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SECTION I

1F Linear Algebra

Define the notion of an inner product on a finite-dimensional real vector space V ,
and the notion of a self-adjoint linear map α : V → V .

Suppose that V is the space of real polynomials of degree at most n in a variable t.
Show that

〈f, g〉 =

∫
1

−1

f(t)g(t) dt

is an inner product on V , and that the map α : V → V :

α(f)(t) = (1 − t2)f ′′(t) − 2tf ′(t)

is self-adjoint.

2H Groups Rings and Modules

Let M be a free Z-module generated by e1 and e2. Let a, b be two non-zero integers,

and N be the submodule of M generated by ae1 + be2 . Prove that the quotient module

M/N is free if and only if a, b are coprime.

3G Analysis II

Let S denote the set of continuous real-valued functions on the interval [0, 1]. For
f, g ∈ S , set

d1(f, g) = sup {|f(x) − g(x)| : x ∈ [0, 1]} and d2(f, g) =

∫
1

0

|f(x) − g(x)| dx .

Show that both d1 and d2 define metrics on S. Does the identity map on S define
a continuous map of metric spaces (S, d1) → (S, d2)? Does the identity map define a
continuous map of metric spaces (S, d2) → (S, d1)?

4G Complex Analysis

State the principle of the argument for meromorphic functions and show how it

follows from the Residue theorem.
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5A Methods

(a) By considering strictly monotonic differentiable functions ϕ(x), such that the
zeros satisfy ϕ(c) = 0 but ϕ′(c) 6= 0, establish the formula

∫
∞

−∞

f(x)δ(ϕ(x))dx =
f(c)

|ϕ′(c)|
.

Hence show that for a general differentiable function with only such zeros, labelled by c,

∫
∞

−∞

f(x)δ(ϕ(x)) dx =
∑

c

f(c)

|ϕ′(c)|
.

(b) Hence by changing to plane polar coordinates, or otherwise, evaluate,

I =

∫
∞

0

∫
∞

0

(x3 + y2x)δ(x2 + y2 − 1) dydx.

6D Quantum Mechanics

Determine the possible values of the energy of a particle free to move inside a cube

of side a , confined there by a potential which is infinite outside and zero inside.

What is the degeneracy of the lowest-but-one energy level?

7B Electromagnetism

Give an expression for the force F on a charge q moving at velocity v in electric
and magnetic fields E and B. Consider a stationary electric circuit C, and let S be a
stationary surface bounded by C. Derive from Maxwell’s equations the result

E = −
dΦ

dt
(∗)

where the electromotive force E =
∮
C

q−1F·dr and the flux Φ =
∫
S

B·dS .

Now assume that (∗) also holds for a moving circuit. A circular loop of wire of
radius a and total resistance R, whose normal is in the z-direction, moves at constant
speed v in the x-direction in the presence of a magnetic field B = (0, 0, B0 x/d). Find the
current in the wire.
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8C Numerical Analysis

Suppose x0, x1, . . . , xn ∈ [a, b] ⊂ R are pointwise distinct and f(x) is continuous on
[a, b]. For k = 1, 2, . . . , n define

I0,k(x) =
f(x0)(xk − x) − f(xk)(x0 − x)

xk − x0

,

and for k = 2, 3, . . . , n

I0, 1, ... , k−2, k−1,k(x) =
I0, 1, ... , k−2, k−1(x)(xk − x) − I0, 1, ... , k−2, k(x)(xk−1 − x)

xk − xk−1

.

Show that I0,1, ... , k−2,k−1,k(x) is a polynomial of order k which interpolates f(x) at
x0, x1, . . . , xk.

Given xk = {−1, 0, 2, 5} and f(xk) = {33, 5, 9, 1335}, determine the interpolating
polynomial.

9E Markov Chains

Consider a Markov chain (Xn)n >0 with state space {a, b, c, d} and transition
probabilities given by the following table.

a b c d

a 1/4 1/4 1/2 0
b 0 1/4 0 3/4
c 1/2 0 1/4 1/4
d 0 1/2 0 1/2

By drawing an appropriate diagram, determine the communicating classes of the chain,
and classify them as either open or closed. Compute the following transition and hitting
probabilities:

• P (Xn = b |X0 = d) for a fixed n > 0 ,

• P (Xn = c for some n > 1 |X0 = a) .
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SECTION II

10F Linear Algebra

(i) Show that the group On(R) of orthogonal n × n real matrices has a normal subgroup
SOn(R) = {A ∈ On(R) | detA = 1} .

(ii) Show that On(R) = SOn(R) × {±In} if and only if n is odd.

(iii) Show that if n is even, then On(R) is not the direct product of SOn(R) with any
normal subgroup.

[You may assume that the only elements of On(R) that commute with all elements of On(R)
are ±In.]

11H Groups Rings and Modules

Let V = (Z/3Z)2, a 2-dimensional vector space over the field Z/3Z, and let

e1 =
( 1

0

)

, e2 =
( 0

1

)

∈ V .

(1) List all 1-dimensional subspaces of V in terms of e1, e2 . (For example, there is
a subspace 〈e1〉 generated by e1.)

(2) Consider the action of the matrix group

G = GL2(Z/3Z) =
{( a b

c d

) ∣

∣

∣
a, b, c, d ∈ Z/3Z , ad − bc 6= 0

}

on the finite set X of all 1-dimensional subspaces of V . Describe the stabiliser group K
of 〈e1〉 ∈ X . What is the order of K? What is the order of G?

(3) Let H ⊂ G be the subgroup of all elements of G which act trivially on X.
Describe H, and prove that G/H is isomorphic to S4 , the symmetric group on four
letters.
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12G Analysis II

What does it mean to say that a function f on an interval in R is uniformly

continuous? Assuming the Bolzano–Weierstrass theorem, show that any continuous
function on a finite closed interval is uniformly continuous.

Suppose that f is a continuous function on the real line, and that f(x) tends to
finite limits as x → ±∞; show that f is uniformly continuous.

If f is a uniformly continuous function on R, show that f(x)/x is bounded as
x → ±∞. If g is a continuous function on R for which g(x)/x → 0 as x → ±∞,
determine whether g is necessarily uniformly continuous, giving proof or counterexample
as appropriate.

13H Metric and Topological Spaces

(1) Prove that if X is a compact topological space, then a closed subset Y of X
endowed with the subspace topology is compact.

(2) Consider the following equivalence relation on R
2:

(x1, y1) ∼ (x2, y2) ⇐⇒ (x1 − x2, y1 − y2) ∈ Z
2.

Let X = R
2/ ∼ be the quotient space endowed with the quotient topology, and let

p : R
2 → X be the canonical surjection mapping each element to its equivalence class. Let

Z = {(x, y) ∈ R
2 | y =

√
2x}.

(i) Show that X is compact.

(ii) Assuming that p(Z) is dense in X, show that p|Z : Z → p(Z) is bijective but not
homeomorphic.
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14A Complex Methods

A linear system is described by the differential equation

y′′′(t) − y′′(t) − 2 y′(t) + 2 y(t) = f(t) ,

with initial conditions

y (0) = 0 , y′(0) = 1 , y′′(0) = 1 .

The Laplace transform of f(t) is defined as

L[f(t)] = f̃(s) =

∫
∞

0

e−stf(t) dt.

You may assume the following Laplace transforms,

L[y(t)] = ỹ(s),

L[y′(t)] = sỹ(s) − y(0),

L[y′′(t)] = s2ỹ(s) − sy(0) − y′(0),

L[y′′′(t)] = s3ỹ(s) − s2y(0) − sy′(0) − y′′(0).

(a) Use Laplace transforms to determine the response, y1(t), of the system to the
signal

f(t) = −2.

(b) Determine the response, y2(t), given that its Laplace transform is

ỹ2(s) =
1

s2(s − 1)2
.

(c) Given that

y′′′(t) − y′′(t) − 2y′(t) + 2y(t) = g(t)

leads to the response with Laplace transform

ỹ(s) =
1

s2(s − 1)2
,

determine g(t).
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15F Geometry

Suppose that D is the unit disc, with Riemannian metric

ds2 =
dx2 + dy2

1 − (x2 + y2)
.

[Note that this is not a multiple of the Poincaré metric.] Show that the diameters of D

are, with appropriate parametrization, geodesics.

Show that distances between points in D are bounded, but areas of regions in D

are unbounded.
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16D Variational Principles

A function θ(φ) with given values of θ(φ1) and θ(φ2) makes the integral

I =

∫ φ2

φ1

L(θ, θ′) dφ

stationary with respect to small variations of θ which vanish at φ1 and φ2. Show that θ(φ)
satisfies the first integral of the Euler–Lagrange equation,

L(θ, θ′) − θ′(∂L/∂θ′) = C,

for some constant C. You may state the Euler–Lagrange equation without proof.

It is desired to tow an iceberg across open ocean from a point on the Antarctic coast
(longitude φ1) to a place in Australia (longitude φ2), to provide fresh water for irrigation.
The iceberg will melt at a rate proportional to the difference between its temperature (the
constant T0, measured in degrees Celsius and therefore negative) and the sea temperature
T (θ) > T0, where θ is the colatitude (the usual spherical polar coordinate θ). Assume
that the iceberg is towed at a constant speed along a path θ(φ), where φ is the longitude.
Given that the infinitesimal arc length on the unit sphere is (dθ2 + sin2 θ dφ2)1/2, show
that the total ice melted along the path from φ1 to φ2 is proportional to

I =

∫ φ2

φ1

(T (θ) − T0)(θ
′2 + sin2 θ)1/2 dφ.

Now suppose that in the relevant latitudes, the sea temperature may be approx-
imated by T (θ) = T0(1 + 3 tan θ). (Note that (1 + 3 tan θ) is negative in the relevant

latitudes.) Show that any smooth path θ(φ) which minimizes the total ice melted must
satisfy

θ′
2

= sin2 θ (1

4
k2 tan2 θ sin2 θ − 1),

and hence that

sin2 θ =
2

1 − (1 + k2)1/2 sin 2(φ − φ0)
,

where k and φ0 are constants.

[Hint:
∫

dx

x(α2x4 + x2 − 1)1/2
=

1

2
arcsin

[ x2 − 2

x2(1 + 4α2)1/2

]

.
]
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17B Methods

Defining the function Gf3
(r; r0) = −1/(4π|r − r0|), prove Green’s third identity for

functions u(r) satisfying Laplace’s equation in a volume V with surface S, namely

u(r0) =

∫

S

(

u
∂Gf3

∂n
−

∂u

∂n
Gf3

)

dS.

A solution is sought to the Neumann problem for ∇2u = 0 in the half plane z > 0:

u = O(|x|−a),
∂u

∂r
= O(|x|−a−1) as |x| → ∞,

∂u

∂z
= p(x, y) on z = 0,

where a > 0. It is assumed that
∫

∞

−∞

∫

∞

−∞
p(x, y) dx dy = 0. Explain why this condition is

necessary.

Construct an appropriate Green’s function G(r; r0) satisfying ∂G/∂z = 0 at z = 0,
using the method of images or otherwise. Hence find the solution in the form

u(x0, y0, z0) =

∫

∞

−∞

∫

∞

−∞

p(x, y)f(x − x0, y − y0, z0) dx dy,

where f is to be determined.

Now let

p(x, y) =

{

x |x|, |y| < a,

0 otherwise.

By expanding f in inverse powers of z0, show that

u →
−2a4x0

3πz3
0

as z0 → ∞ .
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18B Fluid Dynamics

Write down the velocity potential for a line source flow of strength m located at
(r, θ) = (d, 0) in polar coordinates (r, θ) and derive the velocity components ur, uθ.

A two-dimensional flow field consists of such a source in the presence of a circular
cylinder of radius a (a < d) centred at the origin. Show that the flow field outside the
cylinder is the sum of the original source flow, together with that due to a source of the
same strength at (a2/d, 0) and another at the origin, of a strength to be determined.

Use Bernoulli’s law to find the pressure distribution on the surface of the cylinder,
and show that the total force exerted on it is in the x-direction and of magnitude

m2ρ

2π2

∫
2π

0

ad2 sin2 θ cos θ

(a2 + d2
− 2 ad cos θ)2

dθ ,

where ρ is the density of the fluid. Without evaluating the integral, show that it is positive.
Comment on the fact that the force on the cylinder is therefore towards the source.

19E Statistics

Consider a collection X1, . . . , Xn of independent random variables with common
density function f(x; θ) depending on a real parameter θ. What does it mean to say T

is a sufficient statistic for θ? Prove that if the joint density of X1, . . . , Xn satisfies the
factorisation criterion for a statistic T , then T is sufficient for θ .

Let each Xi be uniformly distributed on [−
√

θ,
√

θ ] . Find a two-dimensional
sufficient statistic T = (T1, T2). Using the fact that θ̂ = 3X 2

1
is an unbiased estimator of

θ , or otherwise, find an unbiased estimator of θ which is a function of T and has smaller
variance than θ̂ . Clearly state any results you use.
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20E Optimization

A factory produces three types of sugar, types X, Y, and Z, from three types of

syrup, labelled A, B, and C. The following table contains the number of litres of syrup

necessary to make each kilogram of sugar.

X Y Z

A 3 2 1

B 2 3 2

C 4 1 2

For instance, one kilogram of type X sugar requires 3 litres of A, 2 litres of B, and 4 litres

of C. The factory can sell each type of sugar for one pound per kilogram. Assume that

the factory owner can use no more than 44 litres of A and 51 litres of B, but is required

by law to use at least 12 litres of C. If her goal is to maximize profit, how many kilograms

of each type of sugar should the factory produce?

END OF PAPER

Part IB, Paper 4


	Rubric

	1F Linear Algebra
	2H Groups Rings and Modules
	3G Analysis II
	4G Complex Analysis
	5A Methods
	6D Quantum Mechanics
	7B Electromagnetism
	8C Numerical Analysis
	9E Markov Chains
	10F Linear Algebra
	11H Groups Rings and Modules
	12G Analysis II
	13H Metric and Topological Spaces
	14A Complex Methods
	15F Geometry
	16D Variational Principles
	17B Methods
	18B Fluid Dynamics
	19E Statistics
	20E Optimization

