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SECTION I

1F Linear Algebra

Suppose that φ is an endomorphism of a finite-dimensional complex vector space.

(i) Show that if λ is an eigenvalue of φ, then λ2 is an eigenvalue of φ2.

(ii) Show conversely that if µ is an eigenvalue of φ2, then there is an eigenvalue λ of φ

with λ2 = µ.

2H Groups Rings and Modules

Give the definition of conjugacy classes in a group G. How many conjugacy classes

are there in the symmetric group S4 on four letters? Briefly justify your answer.

3G Analysis II

Let c > 1 be a real number, and let Fc be the space of sequences a = (a1, a2, . . . ) of
real numbers ai with

∑
∞

r=1 c−r|ar| convergent. Show that ‖a‖c =
∑

∞

r=1 c−r|ar| defines a
norm on Fc .

Let F denote the space of sequences a with |ai| bounded; show that F ⊂ Fc. If
c′ > c , show that the norms on F given by restricting to F the norms ‖ . ‖c on Fc and
‖ . ‖c′ on Fc′ are not Lipschitz equivalent.

By considering sequences of the form a(n) = (a, a2, . . . , an, 0, 0, . . . ) in F , for a

an appropriate real number, or otherwise, show that F (equipped with the norm ‖ . ‖c) is
not complete.

4H Metric and Topological Spaces

On the set Q of rational numbers, the 3-adic metric d3 is defined as follows: for
x, y ∈ Q, define d3(x, x) = 0 and d3(x, y) = 3−n, where n is the integer satisfying
x − y = 3nu where u is a rational number whose denominator and numerator are both
prime to 3.

(1) Show that this is indeed a metric on Q.

(2) Show that in (Q, d3), we have 3n → 0 as n → ∞ while 3−n 6→ 0 as n → ∞ .
Let d be the usual metric d(x, y) = |x − y| on Q. Show that neither the identity map
(Q, d) → (Q, d3) nor its inverse is continuous.
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5A Methods

Consider the initial value problem

Lx(t) = f(t), x(0) = 0, ẋ(0) = 0, t > 0,

where L is a second-order linear operator involving differentiation with respect to t.
Explain briefly how to solve this by using a Green’s function.

Now consider

ẍ(t) =

{

a 0 6 t 6 T,

0 T < t < ∞,

where a is a constant, subject to the same initial conditions. Solve this using the Green’s
function, and explain how your answer is related to a problem in Newtonian dynamics.

6C Electromagnetism

Write down Maxwell’s equations for electromagnetic fields in a non-polarisable and
non-magnetisable medium.

Show that the homogenous equations (those not involving charge or current densi-
ties) can be solved in terms of vector and scalar potentials A and φ.

Then re-express the inhomogeneous equations in terms of A, φ and f = ∇·A+c−2φ̇.
Show that the potentials can be chosen so as to set f = 0 and hence rewrite the
inhomogeneous equations as wave equations for the potentials. [You may assume that

the inhomogeneous wave equation ∇
2ψ − c−2ψ̈ = σ(x, t) always has a solution ψ(x, t) for

any given σ(x, t).]

7B Fluid Dynamics

Write down an expression for the velocity field of a line vortex of strength κ.

Consider N identical line vortices of strength κ arranged at equal intervals round a
circle of radius a . Show that the vortices all move around the circle at constant angular
velocity (N − 1)κ/(4πa2).

Part IB, Paper 2 [TURN OVER
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8E Statistics

A washing powder manufacturer wants to determine the effectiveness of a television
advertisement. Before the advertisement is shown, a pollster asks 100 randomly chosen
people which of the three most popular washing powders, labelled A, B and C, they prefer.
After the advertisement is shown, another 100 randomly chosen people (not the same as
before) are asked the same question. The results are summarized below.

A B C

before 36 47 17
after 44 33 23

Derive and carry out an appropriate test at the 5% significance level of the
hypothesis that the advertisement has had no effect on people’s preferences.

[You may find the following table helpful:

χ
2

1
χ

2

2
χ

2

3
χ

2

4
χ

2

5
χ

2

6

95 percentile 3.84 5.99 7.82 9.49 11.07 12.59
.

]

9E Optimization

Consider the function φ defined by

φ(b) = inf{x2 + y4 : x + 2 y = b} .

Use the Lagrangian sufficiency theorem to evaluate φ(3). Compute the derivative φ′(3).
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SECTION II

10F Linear Algebra

(i) Show that two n × n complex matrices A, B are similar (i.e. there exists invertible
P with A = P−1BP ) if and only if they represent the same linear map C

n
→ C

n with
respect to different bases.

(ii) Explain the notion of Jordan normal form of a square complex matrix.

(iii) Show that any square complex matrix A is similar to its transpose.

(iv) If A is invertible, describe the Jordan normal form of A−1 in terms of that of A.

Justify your answers.

11H Groups Rings and Modules

For ideals I, J of a ring R, their product IJ is defined as the ideal of R generated
by the elements of the form xy where x ∈ I and y ∈ J .

(1) Prove that, if a prime ideal P of R contains IJ , then P contains either I or J .

(2) Give an example of R, I and J such that the two ideals IJ and I∩J are different
from each other.

(3) Prove that there is a natural bijection between the prime ideals of R/IJ and
the prime ideals of R/(I ∩ J).
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12G Analysis II

Suppose the functions fn (n = 1, 2, . . .) are defined on the open interval (0, 1) and
that fn tends uniformly on (0, 1) to a function f . If the fn are continuous, show that f is
continuous. If the fn are differentiable, show by example that f need not be differentiable.

Assume now that each fn is differentiable and the derivatives f ′

n
converge uniformly

on (0, 1). For any given c ∈ (0, 1), we define functions gc,n by

gc,n(x) =















fn(x) − fn(c)

x − c
for x 6= c ,

f ′

n
(c) for x = c .

Show that each gc,n is continuous. Using the general principle of uniform conver-
gence (the Cauchy criterion) and the Mean Value Theorem, or otherwise, prove that the
functions gc,n converge uniformly to a continuous function gc on (0, 1), where

gc(x) =
f(x) − f(c)

x − c
for x 6= c .

Deduce that f is differentiable on (0, 1).

13A Complex Analysis or Complex Methods

(a) Prove that a complex differentiable map, f(z), is conformal, i.e. preserves angles,
provided a certain condition holds on the first complex derivative of f(z).

(b) Let D be the region

D := {z ∈ C : |z−1| > 1 and |z−2| < 2}.

Draw the region D . It might help to consider the two sets

C(1) := {z ∈ C : |z − 1| = 1 },

C(2) := {z ∈ C : |z − 2| = 2 }.

(c) For the transformations below identify the images of D.

Step 1: The first map is f1(z) =
z − 1

z
,

Step 2: The second map is the composite f2f1 where f2(z) = (z − 1

2
)i,

Step 3: The third map is the composite f3f2f1 where f3(z) = e2πz.

(d) Write down the inverse map to the composite f3f2f1, explaining any choices of
branch.

[The composite f2f1 means f2(f1(z)).]
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14F Geometry

Suppose that a > 0 and that S ⊂ R
3 is the half-cone defined by z2 = a(x2 + y2),

z > 0 . By using an explicit smooth parametrization of S, calculate the curvature of S.

Describe the geodesics on S. Show that for a = 3, no geodesic intersects itself, while
for a > 3 some geodesic does so.

15D Variational Principles

Describe briefly the method of Lagrange multipliers for finding the stationary points
of a function f(x, y) subject to a constraint φ(x, y) = 0.

A tent manufacturer wants to maximize the volume of a new design of tent, subject
only to a constant weight (which is directly proportional to the amount of fabric used).
The models considered have either equilateral-triangular or semi-circular vertical cross–
section, with vertical planar ends in both cases and with floors of the same fabric. Which
shape maximizes the volume for a given area A of fabric?

[Hint: (2π)−1/23−3/4(2 + π) < 1.]

16B Methods

Explain briefly the use of the method of characteristics to solve linear first-order
partial differential equations.

Use the method to solve the problem

(x − y)
∂u

∂x
+ (x + y)

∂u

∂y
= αu,

where α is a constant, with initial condition u(x, 0) = x2, x > 0.

By considering your solution explain:

(i) why initial conditions cannot be specified on the whole x-axis;

(ii) why a single-valued solution in the entire plane is not possible if α 6= 2.
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17D Quantum Mechanics

A particle of mass m moves in a one-dimensional potential defined by

V (x) =











∞ for x < 0,

0 for 0 6 x 6 a,

V0 for a < x,

where a and V0 are positive constants. Defining c = [2m(V0 − E)]1/2/~ and k =
(2mE)1/2/~, show that for any allowed positive value E of the energy with E < V0

then
c + k cot ka = 0.

Find the minimum value of V0 for this equation to have a solution.

Find the normalized wave function for the particle. Write down an expression for
the expectation value of x in terms of two integrals, which you need not evaluate. Given
that

〈x〉 =
1

2k
(ka − tan ka),

discuss briefly the possibility of 〈x〉 being greater than a. [Hint: consider the graph of
−ka cot ka against ka.]

18C Electromagnetism

A steady current I2 flows around a loop C2 of a perfectly conducting narrow wire.
Assuming that the gauge condition ∇ · A = 0 holds, the vector potential at points away
from the loop may be taken to be

A(r) =
µ0I2

4π

∮

C2

dr2

|r − r2|
.

First verify that the gauge condition is satisfied here. Then obtain the Biot-Savart formula
for the magnetic field

B(r) =
µ0I2

4π

∮

C2

dr2 × (r − r2)

|r − r2|3
.

Next suppose there is a similar but separate loop C1 with current I1. Show that the
magnetic force exerted on loop C1 by loop C2 is

F12 =
µ0I1I2

4π

∮

C1

∮

C2

dr1 ×

(

dr2 ×
r1 − r2

|r1 − r2|3

)

.

Is this consistent with Newton’s third law? Justify your answer.
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19C Numerical Analysis

Consider the initial value problem for an autonomous differential equation

y′(t) = f(y(t)), y(0) = y0 given,

and its approximation on a grid of points tn = nh, n = 0, 1, 2, . . .. Writing yn = y(tn), it
is proposed to use one of two Runge–Kutta schemes defined by

yn+1 = yn + 1

2
(k1 + k2),

where k1 = hf(yn) and

k2 =

{

hf(yn + k1) scheme I ,

hf(yn + 1

2
(k1 + k2)) scheme II .

What is the order of each scheme? Determine the A-stability of each scheme.

20E Markov Chains

Let (Xn)n >0 be a simple, symmetric random walk on the integers {. . . ,−1, 0, 1, . . . },
with X0 = 0 and P (Xn+1 = i ± 1 |Xn = i) = 1/2 . For each integer a > 1 , let
Ta = inf{n > 0 : Xn = a}. Show that Ta is a stopping time.

Define a random variable Yn by the rule

Yn =

{

Xn if n < Ta ,
2a − Xn if n > Ta .

Show that (Yn)n >0 is also a simple, symmetric random walk.

Let Mn = max 0 6 i 6n Xn . Explain why {Mn > a} = {Ta 6 n} for a > 0 . By
using the process (Yn)n >0 constructed above, show that, for a > 0,

P (Mn > a, Xn 6 a − 1) = P (Xn > a + 1),

and thus
P (Mn > a) = P(Xn > a) + P (Xn > a + 1).

Hence compute
P (Mn = a)

when a and n are positive integers with n > a . [Hint: if n is even, then Xn must be even,
and if n is odd, then Xn must be odd.]

END OF PAPER
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