and around y = f(x) such
that f is given in these coordinates by

(x1, . . . , xl) ∈ Rl 7→ (x1, . . . , xl, 0, . . . , 0) ∈ Rk ,

where l = dimX and k = dimY . [You may assume that any open ball in Rl is
diffeomorphic to Rl.]

Paper 3, Section II

24I Differential Geometry
For a surface S ⊂ R3, define what is meant by the exponential mapping expp at

p ∈ S, geodesic polar coordinates (r, θ) and geodesic circles.

Let E,F,G be the coefficients of the first fundamental form in geodesic polar
coordinates (r, θ). Prove that limr→0

√
G(r, θ) = 0 and limr→0(

√
G)r(r, θ) = 1. Give

an expression for the Gaussian curvature K in terms of G.

Prove that the Gaussian curvature at a point p ∈ S satisfies

K(p) = lim
r→0

12(πr2 −Ap(r))

πr4
,

where Ap(r) is the area of the region bounded by the geodesic circle of radius r centred
at p.

[You may assume that E = 1, F = 0 and d(expp)0 is an isometry. Taylor’s theorem
with any form of the remainder may be assumed if accurately stated.]
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25I Differential Geometry
Define the Gauss map N for an oriented surface S ⊂ R3. Show that at each p ∈ S

the derivative of the Gauss map

dNp : TpS → TN(p)S
2 = TpS

is self-adjoint. Define the principal curvatures k1, k2 of S.

Now suppose that S is compact (and without boundary). By considering the square
of the distance to the origin, or otherwise, prove that S has a point p with k1(p)k2(p) > 0.

[You may assume that the intersection of S with a plane through the normal direction at
p ∈ S contains a regular curve through p.]

Paper 1, Section II

25I Differential Geometry
Define the geodesic curvature kg of a regular curve in an oriented surface S ⊂ R3.

When is kg = 0 along a curve?

Explain briefly what is meant by the Euler characteristic χ of a compact surface
S ⊂ R3. State the global Gauss–Bonnet theorem with boundary terms.

Let S be a surface with positive Gaussian curvature that is diffeomorphic to the
sphere S2 and let γ1,γ2 be two disjoint simple closed curves in S. Can both γ1 and γ2 be
geodesics? Can both γ1 and γ2 have constant geodesic curvature? Justify your answers.

[You may assume that the complement of a simple closed curve in S2 consists of two open
connected regions.]
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7D Dynamical Systems
Describe the different types of bifurcation from steady states of a one-dimensional

map of the form xn+1 = f(xn), and give examples of simple equations exhibiting each
type.

Consider the map xn+1 = αx2n(1− xn), 0 < xn < 1. What is the maximum value of
α for which the interval is mapped into itself?

Show that as α increases from zero to its maximum value there is a saddle-node
bifurcation and a period-doubling bifurcation, and determine the values of α for which
they occur.

Paper 3, Section I

7D Dynamical Systems
State without proof Lyapunov’s first theorem, carefully defining all the terms that

you use.

Consider the dynamical system

ẋ = −2x+ y − xy + 3y2 − xy2 + x3 ,

ẏ = −2y − x− y2 − 3xy + 2x2y .

By choosing a Lyapunov function V (x, y) = x2+y2, prove that the origin is asymptotically
stable.

By factorising the expression for V̇ , or otherwise, show that the basin of attraction
of the origin includes the set V < 7/4.
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7D Dynamical Systems
Consider the dynamical system

ẋ = µx+ x3 − axy, ẏ = µ− x2 − y ,

where a is a constant.

(a) Show that there is a bifurcation from the fixed point (0, µ) at µ = 0.

(b) Find the extended centre manifold at leading non-trivial order in x. Hence find
the type of bifurcation, paying particular attention to the special values a = 1
and a = −1. [Hint. At leading order, the extended centre manifold is of the form
y = µ+ αx2 + βµx2 + γx4, where α, β, γ are constants to be determined.]

Paper 1, Section I

7D Dynamical Systems
State the Poincaré–Bendixson theorem.

A model of a chemical process obeys the second-order system

ẋ = 1− x(1 + a) + x2y, ẏ = ax− x2y ,

where a > 0. Show that there is a unique fixed point at (x, y) = (1, a) and that it is
unstable if a > 2. Show that trajectories enter the region bounded by the lines x = 1/q,
y = 0, y = aq and x+ y = 1 + aq, provided q > (1 + a). Deduce that there is a periodic
orbit when a > 2.

Paper 4, Section II

14D Dynamical Systems
What is meant by the statement that a continuous map of an interval I into itself

has a horseshoe? State without proof the properties of such a map.

Define the property of chaos of such a map according to Glendinning.

A continuous map f : I → I has a periodic orbit of period 5, in which the elements
xj, j = 1, . . . , 5 satisfy xj < xj+1, j = 1, . . . , 4 and the points are visited in the order
x1 → x3 → x4 → x2 → x5 → x1. Show that the map is chaotic. [The Intermediate Value
theorem can be used without proof.]
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14D Dynamical Systems
Consider the dynamical system

ẍ− (a− bx)ẋ+ x− x2 = 0, a, b > 0 . (1)

(a) Show that the fixed point at the origin is an unstable node or focus, and that
the fixed point at x = 1 is a saddle point.

(b) By considering the phase plane (x, ẋ), or otherwise, show graphically that the
maximum value of x for any periodic orbit is less than one.

(c) By writing the system in terms of the variables x and z = ẋ− (ax− bx2/2), or
otherwise, show that for any periodic orbit C

∮

C
(x− x2)(2ax− bx2) dt = 0 . (2)

Deduce that if a/b > 1/2 there are no periodic orbits.

(d) If a = b = 0 the system (1) is Hamiltonian and has homoclinic orbit

X(t) =
1

2

(
3 tanh2

(
t

2

)
− 1

)
, (3)

which approaches X = 1 as t → ±∞. Now suppose that a, b are very small and that
we seek the value of a/b corresponding to a periodic orbit very close to X(t). By using
equation (3) in equation (2), find an approximation to the largest value of a/b for a periodic
orbit when a, b are very small.

[Hint. You may use the fact that (1−X) = 3
2sech

2( t2) = 3 d
dt(tanh(

t
2 ))]
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35B Electrodynamics
The charge and current densities are given by ρ(t,x) 6= 0 and j(t,x) respectively.

The electromagnetic scalar and vector potentials are given by φ(t,x) and A(t,x) respec-
tively. Explain how one can regard jµ = (ρ, j) as a four-vector that obeys the current
conservation rule ∂µj

µ = 0.

In the Lorenz gauge ∂µA
µ = 0, derive the wave equation that relates Aµ = (φ,A)

to jµ and hence show that it is consistent to treat Aµ as a four-vector.

In the Lorenz gauge, with jµ = 0, a plane wave solution for Aµ is given by

Aµ = ǫµ exp(ikνx
ν) ,

where ǫµ, kµ and xµ are four-vectors with

ǫµ = (ǫ0, ǫ), kµ = (k0,k), xµ = (t,x) .

Show that kµk
µ = kµǫ

µ = 0.

Interpret the components of kµ in terms of the frequency and wavelength of the
wave.

Find what residual gauge freedom there is and use it to show that it is possible to
set ǫ0 = 0. What then is the physical meaning of the components of ǫ?

An observer at rest in a frame S measures the angular frequency of a plane wave
travelling parallel to the z-axis to be ω. A second observer travelling at velocity v in S
parallel to the z-axis measures the radiation to have frequency ω′. Express ω′ in terms
of ω.
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36B Electrodynamics
The non-relativistic Larmor formula for the power, P , radiated by a particle of

charge q and mass m that is being accelerated with an acceleration a is

P =
µ0

6π
q2|a|2 .

Starting from the Liénard–Wiechert potentials, sketch a derivation of this result. Explain
briefly why the relativistic generalization of this formula is

P =
µ0

6π

q2

m2

(
dpµ

dτ

dpν

dτ
ηµν

)
,

where pµ is the relativistic momentum of the particle and τ is the proper time along the
worldline of the particle.

A particle of mass m and charge q moves in a plane perpendicular to a constant
magnetic field B. At time t = 0 as seen by an observer O at rest, the particle has energy
E = γm. At what rate is electromagnetic energy radiated by this particle?

At time t according to the observer O, the particle has energy E′ = γ′m. Find an
expression for γ′ in terms of γ and t.

Paper 1, Section II

36B Electrodynamics
A particle of mass m and charge q moves relativistically under the influence of a

constant electric field E in the positive z-direction, and a constant magnetic field B also
in the positive z-direction.

In some inertial observer’s coordinate system, the particle starts at

x = R, y = 0, z = 0, t = 0,

with velocity given by
ẋ = 0, ẏ = u, ż = 0,

where the dot indicates differentiation with respect to the proper time of the particle.
Show that the subsequent motion of the particle, as seen by the inertial observer, is a
helix.

a) What is the radius of the helix as seen by the inertial observer?

b) What are the x and y coordinates of the axis of the helix?

c) What is the z coordinate of the particle after a proper time τ has elapsed, as
measured by the particle?
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37C Fluid Dynamics II
A steady, two-dimensional flow in the region y > 0 takes the form (u, v) =

(Ex,−Ey) at large y, where E is a positive constant. The boundary at y = 0 is rigid
and no-slip. Consider the velocity field u = ∂ψ/∂y, v = −∂ψ/∂x with stream function
ψ = Exδf(η), where η = y/δ and δ = (ν/E)1/2 and ν is the kinematic viscosity. Show
that this velocity field satisfies the Navier–Stokes equations provided that f(η) satisfies

f ′′′ + ff ′′ − (f ′)2 = −1 .

What are the conditions on f at η = 0 and as η → ∞?

Paper 2, Section II

37C Fluid Dynamics II
An incompressible viscous liquid occupies the long thin region 0 6 y 6 h(x) for

0 6 x 6 ℓ, where h(x) = d1 + αx with h(0) = d1, h(ℓ) = d2 < d1 and d1 ≪ ℓ. The top
boundary at y = h(x) is rigid and stationary. The bottom boundary at y = 0 is rigid and
moving at velocity (U, 0, 0). Fluid can move in and out of the ends x = 0 and x = ℓ, where
the pressure is the same, namely p0.

Explaining the approximations of lubrication theory as you use them, find the
velocity profile in the long thin region, and show that the volume flux Q (per unit width
in the z-direction) is

Q =
Ud1d2
d1 + d2

.

Find also the value of h(x) (i) where the pressure is maximum, (ii) where the tangential
viscous stress on the bottom y = 0 vanishes, and (iii) where the tangential viscous stress
on the top y = h(x) vanishes.
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38C Fluid Dynamics II
For two Stokes flows u(1)(x) and u(2)(x) inside the same volume V with different

boundary conditions on its boundary S, prove the reciprocal theorem

∫

S
σ
(1)
ij nju

(2)
i dS =

∫

S
σ
(2)
ij nju

(1)
i dS ,

where σ(1) and σ(2) are the stress fields associated with the flows.

When a rigid sphere of radius a translates with velocity U through unbounded fluid
at rest at infinity, it may be shown that the traction per unit area, σ · n, exerted by the
sphere on the fluid has the uniform value 3µU/2a over the sphere surface. Find the drag
on the sphere.

Suppose that the same sphere is now free of external forces and is placed with its
centre at the origin in an unbounded Stokes flow given in the absence of the sphere as
u∗(x). By applying the reciprocal theorem to the perturbation to the flow generated by
the presence of the sphere, and assuming this tends to zero sufficiently rapidly at infinity,
show that the instantaneous velocity of the centre of the sphere is

1

4πa2

∫
u∗(x) dS ,

where the integral is taken over the sphere of radius a.

Paper 1, Section II

38C Fluid Dynamics II
Define the strain-rate tensor eij in terms of the velocity components ui. Write down

the relation between eij , the pressure p and the stress σij in an incompressible Newtonian
fluid of viscosity µ. Show that the local rate of stress-working σij∂ui/∂xj is equal to the
local rate of dissipation 2µeijeij .

An incompressible fluid of density ρ and viscosity µ occupies the semi-infinite region
y > 0 above a rigid plane boundary y = 0 which oscillates with velocity (V cosωt, 0, 0).
The fluid is at rest at infinity. Determine the velocity field produced by the boundary
motion after any transients have decayed.

Show that the time-averaged rate of dissipation is

1
4

√
2V 2 (µρω)1/2

per unit area of the boundary. Verify that this is equal to the time average of the rate of
working by the boundary on the fluid per unit area.
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8E Further Complex Methods
Use the Laplace kernel method to write integral representations in the complex

t-plane for two linearly independent solutions of the confluent hypergeometric equation

z
d2w(z)

dz2
+ (c− z)

dw(z)

dz
− aw(z) = 0 ,

in the case that Re(z) > 0, Re(c) > Re(a) > 0, a and c− a are not integers.

Paper 3, Section I

8E Further Complex Methods
The Beta function, denoted by B(z1, z2), is defined by

B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
, z1, z2 ∈ C ,

where Γ(z) denotes the Gamma function. It can be shown that

B(z1, z2) =

∫ ∞

0

vz2−1 dv

(1 + v)z1+z2
, Re z1 > 0 , Re z2 > 0 .

By computing this integral for the particular case of z1+z2 = 1, and by employing analytic
continuation, deduce that Γ(z) satisfies the functional equation

Γ(z)Γ(1− z) =
π

sinπz
, z ∈ C.
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8E Further Complex Methods
The hypergeometric function F (a, b; c; z) is defined as the particular solution of the

second order linear ODE characterised by the Papperitz symbol

P





0 1 ∞
0 0 a z

1− c c− a− b b





that is analytic at z = 0 and satisfies F (a, b; c; 0) = 1.

Using the fact that a second solution w(z) of the above ODE is of the form

w(z) = z1−cu(z) ,

where u(z) is analytic in the neighbourhood of the origin, express w(z) in terms of F .

Paper 1, Section I

8E Further Complex Methods
Recall that if f(z) is analytic in a neighbourhood of z0 6= 0, then

f(z) + f(z0) = 2u

(
z + z0

2
,
z − z0
2i

)
,

where u(x, y) is the real part of f(z). Use this fact to construct the imaginary part of an
analytic function whose real part is given by

u(x, y) = y

∫ ∞

−∞

g(t) dt

(t− x)2 + y2
, x, y ∈ R, y 6= 0 ,

where g(t) is real and has sufficient smoothness and decay.
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14E Further Complex Methods
Let the complex function q(x, t) satisfy

i
∂q(x, t)

∂t
+

∂2q(x, t)

∂x2
= 0 , 0 < x < ∞ , 0 < t < T ,

where T is a positive constant. The unified transform method implies that the solution of
any well-posed problem for the above equation is given by

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ik2tq̂0(k)dk

− 1

2π

∫

L
eikx−ik2t

[
kg̃0(ik

2, t)− ig̃1(ik
2, t)

]
dk , (1)

where L is the union of the rays (i∞, 0) and (0,∞), q̂0(k) denotes the Fourier transform
of the initial condition q0(x), and g̃0, g̃1 denote the t-transforms of the boundary values
q(0, t), qx(0, t):

q̂0(k) =

∫ ∞

0
e−ikxq0(x)dx, Im k 6 0 ,

g̃0(k, t) =

∫ t

0
eksq(0, s)ds , g̃1(k, t) =

∫ t

0
eksqx(0, s)ds , k ∈ C , 0 < t < T .

Furthermore, q0(x), q(0, t) and qx(0, t) are related via the so-called global relation

eik
2tq̂(k, t) = q̂0(k) + kg̃0(ik

2, t)− ig̃1(ik
2, t) , Im k 6 0 , (2)

where q̂(k, t) denotes the Fourier transform of q(x, t).

(a) Assuming the validity of (1) and (2), use the global relation to eliminate g̃1 from
equation (1).

(b) For the particular case that

q0(x) = e−a2x , 0 < x < ∞ ; q(0, t) = cos bt , 0 < t < T ,

where a and b are real numbers, use the representation obtained in (a) to express the
solution in terms of an integral along the real axis and an integral along L (you should not
attempt to evaluate these integrals). Show that it is possible to deform these two integrals
to a single integral along a new contour L̃, which you should sketch.

[You may assume the validity of Jordan’s lemma.]
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14E Further Complex Methods
(a) Suppose that F (z), z = x+ iy, x, y ∈ R, is analytic in the upper-half complex

z-plane and O (1/z) as z → ∞, y > 0. Show that the real and imaginary parts of F (x),
denoted by U(x) and V (x) respectively, satisfy the so-called Kramers–Kronig formulae:

U(x) = HV (x) , V (x) = −HU(x) , x ∈ R .

Here, H denotes the Hilbert transform, i.e.,

(Hf) (x) =
1

π
PV

∫ ∞

−∞

f(ξ)

ξ − x
dξ ,

where PV denotes the principal value integral.

(b) Let the real function u(x, y) satisfy the Laplace equation in the upper-half
complex z-plane, i.e.,

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 0 , −∞ < x < ∞, y > 0 .

Assuming that u(x, y) decays for large |x| and for large y, show that F = uz is an analytic
function for Im z > 0, z = x+iy. Then, find an expression for uy(x, 0) in terms of ux(x, 0).
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Paper 4, Section II

18H Galois Theory
Let F = C(X1, . . . ,Xn) be a field of rational functions in n variables over C, and

let s1, . . . , sn be the elementary symmetric polynomials:

sj :=
∑

{i1,...,ij}⊂{1,...,n}
Xi1 · · ·Xij ∈ F (1 6 j 6 n) ,

and let K = C(s1, . . . , sn) be the subfield of F generated by s1, . . . , sn. Let 1 6 m 6 n,
and Y := X1 + · · · + Xm ∈ F . Let K(Y ) be the subfield of F generated by Y over K.
Find the degree [K(Y ) : K].

[Standard facts about the fields F,K and Galois extensions can be quoted without proof,
as long as they are clearly stated.]

Paper 3, Section II

18H Galois Theory
Let q = pf (f > 1) be a power of the prime p, and Fq be a finite field consisting of

q elements.

Let N be a positive integer prime to p, and Fq(µN ) be the cyclotomic extension
obtained by adjoining all Nth roots of unity to Fq. Prove that Fq(µN ) is a finite field
with qn elements, where n is the order of the element q mod N in the multiplicative group
(Z/NZ)× of the ring Z/NZ.

Explain why what is proven above specialises to the following fact: the finite field
Fp for an odd prime p contains a square root of −1 if and only if p ≡ 1 (mod 4).

[Standard facts on finite fields and their extensions can be quoted without proof, as
long as they are clearly stated.]

Paper 2, Section II

18H Galois Theory
Let K,L be subfields of C with K ⊂ L.

Suppose that K is contained in R and L/K is a finite Galois extension of odd degree.
Prove that L is also contained in R.

Give one concrete example of K,L as above with K 6= L. Also give an example
in which K is contained in R and L/K has odd degree, but is not Galois and L is not
contained in R.

[Standard facts on fields and their extensions can be quoted without proof, as long
as they are clearly stated.]
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Paper 1, Section II

18H Galois Theory
List all subfields of the cyclotomic field Q(µ20) obtained by adjoining all 20th roots

of unity to Q, and draw the lattice diagram of inclusions among them. Write all the
subfields in the form Q(α) or Q(α, β). Briefly justify your answer.

[The description of the Galois group of cyclotomic fields and the fundamental theorem of
Galois theory can be used freely without proof.]
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Paper 4, Section II

36B General Relativity
The metric for a homogenous isotropic universe, in comoving coordinates, can be

written as
ds2 = −dt2 + a2{dr2 + f2[dθ2 + sin2 θ dφ2]} ,

where a = a(t) and f = f(r) are some functions.

Write down expressions for the Hubble parameter H and the deceleration parameter
q in terms of a(η) and h ≡ d log a/dη, where η is conformal time, defined by dη = a−1dt.

The universe is composed of a perfect fluid of density ρ and pressure p = (γ − 1)ρ,
where γ is a constant. Defining Ω = ρ/ρc, where ρc = 3H2/8πG, show that

k

h2
= Ω− 1 , q = αΩ ,

dΩ

dη
= 2qh(Ω − 1) ,

where k is the curvature parameter (k = +1, 0 or −1) and α ≡ 1
2(3γ − 2). Hence deduce

that
dΩ

da
=

2α

a
Ω(Ω− 1)

and

Ω =
1

1−Aa2α
,

where A is a constant. Given that A =
k

2GM
, sketch curves of Ω against a in the case

when γ > 2/3.

[You may assume an Einstein equation, for the given metric, in the form

h2

a2
+

k

a2
=

8

3
πGρ

and the energy conservation equation

dρ

dt
+ 3H(ρ+ p) = 0 .]
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Paper 2, Section II

36B General Relativity
The metric of any two-dimensional rotationally-symmetric curved space can be

written in terms of polar coordinates, (r, θ), with 0 6 θ < 2π, r > 0, as

ds2 = e2φ(dr2 + r2dθ2) ,

where φ = φ(r). Show that the Christoffel symbols Γr
rθ, Γ

θ
rr and Γθ

θθ are each zero, and
compute Γr

rr, Γ
r
θθ and Γθ

rθ = Γθ
θr.

The Ricci tensor is defined by

Rab = Γc
ab,c − Γc

ac,b + Γc
cdΓ

d
ab − Γd

acΓ
c
bd

where a comma here denotes partial derivative. Prove that Rrθ = 0 and that

Rrr = −φ′′ − φ′

r
, Rθθ = r2Rrr .

Suppose now that, in this space, the Ricci scalar takes the constant value −2. Find
a differential equation for φ(r).

By a suitable coordinate transformation r → χ(r), θ unchanged, this space of
constant Ricci scalar can be described by the metric

ds2 = dχ2 + sinh2 χdθ2 .

From this coordinate transformation, find coshχ and sinhχ in terms of r. Deduce that

eφ(r) =
2A

1−A2r2
,

where 0 6 Ar < 1, and A is a positive constant.

[You may use

∫
dχ

sinhχ
=

1

2
log(coshχ− 1)− 1

2
log(coshχ+ 1) + constant .]
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Paper 3, Section II

37B General Relativity
(i) The Schwarzschild metric is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) .

Consider a time-like geodesic xa(τ), where τ is the proper time, lying in the plane θ = π/2.
Use the Lagrangian L = gabẋ

aẋb to derive the equations governing the geodesic, showing
that

r2φ̇ = h ,

with h constant, and hence demonstrate that

d2u

dφ2
+ u =

M

h2
+ 3Mu2 ,

where u = 1/r. State which term in this equation makes it different from an analogous
equation in Newtonian theory.

(ii) Now consider Kruskal coordinates, in which the Schwarzschild t and r are
replaced by U and V , defined for r > 2M by

U ≡
( r

2M
− 1

)1/2
er/(4M) cosh

(
t

4M

)

V ≡
( r

2M
− 1

)1/2
er/(4M) sinh

(
t

4M

)

and for r < 2M by

U ≡
(
1− r

2M

)1/2
er/(4M) sinh

(
t

4M

)

V ≡
(
1− r

2M

)1/2
er/(4M) cosh

(
t

4M

)
.

Given that the metric in these coordinates is

ds2 =
32M3

r
e−r/(2M)(−dV 2 + dU2) + r2(dθ2 + sin2 θdφ2) ,

where r = r(U, V ) is defined implicitly by

( r

2M
− 1

)
er/(2M) = U2 − V 2 ,

sketch the Kruskal diagram, indicating the positions of the singularity at r = 0, the event
horizon at r = 2M , and general lines of constant r and of constant t.
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Paper 1, Section II

37B General Relativity
(i) Using the condition that the metric tensor gab is covariantly constant, derive an

expression for the Christoffel symbol Γa
bc = Γa

cb.

(ii) Show that

Γa
ba =

1

2
gacgac,b .

Hence establish the covariant divergence formula

V a
;a =

1√−g

∂

∂xa
(√−g V a

)
,

where g is the determinant of the metric tensor.

[It may be assumed that ∂a(log detM) = trace (M−1∂aM) for any invertible matrix M ].

(iii) The Kerr-Newman metric, describing the spacetime outside a rotating black
hole of mass M , charge Q and angular momentum per unit mass a, is given in appropriate
units by

ds2 =− (dt− a sin2 θ dφ)2
∆

ρ2

+
(
(r2 + a2)dφ− a dt

)2 sin2 θ
ρ2

+

(
dr2

∆
+ dθ2

)
ρ2 ,

where ρ2 = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2 + Q2. Explain why this metric is
stationary, and make a choice of one of the parameters which reduces it to a static metric.

Show that, in the static metric obtained, the equation

(gabΦ,b);a = 0

for a function Φ = Φ(t, r) admits solutions of the form

Φ = sin(ωt)R(r) ,

where ω is constant and R(r) satisfies an ordinary differential equation which should be
found.
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Paper 4, Section I

3G Geometry and Groups

Explain briefly how to extend a Möbius transformation

T : z 7→ az + b

cz + d
with ad− bc = 1

from the boundary of the upper half-space R3
+ to give a hyperbolic isometry T̃ of the

upper half-space. Write down explicitly the extension of the transformation z 7→ λ2z for

any constant λ ∈ C \ {0}.
Show that, if T̃ has an axis, which is a hyperbolic line that is mapped onto itself

by T̃ with the orientation preserved, then T̃ moves each point of this axis by the same

hyperbolic distance, ℓ say. Prove that

ℓ = 2

∣∣∣∣ log
∣∣∣ 12

(
a+ d+

√
(a+ d)2 − 4

)∣∣∣
∣∣∣∣ .

Paper 3, Section I

3G Geometry and Groups

Let A be a Möbius transformation acting on the Riemann sphere. Show that, if A

is not loxodromic, then there is a disc ∆ in the Riemann sphere with A(∆) = ∆. Describe

all such discs for each Möbius transformation A.

Hence, or otherwise, show that the group G of Möbius transformations generated

by

A : z 7→ iz and B : z 7→ 2z

does not map any disc onto itself.

Describe the set of points of the Riemann sphere at which G acts discontinuously.

What is the quotient of this set by the action of G?

Paper 2, Section I

3G Geometry and Groups

Define the modular group acting on the upper half-plane. Explain briefly why it acts

discontinuously and describe a fundamental domain. You should prove that the region

which you describe is a fundamental domain.
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Paper 1, Section I

3G Geometry and Groups

Let G be a crystallographic group of the Euclidean plane. Define the lattice and

the point group of G. Suppose that the lattice for G is {(k, 0) : k ∈ Z}. Show that there

are five different possibilities for the point group. Show that at least one of these point

groups can arise from two groups G that are not conjugate in the group of all isometries

of the Euclidean plane.

Paper 1, Section II

11G Geometry and Groups

Define the axis of a loxodromic Möbius transformation acting on hyperbolic 3-space.

When do two loxodromic transformations commute? Justify your answer.

Let G be a Kleinian group that contains a loxodromic transformation. Show that

the fixed point of any loxodromic transformation in G lies in the limit set of G. Prove

that the set of such fixed points is dense in the limit set. Give examples to show that the

set of such fixed points can be equal to the limit set or a proper subset.

Paper 4, Section II

12G Geometry and Groups

Define the Hausdorff dimension of a subset of the Euclidean plane.

Let ∆ be a closed disc of radius r0 in the Euclidean plane. Define a sequence of

sets Kn ⊆ ∆, n = 1, 2, . . . , as follows: K1 = ∆ and for each n > 1 a subset Kn+1 ⊂ Kn is

produced by replacing each component disc Γ of Kn by three disjoint, closed discs inside Γ

with radius at most cn times the radius of Γ. Let K be the intersection of the sets Kn.

Show that if the factors cn converge to a limit c with 0 < c < 1, then the Hausdorff

dimension of K is at most log 1
3/ log c.
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Paper 4, Section II

17F Graph Theory
(a) Show that every finite tree of order at least 2 has a leaf. Hence, or otherwise,

show that a tree of order n > 1 must have precisely n− 1 edges.

(b) Let G be a graph. Explain briefly why |G|/α(G) 6 χ(G) 6 ∆(G) + 1.

Let k = χ(G), and assume k > 2. By induction on |G|, or otherwise, show that G
has a subgraph H with δ(H) > k − 1. Hence, or otherwise, show that if T is a tree of
order k then T ⊆ G.

(c) Let s, t > 2 be integers, let n = (s − 1)(t − 1) + 1 and let T be a tree of order
t. Show that whenever the edges of the complete graph Kn are coloured blue and yellow
then it must contain either a blue Ks or a yellow T .

Does this remain true if Kn is replaced by Kn−1? Justify your answer.

[The independence number α(G) of a graph G is the size of the largest set W ⊆ V (G)
of vertices such that no edge of G joins two points of W . Recall that χ(G) is the chromatic
number and δ(G),∆(G) are respectively the minimal/maximal degrees of vertices in G. ]

Paper 3, Section II

17F Graph Theory
Let H be a graph with at least one edge. Define ex (n;H), where n is an integer

with n > |H|. Without assuming the Erdős–Stone theorem, show that the sequence
ex (n;H)

/(n
2

)
converges as n → ∞.

State precisely the Erdős–Stone theorem. Hence determine, with justification,
limn→∞ ex (n;H)

/(n
2

)
.

Let K be another graph with at least one edge. For each integer n such that
n > max{|H|, |K|}, let

f(n) = max{e(G) : |G| = n;H 6⊂ G and K 6⊂ G}

and let
g(n) = max{e(G) : |G| = n;H 6⊂ G or K 6⊂ G}.

Find, with justification, limn→∞ f(n)
/(

n
2

)
and limn→∞ g(n)

/(
n
2

)
.
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Paper 2, Section II

17F Graph Theory
Let G be a k-connected graph (k > 2). Let v ∈ G and let U ⊂ V (G)\{v} with

|U | > k. Show that G contains k paths from v to U with any two having only the vertex
v in common.

[No form of Menger’s theorem or of the Max-Flow-Min-Cut theorem may be assumed
without proof.]

Deduce that G must contain a cycle of length at least k.

Suppose further that G has no independent set of vertices of size > k. Show that
G is Hamiltonian.

[Hint. If not, let C be a cycle of maximum length in G and let v ∈ V (G)\V (C);
consider the set of vertices on C immediately preceding the endvertices of a collection of
k paths from v to C that have only the vertex v in common.]

Paper 1, Section II

17F Graph Theory
State Markov’s inequality and Chebyshev’s inequality.

Let G(2)(n, p) denote the probability space of bipartite graphs with vertex classes
U = {1, 2, . . . , n} and V = {−1,−2, . . . ,−n}, with each possible edge uv (u ∈ U ,
v ∈ V ) present, independently, with probability p. Let X be the number of subgraphs of
G ∈ G(2)(n, p) that are isomorphic to the complete bipartite graph K2,2. Write down EX
and Var (X). Hence show that p = 1/n is a threshold for G ∈ G(2)(n, p) to contain K2,2,
in the sense that if np → ∞ then a. e. G ∈ G(2)(n, p) contains a K2,2, whereas if np → 0
then a. e. G ∈ G(2)(n, p) does not contain a K2,2.

By modifying a random G ∈ G(2)(n, p) for suitably chosen p, show that, for each
n, there exists a bipartite graph H with n vertices in each class such that K2,2 6⊂ H but

e(H) > 3
4

(
n

3√n−1

)2
.
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Paper 3, Section II

32D Integrable Systems
Consider a one-parameter group of transformations acting on R4

(x, y, t, u) −→ (exp (ǫα)x, exp (ǫβ)y, exp (ǫγ)t, exp (ǫδ)u) , (1)

where ǫ is a group parameter and (α, β, γ, δ) are constants.

(a) Find a vector field W which generates this group.

(b) Find two independent Lie point symmetries S1 and S2 of the PDE

(ut − uux)x = uyy, u = u(x, y, t) , (2)

which are of the form (1).

(c) Find three functionally-independent invariants of S1, and do the same for S2. Find
a non-constant function G = G(x, y, t, u) which is invariant under both S1 and S2.

(d) Explain why all the solutions of (2) that are invariant under a two-parameter group
of transformations generated by vector fields

W = u
∂

∂u
+ x

∂

∂x
+

1

2
y
∂

∂y
, V =

∂

∂y
,

are of the form u = xF (t), where F is a function of one variable. Find an ODE for
F characterising these group-invariant solutions.
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Paper 2, Section II

32D Integrable Systems
Consider the KdV equation for the function u(x, t)

ut = 6uux − uxxx . (1)

(a) Write equation (1) in the Hamiltonian form

ut =
∂

∂x

δH[u]

δu
,

where the functional H[u] should be given. Use equation (1), together with the
boundary conditions u → 0 and ux → 0 as |x| → ∞, to show that

∫
R u2dx is

independent of t.

(b) Use the Gelfand–Levitan–Marchenko equation

K(x, y) + F (x+ y) +

∫ ∞

x
K(x, z)F (z + y)dz = 0 (2)

to find the one soliton solution of the KdV equation, i.e.

u(x, t) = − 4βχ exp (−2χx)
[
1 + β

2χ exp (−2χx)
]2 .

[Hint. Consider F (x) = β exp (−χx), with β = β0 exp (8χ
3t), where β0, χ are

constants, and t should be regarded as a parameter in equation (2). You may use
any facts about the Inverse Scattering Transform without proof.]

Paper 1, Section II

32D Integrable Systems
State the Arnold–Liouville theorem.

Consider an integrable system with six-dimensional phase space, and assume that
∇∧ p = 0 on any Liouville tori pi = pi(qj , cj), where ∇ = (∂/∂q1, ∂/∂q2, ∂/∂q3).

(a) Define the action variables and use Stokes’ theorem to show that the actions are
independent of the choice of the cycles.

(b) Define the generating function, and show that the angle coordinates are periodic
with period 2π.
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Paper 3, Section II

21G Linear Analysis
State the closed graph theorem.

(i) Let X be a Banach space and Y a vector space. Suppose that Y is endowed with
two norms ‖ · ‖1 and ‖ · ‖2 and that there is a constant c > 0 such that ‖y‖2 > c‖y‖1 for
all y ∈ Y . Suppose that Y is a Banach space with respect to both norms. Suppose that
T : X → Y is a linear operator, and that it is bounded when Y is endowed with the ‖ · ‖1
norm. Show that it is also bounded when Y is endowed with the ‖ · ‖2 norm.

(ii) Suppose that X is a normed space and that (xn)
∞
n=1 ⊆ X is a sequence with∑∞

n=1 |f(xn)| < ∞ for all f in the dual space X∗. Show that there is an M such that

∞∑

n=1

|f(xn)| 6 M‖f‖

for all f ∈ X∗.

(iii) Suppose that X is the space of bounded continuous functions f : R → R with
the sup norm, and that Y ⊆ X is the subspace of continuously differentiable functions
with bounded derivative. Let T : Y → X be defined by Tf = f ′. Show that the graph of
T is closed, but that T is not bounded.
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Paper 4, Section II

22G Linear Analysis
Let X be a Banach space and suppose that T : X → X is a bounded linear operator.

What is an eigenvalue of T ? What is the spectrum σ(T ) of T ?

Let X = C[0, 1] be the space of continuous real-valued functions f : [0, 1] → R
endowed with the sup norm. Define an operator T : X → X by

Tf(x) =

∫ 1

0
G(x, y)f(y) dy,

where

G(x, y) =

{
y(x− 1) if y 6 x,

x(y − 1) if x 6 y.

Prove the following facts about T :

(i) Tf(0) = Tf(1) = 0 and the second derivative (Tf)′′(x) is equal to f(x) for x ∈ (0, 1);

(ii) T is compact;

(iii) T has infinitely many eigenvalues;

(iv) 0 is not an eigenvalue of T ;

(v) 0 ∈ σ(T ).

[The Arzelà–Ascoli theorem may be assumed without proof.]

Paper 2, Section II

22G Linear Analysis
What is meant by a normal topological space? State and prove Urysohn’s lemma.

Let X be a normal topological space and let S ⊆ X be closed. Show that there
is a continuous function f : X → [0, 1] with f−1(0) = S if, and only if, S is a countable
intersection of open sets.

[Hint. If S =
⋂∞

n=1 Un then consider
∑∞

n=1 2
−nfn, where the functions fn : X → [0, 1]

are supplied by an appropriate application of Urysohn’s lemma.]
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Paper 1, Section II

22G Linear Analysis
What is meant by the dual X∗ of a normed space X? Show that X∗ is a Banach

space.

Let X = C1(0, 1), the space of functions f : (0, 1) → R possessing a bounded,
continuous first derivative. Endow X with the sup norm ‖f‖∞ = supx∈(0,1) |f(x)|. Which
of the following maps T : X → R are elements of X∗? Give brief justifications or
counterexamples as appropriate.

1. Tf = f(12);

2. Tf = ‖f‖∞;

3. Tf =
∫ 1
0 f(x) dx;

4. Tf = f ′(12).

Now suppose that X is a (real) Hilbert space. State and prove the Riesz represen-
tation theorem. Describe the natural map X → X∗∗ and show that it is surjective.

[All normed spaces are over R. You may assume that if Y is a closed subspace of a
Hilbert space X then X = Y ⊕ Y ⊥.]
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Paper 2, Section II

16H Logic and Set Theory
Explain what is meant by a substructure of a Σ-structure A, where Σ is a first-order

signature (possibly including both predicate symbols and function symbols). Show that
if B is a substructure of A, and φ is a first-order formula over Σ with n free variables,
then [φ]B = [φ]A ∩ Bn if φ is quantifier-free. Show also that [φ]B ⊆ [φ]A ∩ Bn if φ is an
existential formula (that is, one of the form (∃x1, . . . , xm)ψ where ψ is quantifier-free),
and [φ]B ⊇ [φ]A ∩ Bn if φ is a universal formula. Give examples to show that the two
latter inclusions can be strict.

Show also that

(a) if T is a first-order theory whose axioms are all universal sentences, then any
substructure of a T -model is a T -model;

(b) if T is a first-order theory such that every first-order formula φ is T -provably
equivalent to a universal formula (that is, T ⊢ (φ⇔ ψ) for some universal ψ), and B is a
sub-T -model of a T -model A, then [φ]B = [φ]A ∩ Bn for every first-order formula φ with
n free variables.

Paper 4, Section II

16H Logic and Set Theory
State and prove Hartogs’ lemma. [You may assume the result that any well-ordered

set is isomorphic to a unique ordinal.]

Let a and b be sets such that there is a bijection a ⊔ b → a × b. Show, without
assuming the Axiom of Choice, that there is either a surjection b → a or an injection
b → a. By setting b = γ(a) (the Hartogs ordinal of a) and considering (a ⊔ b) × (a ⊔ b),
show that the assertion ‘For all infinite cardinals m, we have m2 = m’ implies the Axiom
of Choice. [You may assume the Cantor–Bernstein theorem.]
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Paper 3, Section II

16H Logic and Set Theory
Write down either the synthetic or the recursive definitions of ordinal addition and

multiplication. Using your definitions, give proofs or counterexamples for the following
statements:

(i) For all α, β and γ, we have α.(β + γ) = α.β + α.γ.

(ii) For all α, β and γ, we have (α+ β).γ = α.γ + β.γ.

(iii) For all α and β with β > 0, there exist γ and δ with δ < β and α = β.γ + δ.

(iv) For all α and β with β > 0, there exist γ and δ with δ < β and α = γ.β + δ.

(v) For every α, either there exists a cofinal map f : ω → α (that is, one such that
α =

⋃{f(n)+ | n ∈ ω}), or there exists β such that α = ω1.β.

Paper 1, Section II

16H Logic and Set Theory
State Zorn’s lemma, and show how it may be deduced from the Axiom of Choice

using the Bourbaki–Witt theorem (which should be clearly stated but not proved).

Show that, if a and b are distinct elements of a distributive lattice L, there is a
lattice homomorphism f : L → {0, 1} with f(a) 6= f(b). Indicate briefly how this result
may be used to prove the completeness theorem for propositional logic.
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Paper 4, Section I

6C Mathematical Biology
The master equation describing the evolution of the probability P (n, t) that a

population has n members at time t takes the form

∂P (n, t)

∂t
= b(n− 1)P (n − 1, t)− [b(n) + d(n)]P (n, t) + d(n + 1)P (n + 1, t) , (1)

where the functions b(n) and d(n) are both positive for all n.

From (1) derive the corresponding Fokker–Planck equation in the form

∂P (x, t)

∂t
= − ∂

∂x
{a1(x)P (x, t)} + 1

2

∂2

∂x2
{a2(x)P (x, t)} , (2)

making clear any assumptions that you make and giving explicit forms for a1(x) and a2(x).

Assume that (2) has a steady state solution Ps(x) and that a1(x) is a decreasing
function of x with a single zero at x0. Under what circumstances may Ps(x) be
approximated by a Gaussian centred at x0 and what is the corresponding estimate of
the variance?
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Paper 3, Section I

6C Mathematical Biology
Consider a model of insect dispersal in two dimensions given by

∂C

∂t
=

1

r

∂

∂r

(
rDC

∂C

∂r

)
,

where r is a radial coordinate, t is time, C(r, t) is the density of insects and D is a constant
coefficient such that DC is a diffusivity.

Show that under suitable assumptions

2π

∫ ∞

0
rC dr = N ,

where N is constant, and interpret this condition.

Suppose that after a long time the form of C depends only on r, t, D and N (and
is thus independent of any detailed form of the initial condition). Show that there is a
solution of the form

C(r, t) =

(
N

Dt

)1/2

g

(
r

(NDt)1/4

)
,

and deduce that the function g(ξ) satisfies

d

dξ

(
ξg

dg

dξ
+

1

4
ξ2g

)
= 0 .

Show that this equation has a continuous solution with g > 0 for ξ < ξ0 and g = 0
for ξ > ξ0, and determine ξ0. Hence determine the area within which C(r, t) > 0 as a
function of t.

Paper 2, Section I

6C Mathematical Biology
Consider a birth-death process in which the birth rate per individual is λ and the

death rate per individual in a population of size n is βn.

Let P (n, t) be the probability that the population has size n at time t. Write down
the master equation for the system, giving an expression for ∂P (n, t)/∂t.

Show that

d

dt
〈n〉 = λ〈n〉 − β〈n2〉 ,

where 〈.〉 denotes the mean.

Deduce that in a steady state 〈n〉 6 λ/β.

Part II, 2012 List of Questions [TURN OVER



60

Paper 1, Section I

6C Mathematical Biology
Krill is the main food source for baleen whales. The following model has been

proposed for the coupled evolution of populations of krill and whales, with x(t) being the
number of krill and y(t) being the number of whales:

dx

dt
= rx

(
1− x

K

)
− axy ,

dy

dt
= sy

(
1− y

bx

)
,

where r, s, a, b and K are positive constants.

Give a biological interpretation for the form of the two differential equations.

Show that a steady state is possible with x > 0 and y > 0 and write down expressions
for the steady-state values of x and y.

Determine whether this steady state is stable.
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Paper 3, Section II

13C Mathematical Biology
Consider the two-variable reaction-diffusion system

∂u

∂t
= a− u+ u2v +∇2u ,

∂v

∂t
= b− u2v + d∇2v ,

where a, b and d are positive constants.

Show that there is one possible spatially homogeneous steady state with u > 0 and
v > 0 and show that it is stable to small-amplitude spatially homogeneous disturbances
provided that γ < β, where

γ =
b− a

b+ a
and β = (a+ b)2.

Now assuming that the condition γ < β is satisfied, investigate the stability of
the homogeneous steady state to spatially varying perturbations by considering the time-
dependence of disturbances whose spatial form is such that ∇2u = −k2u and ∇2v = −k2v,
with k constant. Show that such disturbances vary as ept, where p is one of the roots of

p2 + (β − γ + dk2 + k2)p+ dk4 + (β − dγ)k2 + β.

By comparison with the stability condition for the homogeneous case above, give a
simple argument as to why the system must be stable if d = 1.

Show that the boundary between stability and instability (as some combination of
β, γ and d is varied) must correspond to p = 0.

Deduce that dγ > β is a necessary condition for instability and, furthermore, that
instability will occur for some k if

d >
β

γ

{
1 +

2

γ
+ 2

√
1

γ
+

1

γ2

}
.

Deduce that the value of k2 at which instability occurs as the stability boundary is
crossed is given by

k2 =

√
β

d
.
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Paper 2, Section II

13C Mathematical Biology
A population of blowflies is modelled by the equation

dx

dt
= R(x(t− T ))− kx(t) , (1)

where k is a constant death rate and R is a function of one variable such that R(z) > 0
for z > 0, with R(z) ∼ βz as z → 0 and R(z) → 0 as z → ∞. The constants T , k and β
are all positive, with β > k. Give a brief biological motivation for the term R(x(t−T )), in
which you explain both the form of the function R and the appearance of a delay time T .

A suitable model for R(z) is βz exp(−z/d), where d is a positive constant. Show
that in this case there is a single steady state of the system with non-zero population, i.e.
with x(t) = xs > 0, with xs constant.

Now consider the stability of this steady state. Show that if x(t) = xs + y(t), with
y(t) small, then y(t) satisfies a delay differential equation of the form

dy

dt
= −ky(t) +By(t− T ) , (2)

where B is a constant to be determined. Show that y(t) = est is a solution of (2) if
s = −k + Be−sT . If s = σ + iω, where σ and ω are both real, write down two equations
relating σ and ω.

Deduce that the steady state is stable if |B| < k. Show that, for this particular
model for R, |B| > k is possible only if B < 0.

By considering B decreasing from small negative values, show that an instability

will appear when |B| >
[
k2 + g(kT )2

T 2

]1/2
, where π/2 < g(kT ) < π.

Deduce that the steady state xs of (1) is unstable if

β > k exp

[(
1 +

π2

k2T 2

)1/2

+ 1

]
.
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Paper 4, Section II

20F Number Fields
Let K = Q(

√
p,
√
q) where p and q are distinct primes with p ≡ q ≡ 3 (mod 4). By

computing the relative traces TrK/k(θ) where k runs through the three quadratic subfields
of K, show that the algebraic integers θ in K have the form

θ =
1

2
(a+ b

√
p) +

1

2
(c+ d

√
p)
√
q ,

where a, b, c, d are rational integers. Show further that if c and d are both even then a and
b are both even. Hence prove that an integral basis for K is

1 ,
√
p ,

1 +
√
pq

2
,

√
p+

√
q

2
.

Calculate the discriminant of K.

Paper 2, Section II

20F Number Fields
Let K = Q(α) where α is a root of X2 −X + 12 = 0. Factor the elements 2, 3, α

and α+ 2 as products of prime ideals in OK . Hence compute the class group of K.

Show that the equation y2 + y = 3(x5 − 4) has no integer solutions.

Paper 1, Section II

20F Number Fields
Let K be a number field, and OK its ring of integers. Write down a characterisation

of the units in OK in terms of the norm. Without assuming Dirichlet’s units theorem,
prove that for K a quadratic field the quotient of the unit group by {±1} is cyclic (i.e.
generated by one element). Find a generator in the cases K = Q(

√
−3) and K = Q(

√
11).

Determine all integer solutions of the equation x2 − 11y2 = n for n = −1, 5, 14.
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Paper 4, Section I

1I Number Theory
Define what it means for the composite natural number N to be a pseudoprime to

the base b.

Find the number of bases (less than 21) to which 21 is a pseudoprime. [You may, if
you wish, assume the Chinese Remainder Theorem.]

Paper 3, Section I

1I Number Theory
Define the discriminant of the binary quadratic form f(x, y) = ax2 + bxy + cy2.

Assuming that this form is positive definite, define what it means for f to be reduced.

Show that there are precisely two reduced positive definite binary quadratic forms
of discriminant −35.

Paper 2, Section I

1I Number Theory
Define the Legendre symbol and the Jacobi symbol.

State the law of quadratic reciprocity for the Jacobi symbol.

Compute the value of the Jacobi symbol

(
247

321

)
, stating clearly any results you use.

Paper 1, Section I

1I Number Theory
Show that the continued fraction for

√
13 is [3; 1, 1, 1, 1, 6].

Hence, or otherwise, find a solution to the equation x2−13y2 = 1 in positive integers
x and y. Write down an expression for another solution.
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Paper 4, Section II

11I Number Theory
Let f : N → R be a function, where N denotes the (positive) natural numbers.

Define what it means for f to be a multiplicative function.

Prove that if f is a multiplicative function, then the function g : N → R defined by

g(n) =
∑

d|n
f(d)

is also multiplicative.

Define the Möbius function µ. Is µ multiplicative? Briefly justify your answer.

Compute ∑

d|n
µ(d)

for all positive integers n.

Define the Riemann zeta function ζ for complex numbers s with ℜ(s) > 1.

Prove that if s is a complex number with ℜ(s) > 1, then

1

ζ(s)
=

∞∑

n=1

µ(n)

ns
.

Paper 3, Section II

11I Number Theory
Let p be an odd prime. Prove that the multiplicative groups (Z/pnZ)× are cyclic

for n > 2. [You may assume that the multiplicative group (Z/pZ)× is cyclic.]

Find an integer which generates (Z/7nZ)× for all n > 1, justifying your answer.
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Paper 4, Section II

39D Numerical Analysis

(i) Formulate the conjugate gradient method for the solution of a system Ax = b with
A ∈ Rn×n and b ∈ Rn, n > 0.

(ii) Prove that if the conjugate gradient method is applied in exact arithmetic then, for
any x(0) ∈ Rn, termination occurs after at most n iterations.

(iii) The polynomial p(x) = xm +
∑m−1

i=0 cix
i is the minimal polynomial of the n × n

matrix A if it is the polynomial of lowest degree that satisfies p(A) = 0. [Note
that m 6 n.] Give an example of a 3× 3 symmetric positive definite matrix with a
quadratic minimal polynomial.

Prove that (in exact arithmetic) the conjugate gradient method requires at most m
iterations to calculate the exact solution of Ax = b, where m is the degree of the
minimal polynomial of A.

Paper 2, Section II

39D Numerical Analysis

(i) The diffusion equation

∂u

∂t
=

∂2u

∂x2
, 0 6 x 6 1, t > 0 ,

with the initial condition u(x, 0) = φ(x), 0 6 x 6 1, and with zero boundary
conditions at x = 0 and x = 1, can be solved numerically by the method

un+1
m = unm + µ(unm−1 − 2unm + unm+1), m = 1, 2, . . . ,M, n > 0 ,

where ∆x = 1/(M + 1), µ = ∆t/(∆x)2, and unm ≈ u(m∆x, n∆t). Prove that
µ 6 1/2 implies convergence.

(ii) By discretising the diffusion equation and employing the same notation as in (i)
above, determine [without using Fourier analysis] conditions on µ and the constant
α such that the method

un+1
m − 1

2
(µ− α)(un+1

m−1 − 2un+1
m + un+1

m+1) = unm +
1

2
(µ + α)(unm−1 − 2unm + unm+1)

is stable.

Part II, 2012 List of Questions



67

Paper 3, Section II

40D Numerical Analysis
The inverse discrete Fourier transform F−1

n : Rn → Rn is given by the formula

x = F−1
n y, where xl =

n−1∑

j=0

ωjl
n yj, l = 0, . . . , n− 1 .

Here, ωn = exp(2πi/n) is the primitive root of unity of degree n and n = 2p, p = 1, 2, . . .

(i) Show how to assemble x = F−1
2my in a small number of operations if the Fourier

transforms of the even and odd parts of y,

x(E) = F−1
m y(E), x(O) = F−1

m y(O) ,

are already known.

(ii) Describe the Fast Fourier Transform (FFT) method for evaluating x, and draw a
relevant diagram for n = 8.

(iii) Find the costs of the FFT method for n = 2p (only multiplications count).

(iv) For n = 4 use the FFT method to find x = F−1
4 y when:

(a) y = (1, 1,−1,−1),

(b) y = (1,−1, 1,−1).
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Paper 1, Section II

40D Numerical Analysis
The Poisson equation uxx = f in the unit interval Ω = [0, 1], u = 0 on ∂Ω is

discretised with the formula

ui−1 + ui+1 − 2ui = h2fi ,

where 1 6 i 6 n, ui ≈ u(ih) and ih are the grid points.

(i) Define the above system of equations in vector form Au = b and describe the
relaxed Jacobi method with relaxation parameter ω for solving this linear system.
For x∗ and x(ν) being the exact solution and the iterated solution respectively, let
e(ν) = x(ν) − x∗ be the error and Hω the iteration matrix, so that

e(ν+1) = Hωe
(ν) .

Express Hω in terms of the matrix A, the diagonal part D of A and ω, and find the
eigenvectors vk and the eigenvalues λk(ω) of Hω.

(ii) For A as above, let

e(ν) =

n∑

k=1

a
(ν)
k vk

be the expansion of the error with respect to the eigenvectors of Hω. Derive
conditions on ω such that the method converges for any n, and prove that, for
any such ω, the rate of convergence of e(ν) → 0 is not faster than (1− c/n2)ν .

(iii) Show that, for some ω, the high frequency components (n+1
2 6 k 6 n) of the error

e(ν) tend to zero much faster than (1 − c/n2)ν . Determine the optimal parameter
ω∗ which provides the largest suppression of the high frequency components per
iteration, and find the corresponding attenuation factor µ∗ (i.e., the least µω such

that |a(ν+1)
k | 6 µω|a(ν)k | for n+1

2 6 k 6 n).
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Paper 3, Section II

28J Optimization and Control
A state variable x = (x1, x2) ∈ R2 is subject to dynamics

ẋ1(t) = x2(t)

ẋ2(t) = u(t),

where u = u(t) is a scalar control variable constrained to the interval [−1, 1]. Given an
initial value x(0) = (x1, x2), let F (x1, x2) denote the minimal time required to bring the
state to (0, 0). Prove that

max
u∈[−1,1]

{
−x2

∂F

∂x1
− u

∂F

∂x2
− 1

}
= 0 .

Explain how this equation figures in Pontryagin’s maximum principle.

Use Pontryagin’s maximum principle to show that, on an optimal trajectory, u(t)
only takes the values 1 and −1, and that it makes at most one switch between them.

Show that u(t) = 1, 0 6 t 6 2 is optimal when x(0) = (2,−2).

Find the optimal control when x(0) = (7,−2).

Paper 4, Section II

28J Optimization and Control
A factory has a tank of capacity 3m3 in which it stores chemical waste. Each week

the factory produces, independently of other weeks, an amount of waste that is equally
likely to be 0, 1, or 2 m3. If the amount of waste exceeds the remaining space in the tank
then the excess must be specially handled at a cost of £C per m3. The tank may be
emptied or not at the end of each week. Emptying costs £D, plus a variable cost of £α
for each m3 of its content. It is always emptied when it ends the week full.

It is desired to minimize the average cost per week. Write down equations from
which one can determine when it is optimal to empty the tank.

Find the average cost per week of a policy π, which empties the tank if and only if
its content at the end of the week is 2 or 3m3.

Describe the policy improvement algorithm. Explain why, starting from π, this
algorithm will find an optimal policy in at most three iterations.

Prove that π is optimal if and only if C > α+ (4/3)D.
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Paper 2, Section II

29J Optimization and Control
Describe the elements of a generic stochastic dynamic programming equation for the

problem of maximizing the expected sum of discounted rewards accrued at times 0, 1, . . . .
What is meant by the positive case? What is specially true in this case that is not true in
general?

An investor owns a single asset which he may sell once, on any of the days
t = 0, 1, . . . . On day t he will be offered a price Xt. This value is unknown until day
t, is independent of all other offers, and a priori it is uniformly distributed on [0, 1].
Offers remain open, so that on day t he may sell the asset for the best of the offers made
on days 0, . . . , t. If he sells for x on day t then the reward is xβt. Show from first principles
that if 0 < β < 1 then there exists x̄ such that the expected reward is maximized by selling
the first day the offer is at least x̄.

For β = 4/5, find both x̄ and the expected reward under the optimal policy.

Explain what is special about the case β = 1.
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Paper 4, Section II

30B Partial Differential Equations
i) State the Lax–Milgram lemma.

ii) Consider the boundary value problem

∆2u−∆u+ u = f in Ω,

u = ∇u · γ = 0 on ∂Ω,

where Ω is a bounded domain in Rn with a smooth boundary, γ is the exterior unit normal
vector to ∂Ω, and f ∈ L2(Ω). Show (using the Lax–Milgram lemma) that the boundary
value problem has a unique weak solution in the space

H2
0 (Ω) :=

{
u : Ω → R;u = ∇u · γ = 0 on ∂Ω

}
.

[Hint. Show that

‖∆u‖2L2(Ω) =

n∑

i,j=1

∥∥∥ ∂2u

∂xi∂xj

∥∥∥
2

L2(Ω)
for all u ∈ C∞

0 (Ω),

and then use the fact that C∞
0 (Ω) is dense in H2

0 (Ω).]
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Paper 3, Section II

30B Partial Differential Equations
Consider the nonlinear partial differential equation for a function u(x, t), x ∈ Rn, t > 0,

ut = ∆u− α|∇u|2, (1)

subject to u(x, 0) = u0(x), (2)

where u0 ∈ L∞(Rn).

(i) Find a transformation w := F (u) such that w satisfies the heat equation

wt = ∆w, x ∈ Rn,

if (1) holds for u.

(ii) Use the transformation obtained in (i) (and its inverse) to find a solution to the initial
value problem (1), (2).
[Hint. Use the fundamental solution of the heat equation.]

(iii) The equation (1) is posed on a bounded domain Ω ⊆ Rn with smooth boundary,
subject to the initial condition (2) on Ω and inhomogeneous Dirichlet boundary conditions

u = uD on ∂Ω,

where uD is a bounded function. Use the maximum-minimum principle to prove that
there exists at most one classical solution of this boundary value problem.

Paper 1, Section II

30B Partial Differential Equations
Let u0 : R → R, u0 ∈ C1(R), u0(x) > 0 for all x ∈ R. Consider the partial differential
equation for u = u(x, y),

4yux + 3uy = u2, (x, y) ∈ R2

subject to the Cauchy condition u(x, 0) = u0(x).

i) Compute the solution of the Cauchy problem by the method of characteristics.

ii) Prove that the domain of definition of the solution contains

(x, y) ∈ R×
(
−∞,

3

supx∈R (u0(x))

)
.
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Paper 2, Section II

31B Partial Differential Equations
Consider the elliptic Dirichlet problem on Ω ⊂ Rn, Ω bounded with a smooth boundary:

∆u− eu = f in Ω, u = uD on ∂Ω.

Assume that uD ∈ L∞(∂Ω) and f ∈ L∞(Ω).

(i) State the strong Minimum-Maximum Principle for uniformly elliptic operators.

(ii) Prove that there exists at most one classical solution of the boundary value problem.

(iii) Assuming further that f > 0 in Ω, use the maximum principle to obtain an upper
bound on the solution (assuming that it exists).
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Paper 4, Section II

32A Principles of Quantum Mechanics
Setting ~ = 1, the raising and lowering operators J± = J1 ± iJ2 for angular

momentum satisfy

[J3, J± ] = ±J± , J±|j m〉 =
√

(j ∓m)(j ±m+ 1) |j m± 1〉 ,

where J3|j m〉 = m|j m〉. Find the matrix representation S± for J± in the basis
{|1 1〉, |1 0〉, |1 − 1〉} of j = 1 states. Hence, calculate the matrix representation S of J.

Suppose that the angular momentum of the state v = |1 m〉 is measured in the
direction n = (0, sin θ, cos θ) to be +1. Find the components of v, expressing each
component by a single term consisting of products of powers of sin(θ/2) and cos(θ/2)
multiplied by constants.

Suppose that two measurements of a total angular momentum 1 system are made.
The first is made in the third direction with value +1, and the second measurement is
subsequently immediately made in direction n. What is the probability that the second
measurement is also +1?

Paper 3, Section II

33A Principles of Quantum Mechanics
Discuss the consequences of indistinguishability for a quantum mechanical state

consisting of two identical, non-interacting particles when the particles have (a) spin zero,
(b) spin 1/2.

The stationary Schrödinger equation for one particle in the potential

−2e2

4πǫ0r

has normalised, spherically-symmetric real wavefunctions ψn(r) and energy eigenvalues
En with E0 < E1 < E2 < · · · . The helium atom can be modelled by considering two
non-interacting spin 1/2 particles in the above potential. What are the consequences of
the Pauli exclusion principle for the ground state? Write down the two-electron state
for this model in the form of a spatial wavefunction times a spin state. Assuming that
wavefunctions are spherically-symmetric, find the states of the first excited energy level of
the helium atom. What combined angular momentum quantum numbers J,M does each
state have?

Assuming standard perturbation theory results, arrive at a multi-dimensional
integral in terms of the one-particle wavefunctions for the first-order correction to the
helium ground state energy, arising from the electron-electron interaction.
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Paper 2, Section II

33A Principles of Quantum Mechanics
(a) Define the Heisenberg picture of quantum mechanics in relation to the

Schrödinger picture. Explain how the two pictures provide equivalent descriptions of
physical results.

(b) Derive the equation of motion for an operator in the Heisenberg picture.

For a particle of mass m moving in one dimension, the Hamiltonian is

Ĥ =
p̂2

2m
+ V (x̂) ,

where x̂ and p̂ are the position and momentum operators, and the state vector is |Ψ〉. The
eigenstates of x̂ and p̂ satisfy

〈x|p〉 = 1√
2π~

eipx/~ , 〈x|x′〉 = δ(x− x′) , 〈p|p′〉 = δ(p − p′) .

Use standard methods in the Dirac formalism to show that

〈x|p̂|x′〉 = −i~
∂

∂x
δ(x− x′) ,

〈p|x̂|p′〉 = i~
∂

∂p
δ(p − p′) .

Calculate 〈x|Ĥ|x′〉 and express 〈x|p̂|Ψ〉, 〈x|Ĥ|Ψ〉 in terms of the position space
wavefunction Ψ(x).

Write down the momentum space Hamiltonian for the potential

V (x̂) = mω2x̂4/2 .
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Paper 1, Section II

33A Principles of Quantum Mechanics
Let a and a† be the simple harmonic oscillator annihilation and creation operators,

respectively. Write down the commutator [a, a†].

Consider a new operator b = ca + sa†, where c ≡ cosh θ, s ≡ sinh θ with θ a real
constant. Show that

[b, b†] = 1.

Consider the Hamiltonian

H = ǫa†a+
1

2
λ(a†

2
+ a2) ,

where ǫ and λ are real and such that ǫ > λ > 0. Assuming that ǫc − λs = Ec and
λc− ǫs = Es, with E a real constant, show that

[b,H] = Eb .

Thus, calculate the energy of b|Ea〉 in terms of E and Ea, where Ea is an eigenvalue of H.

Assuming that b|Emin〉 = 0, calculate Emin in terms of λ, s and c. Find the possible
values of x = s/c. Finally, show that the energy eigenvalues of the system are

En = − ǫ

2
+ (n +

1

2
)
√

ǫ2 − λ2 .
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Paper 4, Section II

27K Principles of Statistics
For i = 1, . . . , n, the pairs (Xi, Yi) have independent bivariate normal distributions,

with E(Xi) = µX , E(Yi) = µY , var(Xi) = var(Yi) = φ, and corr(Xi, Yi) = ρ. The means
µX , µY are known; the parameters φ > 0 and ρ ∈ (−1, 1) are unknown.

Show that the joint distribution of all the variables belongs to an exponential family,
and identify the natural sufficient statistic, natural parameter, and mean-value parameter.
Hence or otherwise, find the maximum likelihood estimator ρ̂ of ρ.

Let Ui := Xi + Yi, Vi := Xi − Yi. What is the joint distribution of (Ui, Vi)?

Show that the distribution of

(1 + ρ̂)/(1− ρ̂)

(1 + ρ)/(1− ρ)

is Fn
n . Hence describe a (1−α)-level confidence interval for ρ. Briefly explain what would

change if µX and µY were also unknown.

[Recall that the distribution F ν1
ν2 is that of (W1/ν1)/(W2/ν2), where, independently for

j = 1 and j = 2, Wj has the chi-squared distribution with νj degrees of freedom.]
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Paper 3, Section II

27K Principles of Statistics
The parameter vector is Θ ≡ (Θ1,Θ2,Θ3), with Θi > 0, Θ1 + Θ2 + Θ3 = 1.

Given Θ = θ ≡ (θ1, θ2, θ3), the integer random vector X = (X1,X2,X3) has a trinomial
distribution, with probability mass function

p(x | θ) = n!

x1!x2!x3!
θx1
1 θx2

2 θx3
3 ,

(
xi > 0,

3∑

i=1

xi = n

)
. (1)

Compute the score vector for the parameter Θ∗ := (Θ1,Θ2), and, quoting any relevant
general result, use this to determine E(Xi) (i = 1, 2, 3).

Considering (1) as an exponential family with mean-value parameter Θ∗, what is
the corresponding natural parameter Φ ≡ (Φ1,Φ2)?

Compute the information matrix I for Θ∗, which has (i, j)-entry

Iij = −E
(

∂2l

∂θi∂θj

)
(i, j = 1, 2) ,

where l denotes the log-likelihood function, based on X, expressed in terms of (θ1, θ2).

Show that the variance of log(X1/X3) is asymptotic to n−1(θ−1
1 + θ−1

3 ) as n → ∞.
[Hint. The information matrix IΦ for Φ is I−1 and the dispersion matrix of the maximum
likelihood estimator Φ̂ behaves, asymptotically (for n → ∞) as I−1

Φ .]
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Paper 2, Section II

28K Principles of Statistics
Carefully defining all italicised terms, show that, if a sufficiently general method of

inference respects both the Weak Sufficiency Principle and the Conditionality Principle,
then it respects the Likelihood Principle.

The position Xt of a particle at time t > 0 has the Normal distribution N (0, φt),
where φ is the value of an unknown parameter Φ; and the time, Tx, at which the particle
first reaches position x 6= 0 has probability density function

px(t) =
|x|√
2πφt3

exp

(
− x2

2φt

)
(t > 0) .

Experimenter E1 observes Xτ , and experimenter E2 observes Tξ, where τ > 0, ξ 6= 0
are fixed in advance. It turns out that Tξ = τ . What does the Likelihood Principle say
about the inferences about Φ to be made by the two experimenters?

E1 bases his inference about Φ on the distribution and observed value of X2
τ /τ ,

while E2 bases her inference on the distribution and observed value of ξ2/Tξ. Show that
these choices respect the Likelihood Principle.
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Paper 1, Section II

28K Principles of Statistics
Prove that, if T is complete sufficient for Θ, and S is a function of T , then S is the

minimum variance unbiased estimator of E(S |Θ).

When the parameter Θ takes a value θ > 0, observables (X1, . . . ,Xn) arise
independently from the exponential distribution E(θ), having probability density function

p(x | θ) = θe−θx (x > 0) .

Show that the family of distributions

Θ ∼ Gamma (α, β) (α > 0, β > 0) , (1)

with probability density function

π(θ) =
βα

Γ(α)
θα−1e−βθ (θ > 0) ,

is a conjugate family for Bayesian inference about Θ (where Γ(α) is the Gamma function).

Show that the expectation of Λ := log Θ, under prior distribution (1), is ψ(α)−log β,
where ψ(α) := (d/dα) log Γ(α). What is the prior variance of Λ? Deduce the posterior
expectation and variance of Λ, given (X1, . . . ,Xn).

Let Λ̃ denote the limiting form of the posterior expectation of Λ as α, β ↓ 0. Show
that Λ̃ is the minimum variance unbiased estimator of Λ. What is its variance?
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Paper 4, Section II

25J Probability and Measure
State and prove Fatou’s lemma. [You may use the monotone convergence theorem.]

For (E, E , µ) a measure space, define L1 := L1(E, E , µ) to be the vector space of µ-
integrable functions on E, where functions equal almost everywhere are identified. Prove
that L1 is complete for the norm ‖ · ‖1,

‖f‖1 :=
∫

E
|f |dµ, f ∈ L1.

[You may assume that ‖ · ‖1 indeed defines a norm on L1.] Give an example of a measure
space (E, E , µ) and of a sequence fn ∈ L1 that converges to f almost everywhere such that
f /∈ L1.

Now let

D := {f ∈ L1 : f > 0 almost everywhere ,

∫

E
fdµ = 1} .

If a sequence fn ∈ D converges to f in L1, does it follow that f ∈ D? If fn ∈ D converges
to f almost everywhere, does it follow that f ∈ D? Justify your answers.

Paper 3, Section II

25J Probability and Measure
Carefully state and prove the first and second Borel–Cantelli lemmas.

Now let (An : n ∈ N) be a sequence of events that are pairwise independent ; that
is, P(An ∩ Am) = P(An)P(Am) whenever m 6= n. For N > 1, let SN =

∑N
n=1 1An . Show

that Var(SN ) 6 E(SN).

Using Chebyshev’s inequality or otherwise, deduce that if
∑∞

n=1 P(An) = ∞, then
limN→∞ SN = ∞ almost surely. Conclude that P(An infinitely often) = 1.
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Paper 2, Section II

26J Probability and Measure
The Fourier transform of a Lebesgue integrable function f ∈ L1(R) is given by

f̂(u) =

∫

R
f(x)eixudµ(x),

where µ is Lebesgue measure on the real line. For f(x) = e−ax2
, x ∈ R, a > 0, prove that

f̂(u) =

√
π

a
e−

u2

4a .

[You may use properties of derivatives of Fourier transforms without proof provided they
are clearly stated, as well as the fact that φ(x) = (2π)−1/2e−x2/2 is a probability density
function.]

State and prove the almost everywhere Fourier inversion theorem for Lebesgue
integrable functions on the real line. [You may use standard results from the course,
such as the dominated convergence and Fubini’s theorem. You may also use that
gt ∗ f(x) :=

∫
R gt(x− y)f(y)dy where gt(z) = t−1φ(z/t), t > 0, converges to f in L1(R) as

t → 0 whenever f ∈ L1(R).]

The probability density function of a Gamma distribution with scalar parameters
λ > 0, α > 0 is given by

fα,λ(x) = λe−λx(λx)α−11[0,∞)(x).

Let 0 < α < 1, λ > 0. Is f̂α,λ integrable?

Paper 1, Section II

26J Probability and Measure
Carefully state and prove Jensen’s inequality for a convex function c : I → R, where

I ⊆ R is an interval. Assuming that c is strictly convex, give necessary and sufficient
conditions for the inequality to be strict.

Let µ be a Borel probability measure on R, and suppose µ has a strictly positive
probability density function f0 with respect to Lebesgue measure. Let P be the family of
all strictly positive probability density functions f on R with respect to Lebesgue measure
such that log(f/f0) ∈ L1(µ). Let X be a random variable with distribution µ. Prove that
the mapping

f 7→ E
[
log

f

f0
(X)

]

has a unique maximiser over P, attained when f = f0 almost everywhere.
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Paper 4, Section II

19H Representation Theory
Write an essay on the finite-dimensional representations of SU(2), including a proof

of their complete reducibility, and a description of the irreducible representations and the
decomposition of their tensor products.

Paper 3, Section II

19H Representation Theory
Show that every complex representation of a finite group G is equivalent to a unitary

representation. Let χ be a character of some finite group G and let g ∈ G. Explain why
there are roots of unity ω1, . . . , ωd such that

χ(gi) = ωi
1 + · · ·+ ωi

d

for all integers i.

For the rest of the question let G be the symmetric group on some finite set. Explain
why χ(g) = χ(gi) whenever i is coprime to the order of g.

Prove that χ(g) ∈ Z.

State without proof a formula for
∑

g∈G χ(g)2 when χ is irreducible. Is there an
irreducible character χ of degree at least 2 with χ(g) 6= 0 for all g ∈ G? Explain your
answer.

[You may assume basic facts about the symmetric group, and about algebraic

integers, without proof. You may also use without proof the fact that
∑

16i6n
gcd(i,n)=1

ωi ∈ Z

for any nth root of unity ω.]

Paper 2, Section II

19H Representation Theory
Suppose that G is a finite group. Define the inner product of two complex-valued

class functions on G. Prove that the characters of the irreducible representations of G
form an orthonormal basis for the space of complex-valued class functions.

Suppose that p is a prime and Fp is the field of p elements. Let G =GL2(Fp). List
the conjugacy classes of G.

Let G act naturally on the set of lines in the space F2
p. Compute the corresponding

permutation character and show that it is reducible. Decompose this character as a sum
of two irreducible characters.
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Paper 1, Section II

19H Representation Theory
Write down the character table of D10.

Suppose that G is a group of order 60 containing 24 elements of order 5, 20 elements
of order 3 and 15 elements of order 2. Calculate the character table of G, justifying your
answer.

[You may assume the formula for induction of characters, provided you state it
clearly.]
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Paper 3, Section II

22I Riemann Surfaces
Let Λ be the lattice Z+Zi, X the torus C/Λ, and ℘ the Weierstrass elliptic function

with respect to Λ.

(i) Let x ∈ X be the point given by 0 ∈ Λ. Determine the group

G = {f ∈ Aut(X) | f(x) = x} .

(ii) Show that ℘2 defines a degree 4 holomorphic map h : X → C ∪ {∞}, which is
invariant under the action of G, that is, h(f(y)) = h(y) for any y ∈ X and any f ∈ G.
Identify a ramification point of h distinct from x which is fixed by every element of G.

[If you use the Monodromy theorem, then you should state it correctly. You may
use the fact that Aut(C) = {az + b | a ∈ C \ {0}, b ∈ C}, and may assume without proof
standard facts about ℘.]

Paper 2, Section II

23I Riemann Surfaces
Let X be the algebraic curve in C2 defined by the polynomial p(z, w) = zd +wd +1

where d is a natural number. Using the implicit function theorem, or otherwise, show
that there is a natural complex structure on X. Let f : X → C be the function defined
by f(a, b) = b. Show that f is holomorphic. Find the ramification points and the
corresponding branching orders of f .

Assume that f extends to a holomorphic map g : Y → C ∪ {∞} from a compact
Riemann surface Y to the Riemann sphere so that g−1(∞) = Y \ X and that g has no
ramification points in g−1(∞). State the Riemann–Hurwitz formula and apply it to g to
calculate the Euler characteristic and the genus of Y .
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Paper 1, Section II

23I Riemann Surfaces
(i) Let f(z) =

∑∞
n=1 z

2n . Show that the unit circle is the natural boundary of the
function element (D(0, 1), f).

(ii) Let U = {z ∈ C : Re(z) > 0} ⊂ C; explain carefully how a holomorphic
function f may be defined on U satisfying the equation

(f(z)2 − 1)2 = z .

Let F denote the connected component of the space of germs G (of holomorphic functions
on C \ {0}) corresponding to the function element (U, f), with associated holomorphic
map π : F → C \ {0}. Determine the number of points of F in π−1(w) when
(a) w = 1

2 , and (b) w = 1.

[You may assume any standard facts about analytic continuations that you may need.]
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Paper 4, Section I

5K Statistical Modelling
Define the concepts of an exponential dispersion family and the corresponding

variance function. Show that the family of Poisson distributions with parameter λ > 0
is an exponential dispersion family. Find the corresponding variance function and deduce
from it expressions for E(Y ) and Var(Y ) when Y ∼ Pois(λ). What is the canonical link
function in this case?

Paper 3, Section I

5K Statistical Modelling
Consider the linear model

Yi = β0 + β1xi1 + β2xi2 + εi,

for i = 1, 2, . . . , n, where the εi are independent and identically distributed with N(0, σ2)
distribution. What does it mean for the pair β1 and β2 to be orthogonal? What does it
mean for all the three parameters β0, β1 and β2 to be mutually orthogonal? Give necessary
and sufficient conditions on (xi1)

n
i=1, (xi2)

n
i=1 so that β0, β1 and β2 are mutually orthogonal.

If β0, β1, β2 are mutually orthogonal, find the joint distribution of the corresponding
maximum likelihood estimators β̂0, β̂1 and β̂2.
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Paper 2, Section I
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5K Statistical Modelling
The purpose of the following study is to investigate differences among certain treatments
on the lifespan of male fruit flies, after allowing for the effect of the variable ‘thorax length’
(thorax) which is known to be positively correlated with lifespan. Data was collected on
the following variables:

longevity lifespan in days

thorax (body) length in mm

treat a five level factor representing the treatment groups. The levels were labelled
as follows: “00”, “10”, “80”, “11”, “81”.

No interactions were found between thorax length and the treatment factor. A
linear model with thorax as the covariate, treat as a factor (having the above 5 levels)
and longevity as the response was fitted and the following output was obtained. There
were 25 males in each of the five groups, which were treated identically in the provision of
fresh food.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -49.98 10.61 -4.71 6.7e-06

treat10 2.65 2.98 0.89 0.37

treat11 -7.02 2.97 -2.36 0.02

treat80 3.93 3.00 1.31 0.19

treat81 -19.95 3.01 -6.64 1.0e-09

thorax 135.82 12.44 10.92 <2e-16

Residual standard error: 10.5 on 119 degrees of freedom

Multiple R-Squared: 0.656, Adjusted R-squared: 0.642

F-statistics: 45.5 on 5 and 119 degrees of freedom, p-value: 0

(a) Assuming the same treatment, how much longer would you expect a fly with a
thorax length 0.1mm greater than another to live?

(b) What is the predicted difference in longevity between a male fly receiving treatment
treat10 and treat81 assuming they have the same thorax length?

(c) Because the flies were randomly assigned to the five groups, the distribution of
thorax lengths in the five groups are essentially equal. What disadvantage would
the investigators have incurred by ignoring the thorax length in their analysis (i.e.,
had they done a one-way ANOVA instead)?

(d) The residual-fitted plot is shown in the left panel of Figure 1 overleaf. Is it possible
to determine if the regular residuals or the studentized residuals have been used to
construct this plot? Explain.

(e) The Box–Cox procedure was used to determine a good transformation for this
data. The plot of the log-likelihood for λ is shown in the right panel of Figure 1.
What transformation should be used to improve the fit and yet retain some
interpretability?
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Paper 1, Section I

5K Statistical Modelling
Let Y1, . . . , Yn be independent with Yi ∼ 1

ni
Bin(ni, µi), i = 1, . . . , n, and

log

(
µi

1− µi

)
= x⊤i β , (1)

where xi is a p × 1 vector of regressors and β is a p × 1 vector of parameters. Write
down the likelihood of the data Y1, . . . , Yn as a function of µ = (µ1, . . . , µn). Find the
unrestricted maximum likelihood estimator of µ, and the form of the maximum likelihood
estimator µ̂ = (µ̂1, . . . , µ̂n) under the logistic model (1).

Show that the deviance for a comparison of the full (saturated) model to the
generalised linear model with canonical link (1) using the maximum likelihood estimator

β̂ can be simplified to

D(y; µ̂) = −2
n∑

i=1

[
niyix

⊤
i β̂ − ni log(1− µ̂i)

]
.

Finally, obtain an expression for the deviance residual in this generalised linear
model.

Part II, 2012 List of Questions



91

Paper 4, Section II

13K Statistical Modelling
Let (X1, Y1), . . . , (Xn, Yn) be jointly independent and identically distributed with

Xi ∼ N(0, 1) and conditional on Xi = x, Yi ∼ N(xθ, 1), i = 1, 2, . . . , n.

(a) Write down the likelihood of the data (X1, Y1), . . . , (Xn, Yn), and find the maxi-
mum likelihood estimate θ̂ of θ. [You may use properties of conditional probabil-
ity/expectation without providing a proof.]

(b) Find the Fisher information I(θ) for a single observation, (X1, Y1).

(c) Determine the limiting distribution of
√
n(θ̂ − θ). [You may use the result on

the asymptotic distribution of maximum likelihood estimators, without providing a
proof.]

(d) Give an asymptotic confidence interval for θ with coverage (1−α) using your answers
to (b) and (c).

(e) Define the observed Fisher information. Compare the confidence interval in part (d)
with an asymptotic confidence interval with coverage (1−α) based on the observed
Fisher information.

(f) Determine the exact distribution of
(∑n

i=1X
2
i

)1/2
(θ̂− θ) and find the true coverage

probability for the interval in part (e). [Hint. Condition on X1,X2, . . . ,Xn and
use the following property of conditional expectation: for U, V random vectors, any
suitable function g, and x ∈ R,

P{g(U, V ) 6 x} = E[P{g(U, V ) 6 x|V }].]
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13K Statistical Modelling
The treatment for a patient diagnosed with cancer of the prostate depends on whether
the cancer has spread to the surrounding lymph nodes. It is common to operate on the
patient to obtain samples from the nodes which can then be analysed under a microscope.
However it would be preferable if an accurate assessment of nodal involvement could
be made without surgery. For a sample of 53 prostate cancer patients, a number of
possible predictor variables were measured before surgery. The patients then had surgery
to determine nodal involvement. We want to see if nodal involvement can be accurately
predicted from the available variables and determine which ones are most important. The
variables take the values 0 or 1.

r An indicator 0=no/1=yes of nodal involvement.

aged The patient’s age, split into less than 60 (=0) and 60 or over (=1).

stage A measurement of the size and position of the tumour observed by palpation with
the fingers. A serious case is coded as 1 and a less serious case as 0.

grade Another indicator of the seriousness of the cancer which is determined by a pathology
reading of a biopsy taken by needle before surgery. A value of 1 indicates a more
serious case of cancer.

xray Another measure of the seriousness of the cancer taken from an X-ray reading. A
value of 1 indicates a more serious case of cancer.

acid The level of acid phosphatase in the blood serum where 1=high and 0=low.

A binomial generalised linear model with a logit link was fitted to the data to predict
nodal involvement and the following output obtained:

Deviance Residuals:

Min 1Q Median 3Q Max

-2.332 -0.665 -0.300 0.639 2.150

Coefficients:

Estimate Std. Error t value Pr(>|z|)

(Intercept) -3.079 0.987 -3.12 0.0018

aged -0.292 0.754 -0.39 0.6988

grade 0.872 0.816 1.07 0.2850

stage 1.373 0.784 1.75 0.0799

xray 1.801 0.810 2.22 0.0263

acid 1.684 0.791 2.13 0.0334

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 70.252 on 52 degrees of freedom

Residual deviance: 47.611 on 47 degrees of freedom

AIC: 59.61

Number of Fisher Scoring iterations: 5
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(a) Give an interpretation of the coefficient of xray.

(b) Give the numerical value of the sum of the squared deviance residuals.

(c) Suppose that the predictors, stage, grade and xray are positively correlated.
Describe the effect that this correlation is likely to have on our ability to determine
the strength of these predictors in explaining the response.

(d) The probability of observing a value of 70.252 under a Chi-squared distribution with
52 degrees of freedom is 0.047. What does this information tell us about the null
model for this data? Justify your answer.

(e) What is the lowest predicted probability of the nodal involvement for any future
patient?

(f) The first plot in Figure 1 shows the (Pearson) residuals and the fitted values. Explain
why the points lie on two curves.

(g) The second plot in Figure 1 shows the value of β̂ − β̂(i) where (i) indicates that
patient i was dropped in computing the fit. The values for each predictor, including
the intercept, are shown. Could a single case change our opinion of which predictors
are important in predicting the response?
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Paper 4, Section II

34C Statistical Physics
Non-relativistic electrons of mass m are confined to move in a two-dimensional plane

of area A. Each electron has two spin states. Compute the density of states g(E) and
show that it is constant.

Write down expressions for the number of particles N and the average energy 〈E〉
of a gas of fermions in terms of the temperature T and chemical potential µ. Find an
expression for the Fermi Energy EF in terms of N .

For kBT ≪ EF , you may assume that the chemical potential does not change with
temperature. Compute the low temperature heat capacity of a gas of fermions. [You may
use the approximation that, for large z,

∫ ∞

0

xndx

z−1ex + 1
≈ 1

n+ 1
(log z)n+1 +

π2n

6
(log z)n−1 .]

Paper 3, Section II

35C Statistical Physics
A ferromagnet has magnetization order parameter m and is at temperature T . The

free energy is given by

F (T ;m) = F0(T ) +
a

2
(T − Tc)m

2 +
b

4
m4 ,

where a, b and Tc are positive constants. Find the equilibrium value of the magnetization
at both high and low temperatures.

Evaluate the free energy of the ground state as a function of temperature. Hence
compute the entropy and heat capacity. Determine the jump in the heat capacity and
identify the order of the phase transition.

After imposing a background magnetic field B, the free energy becomes

F (T ;m) = F0(T ) +Bm+
a

2
(T − Tc)m

2 +
b

4
m4 .

Explain graphically why the system undergoes a first-order phase transition at low
temperatures as B changes sign.

The spinodal point occurs when the meta-stable vacuum ceases to exist. Determine
the temperature T of the spinodal point as a function of Tc, a, b and B.
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Paper 2, Section II

35C Statistical Physics
Explain what is meant by an isothermal expansion and an adiabatic expansion of a

gas.

By first establishing a suitable Maxwell relation, show that

∂E

∂V

∣∣∣∣
T

= T
∂p

∂T

∣∣∣∣
V

− p

and
∂CV

∂V

∣∣∣∣
T

= T
∂2p

∂T 2

∣∣∣∣
V

.

The energy in a gas of blackbody radiation is given by E = aV T 4, where a is a constant.
Derive an expression for the pressure p(V, T ).

Show that if the radiation expands adiabatically, V T 3 is constant.

Paper 1, Section II

35C Statistical Physics
A meson consists of two quarks, attracted by a linear potential energy

V = αx ,

where x is the separation between the quarks and α is a constant. Treating the quarks
classically, compute the vibrational partition function that arises from the separation of
quarks. What is the average separation of the quarks at temperature T ?

Consider an ideal gas of these mesons that have the orientation of the quarks fixed
so the mesons do not rotate. Compute the total partition function of the gas. What is its
heat capacity CV ?

[Note:
∫ +∞
−∞ dx e−ax2

=
√

π/a.]
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Paper 1, Section II

29J Stochastic Financial Models
Consider a multi-period binomial model with a risky asset (S0, . . . , ST ) and a riskless

asset (B0, . . . , BT ). In each period, the value of the risky asset S is multiplied by u if the
period was good, and by d otherwise. The riskless asset is worth Bt = (1 + r)t at time
0 6 t 6 T , where r > 0.

(i) Assuming that T = 1 and that

d < 1 + r < u , (1)

show how any contingent claim to be paid at time 1 can be priced and exactly replicated.
Briefly explain the significance of the condition (1), and indicate how the analysis of the
single-period model extends to many periods.

(ii) Now suppose that T = 2. We assume that u = 2, d = 1/3, r = 1/2, and that
the risky asset is worth S0 = 27 at time zero. Find the time-0 value of an American put
option with strike price K = 28 and expiry at time T = 2, and find the optimal exercise
policy. (Assume that the option cannot be exercised immediately at time zero.)

Paper 4, Section II

29J Stochastic Financial Models
In a one-period market, there are n risky assets whose returns at time 1 are given

by a column vector R =
(
R1, . . . , Rn

)′
. The return vector R has a multivariate Gaussian

distribution with expectation µ and non-singular covariance matrix V. In addition, there
is a bank account giving interest r > 0, so that one unit of cash invested at time 0 in the
bank account will be worth Rf = 1 + r units of cash at time 1.

An agent with the initial wealth w invests x = (x1, . . . , xn)
′ in risky assets and keeps

the remainder x0 = w − x · 1 in the bank account. The return on the agent’s portfolio is

Z := x · R+ (w − x · 1)Rf .

The agent’s utility function is u(Z) = − exp(−γZ), where γ > 0 is a parameter.
His objective is to maximize E(u(Z)).

(i) Find the agent’s optimal portfolio and its expected return.

[Hint. Relate E(u(Z)) to E(Z) and Var(Z).]

(ii) Under which conditions does the optimal portfolio that you found in (i) require
borrowing from the bank account?

(iii) Find the optimal portfolio if it is required that all of the agent’s wealth be
invested in risky assets.
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Paper 3, Section II

29J Stochastic Financial Models
(i) Let F = {Fn}∞n=0 be a filtration. Give the definition of a martingale and a

stopping time with respect to the filtration F .

(ii) State Doob’s optional stopping theorem. Give an example of a martingale M
and a stopping time T such that E(MT ) 6= E(M0).

(iii) Let Sn be a standard random walk on Z, that is, S0 = 0, Sn = X1 + . . . +Xn,
where Xi are i.i.d. and Xi = 1 or −1 with probability 1/2.

Let Ta = inf {n > 0 : Sn = a} where a is a positive integer. Show that for all θ > 0,

E
(
e−θTa

)
=

(
eθ −

√
e2θ − 1

)a
.

Carefully justify all steps in your derivation.

[Hint. For all λ > 0 find θ such that Mn = exp(−θn + λSn) is a martingale. You may
assume that Ta is almost surely finite.]

Let T = Ta ∧ T−a = inf{n > 0 : |Sn| = a}. By introducing a suitable martingale,
compute E(e−θT ).
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Paper 2, Section II

30J Stochastic Financial Models
(i) Give the definition of Brownian motion.

(ii) The price St of an asset evolving in continuous time is represented as

St = S0 exp (σWt + µt) ,

where (Wt)t>0 is a standard Brownian motion and σ and µ are constants. If riskless
investment in a bank account returns a continuously compounded rate of interest r, derive
the Black–Scholes formula for the time-0 price of a European call option on asset S with
strike price K and expiry T. [Standard results from the course may be used without proof
but must be stated clearly.]

(iii) In the same financial market, a certain contingent claim C pays (ST )
n at time

T , where n > 1. Find the closed-form expression for the time-0 value of this contingent
claim.

Show that for every s > 0 and n > 1,

sn = n(n− 1)

∫ s

0
kn−2(s− k)dk.

Using this identity, how would you replicate (at least approximately) the contingent claim
C with a portfolio consisting only of European calls?
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Paper 4, Section I

2F Topics in Analysis
Let A1, A2, . . . , An be real numbers and suppose that x1, x2, . . . , xn ∈ [−1, 1] are distinct.
Suppose that the formula ∫ 1

−1
p(x) dx =

n∑

j=1

Ajp(xj)

is valid for every polynomial p of degree 6 2n− 1. Prove the following:

(i) Aj > 0 for each j = 1, 2, . . . , n.

(ii)
∑n

j=1Aj = 2.

(iii) x1, x2, . . . , xn are the roots of the Legendre polynomial of degree n.

[You may assume standard orthogonality properties of the Legendre polynomials.]

Paper 3, Section I

2F Topics in Analysis
State and prove Liouville’s theorem concerning approximation of algebraic numbers by
rationals.

Paper 2, Section I

2F Topics in Analysis
(a) Let γ : [0, 1] → C \ {0} be a continuous map such that γ(0) = γ(1). Define the
winding number w(γ; 0) of γ about the origin. State precisely a theorem about homotopy
invariance of the winding number.

(b) Let f : C → C be a continuous map such that z−10f(z) is bounded as |z| → ∞. Prove
that there exists a complex number z0 such that

f(z0) = z110 .
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Paper 1, Section I

2F Topics in Analysis
State a version of the Baire category theorem for a complete metric space. Let T be the set
of real numbers x with the property that, for each positive integer n, there exist integers
p and q with q > 2 such that

0 <

∣∣∣∣x− p

q

∣∣∣∣ <
1

qn
.

Is T an open subset of R? Is T a dense subset of R? Justify your answers.

Paper 2, Section II

11F Topics in Analysis

(a) State Runge’s theorem about uniform approximability of analytic functions by com-
plex polynomials.

(b) Let K be a compact subset of the complex plane.

(i) Let Σ be an unbounded, connected subset of C \K. Prove that for each ζ ∈ Σ,
the function f(z) = (z − ζ)−1 is uniformly approximable on K by a sequence of
complex polynomials.

[You may not use Runge’s theorem without proof.]

(ii) Let Γ be a bounded, connected component of C\K. Prove that there is no point
ζ ∈ Γ such that the function f(z) = (z − ζ)−1 is uniformly approximable on K
by a sequence of complex polynomials.

Paper 3, Section II

12F Topics in Analysis
State Brouwer’s fixed point theorem on the plane, and also an equivalent version of

it concerning continuous retractions. Prove the equivalence of the two statements.

Let f : R2 → R2 be a continuous map with the property that |f(x)| 6 1 whenever
|x| = 1. Show that f has a fixed point. [Hint. Compose f with the map that sends x to
the nearest point to x inside the closed unit disc.]
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Paper 4, Section II

38D Waves
The shallow-water equations

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0

describe one-dimensional flow in a channel with depth h(x, t) and velocity u(x, t), where
g is the acceleration due to gravity.

(i) Find the speed c(h) of linearized waves on fluid at rest and of uniform depth.

(ii) Show that the Riemann invariants u± 2c are constant on characteristic curves
C± of slope u± c in the (x, t)-plane.

(iii) Use the shallow-water equations to derive the equation of momentum conser-
vation

∂(hu)

∂t
+

∂I

∂x
= 0 ,

and identify the horizontal momentum flux I.

(iv) A hydraulic jump propagates at constant speed along a straight constant-width
channel. Ahead of the jump the fluid is at rest with uniform depth h0. Behind the jump
the fluid has uniform depth h1 = h0(1 + β), with β > 0. Determine both the speed V of
the jump and the fluid velocity u1 behind the jump.

Express V/c(h0) and (V − u1)/c(h1) as functions of β. Hence sketch the pattern of
characteristics in the frame of reference of the jump.

Paper 2, Section II

38D Waves
Derive the ray-tracing equations

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=
∂Ω

∂t
,

for wave propagation through a slowly-varying medium with local dispersion relation
ω = Ω(k,x, t). The meaning of the notation d/dt should be carefully explained.

A non-dispersive slowly varying medium has a local wave speed c that depends only
on the z coordinate. State and prove Snell’s Law relating the angle ψ between a ray and
the z-axis to c.

Consider the case of a medium with wavespeed c = A cosh βz, where A and β
are positive constants. Find the equation of the ray that passes through the origin with
wavevector (k0, 0,m0), and show that it remains in the region β|z| 6 sinh−1(m0/k0).
Sketch several rays passing through the origin.
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Paper 3, Section II

39D Waves
The function φ(x, t) satisfies the equation

∂φ

∂t
+ U

∂φ

∂x
+

1

5

∂5φ

∂x5
= 0 ,

where U > 0 is a constant. Find the dispersion relation for waves of frequency ω and
wavenumber k. Sketch a graph showing both the phase velocity c(k) and the group
velocity cg(k), and state whether wave crests move faster or slower than a wave packet.

Suppose that φ(x, 0) is real and given by a Fourier transform as

φ(x, 0) =

∫ ∞

−∞
A(k)eikx dk .

Use the method of stationary phase to obtain an approximation for φ(V t, t) for fixed
V > U and large t. If, in addition, φ(x, 0) = φ(−x, 0), deduce an approximation for the
sequence of times at which φ(V t, t) = 0.

What can be said about φ(V t, t) if V < U? [Detailed calculation is not required in
this case.]

[You may assume that

∫ ∞

−∞
e−au2

du =

√
π

a
for Re(a) > 0, a 6= 0.]
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Paper 1, Section II

39D Waves
Write down the linearized equations governing motion in an inviscid compressible

fluid and, assuming an adiabatic relationship p = p(ρ), derive the wave equation for the
velocity potential φ(x, t). Obtain from these linearized equations the energy equation

∂E

∂t
+∇ · I = 0 ,

and give expressions for the acoustic energy density E and the acoustic intensity, or energy-
flux vector, I.

An inviscid compressible fluid occupies the half-space y > 0, and is bounded by a
very thin flexible membrane of negligible mass at an undisturbed position y = 0. Small
acoustic disturbances with velocity potential φ(x, y, t) in the fluid cause the membrane to
be deflected to y = η(x, t). The membrane is supported by springs that, in the deflected
state, exert a restoring force Kη δx on an element δx of the membrane. Show that the
dispersion relation for waves proportional to exp(ikx − iωt) propagating freely along the
membrane is (

k2 − ω2

c20

)1/2

− ρ0ω
2

K
= 0 ,

where ρ0 is the density of the fluid and c0 is the sound speed. Show that in such a wave
the component 〈Iy〉 of mean acoustic intensity perpendicular to the membrane is zero.
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