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SECTION I

1G Number Theory

For any integer x > 2, define θ(x) =
∑

p6x log p, where the sum is taken over all
primes p 6 x. Put θ(1) = 0. By studying the integer

(

2n

n

)

,

where n > 1 is an integer, prove that

θ(2n) − θ(n) < 2n log 2.

Deduce that
θ(x) < (4 log 2)x,

for all x > 1.

2F Topics in Analysis

(a) If f : (0, 1) → R is continuous, prove that there exists a sequence of polynomials
Pn such that Pn → f uniformly on compact subsets of (0, 1).

(b) If f : (0, 1) → R is continuous and bounded, prove that there exists a sequence
of polynomials Qn such that Qn are uniformly bounded on (0, 1) and Qn → f uniformly on
compact subsets of (0, 1).

3F Geometry of Group Actions

Explain why there are discrete subgroups of the Möbius group PSL2(C) which ab-
stractly are free groups of rank 2.

4H Coding and Cryptography

Define a binary code of length 15 with information rate 11/15 which will correct
single errors. Show that it has the rate stated and give an explicit procedure for identifying
the error. Show that the procedure works.

[Hint: You may wish to imitate the corresponding discussion for a code of length 7 .]
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5I Statistical Modelling

Consider the linear model Y = Xβ + ε, where ε ∼ Nn(0, σ2I) and X is an n × p

matrix of full rank p < n. Suppose that the parameter β is partitioned into k sets as

follows: β⊤ = (β⊤1 · · · β⊤k ). What does it mean for a pair of sets βi, βj , i 6= j, to be

orthogonal? What does it mean for all k sets to be mutually orthogonal?

In the model

Yi = β0 + β1xi1 + β2xi2 + εi

where εi ∼ N(0, σ2) are independent and identically distributed, find necessary and suffi-

cient conditions on x11, . . . , xn1, x12, . . . , xn2 for β0, β1 and β2 to be mutually orthogonal.

If β0, β1 and β2 are mutually orthogonal, what consequence does this have for the

joint distribution of the corresponding maximum likelihood estimators β̂0, β̂1 and β̂2?

6A Mathematical Biology

Consider an organism moving on a one-dimensional lattice of spacing a, taking steps
either to the right or the left at regular time intervals τ . In this random walk there is a
slight bias to the right, that is the probabilities of moving to the right and left, α and β,
are such that α − β = ǫ, where 0 < ǫ ≪ 1. Write down the appropriate master equation
for this process. Show by taking the continuum limit in space and time that p(x, t), the
probability that an organism initially at x = 0 is at x after time t, obeys

∂p

∂t
+ V

∂p

∂x
= D

∂2p

∂x2
.

Express the constants V and D in terms of a, τ , α and β.

7E Dynamical Systems

Consider the one-dimensional real map xn+1 = F (xn) = rx2
n(1 − xn), where r > 0.

Locate the fixed points and explain for what ranges of the parameter r each fixed point
exists. For what range of r does F map the open interval (0, 1) into itself?

Determine the location and type of all the bifurcations from the fixed points which
occur. Sketch the location of the fixed points in the (r, x) plane, indicating stability.
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8B Further Complex Methods

Suppose that the real function u(x, y) satisfies Laplace’s equation in the upper half
complex z-plane, z = x+ iy, x ∈ R, y > 0, where

u(x, y) → 0 as
√

x2 + y2 → ∞, u(x, 0) = g(x), x ∈ R.

The function u(x, y) can then be expressed in terms of the Poisson integral

u(x, y) =
1

π

∫ ∞

−∞

yg(ξ)

(x− ξ)2 + y2
dξ, x ∈ R, y > 0.

By employing the formula

f(z) = 2u

(

z + ā

2
,
z − ā

2i

)

− f(a),

where a is a complex constant with Im a > 0, show that the analytic function whose real
part is u(x, y) is given by

f(z) =
1

iπ

∫ ∞

−∞

g(ξ)

ξ − z
dξ + ic, Im z > 0,

where c is a real constant.

9E Classical Dynamics

(a) Show that the principal moments of inertia of a uniform circular cylinder of

radius a, length h and mass M about its centre of mass are I1 = I2 = M(a2/4 + h2/12)

and I3 = Ma2/2, with the x3 axis being directed along the length of the cylinder.

(b) Euler’s equations governing the angular velocity (ω1, ω2, ω3) of an arbitrary rigid

body as viewed in the body frame are

I1
dω1

dt
= (I2 − I3)ω2ω3,

I2
dω2

dt
= (I3 − I1)ω3ω1

and

I3
dω3

dt
= (I1 − I2)ω1ω2.

Show that, for the cylinder of part (a), ω3 is constant. Show further that, when ω3 6= 0,

the angular momentum vector precesses about the x3 axis with angular velocity Ω given

by

Ω =

(

3a2 − h2

3a2 + h2

)

ω3.
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10D Cosmology

(a) Write down an expression for the total gravitational potential energy Egrav of

a spherically symmetric star of outer radius R in terms of its mass density ρ(r) and the

total mass m(r) inside a radius r, satisfying the relation dm/dr = 4πr2ρ(r).

An isotropic mass distribution obeys the pressure-support equation,

dP

dr
= −Gmρ

r2
,

where P (r) is the pressure. Multiply this expression by 4πr3 and integrate with respect

to r to derive the virial theorem relating the kinetic and gravitational energy of the star

Ekin = −1
2Egrav ,

where you may assume for a non-relativistic ideal gas that Ekin = 3
2〈P 〉V , with 〈P 〉 the

average pressure.

(b) Consider a white dwarf supported by electron Fermi degeneracy pressure

P ≈ h2n5/3/me, where me is the electron mass and n is the number density. Assume

a uniform density ρ(r) = mpn(r) ≈ mp〈n〉, so the total mass of the star is given by

M = (4π/3)〈n〉mpR
3 where mp is the proton mass. Show that the total energy of the

white dwarf can be written in the form

Etotal = Ekin + Egrav =
α

R2
− β

R
,

where α, β are positive constants which you should specify. Deduce that the white dwarf

has a stable radius RWD at which the energy is minimized, that is,

RWD ∼ h2M−1/3

Gmem
5/3
p

.
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SECTION II

11G Number Theory

Let p be an odd prime. Prove that there is an equal number of quadratic residues
and non-residues in the set {1, . . . , p− 1}.

If n is an integer prime to p, let mn be an integer such that nmn ≡ 1 mod p. Prove
that

n(n+ 1) ≡ n2(1 +mn) mod p,

and deduce that
p−1
∑

n=1

(

n(n+ 1)

p

)

= −1.

12F Topics in Analysis

(a) State Runge’s theorem on uniform approximation of analytic functions by
polynomials.

(b) Let Ω be an unbounded, connected, proper open subset of C. For any given
compact set K ⊂ C \ Ω and any ζ ∈ Ω, show that there exists a sequence of complex
polynomials converging uniformly on K to the function f(z) = (z − ζ)−1.

(c) Give an example, with justification, of a connected open subset Ω of C, a compact
subset K of C\Ω and a point ζ ∈ Ω such that there is no sequence of complex polynomials
converging uniformly on K to the function f(z) = (z − ζ)−1.

13A Mathematical Biology

An activator–inhibitor reaction diffusion system in dimensionless form is given by

ut = uxx +
u2

v
− bu, vt = dvxx + u2 − v,

where b and d are positive constants. Which is the activitor and which the inhibitor?
Determine the positive steady states and show, by an examination of the eigenvalues in
a linear stability analysis of the spatially uniform situation, that the reaction kinetics is
stable if b < 1.

Determine the conditions for the steady state to be driven unstable by diffusion.
Show that the parameter domain for diffusion–driven instability is given by 0 < b < 1,
bd > 3 + 2

√
2, and sketch the (b, d) parameter space in which diffusion–driven instability

occurs. Further show that at the bifurcation to such an instability the critical wave number
kc is given by k2

c = (1 +
√

2)/d.
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14E Dynamical Systems

Consider the dynamical system

ẋ = −ax− 2xy,

ẏ = x2 + y2 − b,

where a > 0 and b > 0.

(i) Find and classify the fixed points. Show that a bifurcation occurs when
4b = a2 > 0.

(ii) After shifting coordinates to move the relevant fixed point to the origin, and
setting a = 2

√
b − µ, carry out an extended centre manifold calculation to reduce the

two-dimensional system to one of the canonical forms, and hence determine the type of
bifurcation that occurs when 4b = a2 > 0. Sketch phase portraits in the cases 0 < a2 < 4b
and 0 < 4b < a2.

(iii) Sketch the phase portrait in the case a = 0. Prove that periodic orbits exist if
and only if a = 0.
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15D Cosmology

In the Zel’dovich approximation, particle trajectories in a flat expanding universe

are described by r(q, t) = a(t)[q+Ψ(q, t)] , where a(t) is the scale factor of the universe, q

is the unperturbed comoving trajectory and Ψ is the comoving displacement. The particle

equation of motion is

r̈ = −∇Φ − 1

ρ
∇P ,

where ρ is the mass density, P is the pressure (P ≪ ρc2) and Φ is the Newtonian potential

which satisfies the Poisson equation ∇2 Φ = 4π Gρ .

(i) Show that the fractional density perturbation and the pressure gradient are given by

δ ≡ ρ− ρ̄

ρ̄
≈ −∇q · Ψ , ∇P ≈ −ρ̄ c

2
s

a
∇2

q Ψ ,

where ∇q has components ∂/∂qi, ρ̄ = ρ̄(t) is the homogeneous background density and

c2s ≡ ∂P/∂ρ is the sound speed. [You may assume that the Jacobian |∂ri/∂qj |−1 =

|a δij + a ∂ψi/∂qj |−1 ≈ a−3(1 −∇q · Ψ) for |Ψ| ≪ |q| .]

Use this result to integrate the Poisson equation once and obtain then the evolution

equation for the comoving displacement:

Ψ̈ + 2
ȧ

a
Ψ̇ − 4πGρ̄Ψ− c2s

a2
∇2

q Ψ = 0 ,

[You may assume that the integral of ∇2Φ = 4πG ρ̄ is ∇Φ = 4πGρ̄r/3 , that Ψ is

irrotational and that the Raychaudhuri equation is ä/a ≈ −4π Gρ̄/3 for P ≪ ρc2.]

Consider the Fourier expansion δ(x, t) =
∑

k δk exp(ik · x) of the density perturba-

tion using the comoving wavenumber k (k = |k|) and obtain the evolution equation for

the mode δk:

δ̈k + 2
ȧ

a
δ̇k − (4π Gρ̄− c2s k

2/a2) δk = 0 . (∗)

(ii) Consider a flat matter-dominated universe with a(t) = (t/t0)
2/3 (background density

ρ̄ = 1/(6π Gt2)) and with an equation of state P = βρ4/3 to show that (∗) becomes

δ̈k +
4

3t
δ̇k − 1

t2
(2
3 − v̄2

s k
2) δk = 0 ,

where the constant v̄2
s ≡ (4β/3)(6π G)−1/3 t

4/3
0 . Seek power law solutions of the form

δk ∝ tα to find the growing and decaying modes

δk = Ak t
n+ +Bk t

n− where n± = −1
6 ±

[

(5
6 )2 − v̄2

s k
2
]1/2

.
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16G Logic and Set Theory

Let x ⊆ α be a subset of a (von Neumann) ordinal α taken with the induced
ordering. Using the recursion theorem or otherwise show that x is order isomorphic to a
unique ordinal µ(x). Suppose that x ⊆ y ⊆ α. Show that µ(x) 6 µ(y) 6 α.

Suppose that x0 ⊆ x1 ⊆ x2 ⊆ · · · is an increasing sequence of subsets of α, with
xi an initial segment of xj whenever i < j. Show that µ(

⋃

n xn) =
⋃

n µ(xn). Does this
result still hold if the condition on initial segments is omitted? Justify your answer.

Suppose that x0 ⊇ x1 ⊇ x2 ⊇ · · · is a decreasing sequence of subsets of α. Why is
the sequence µ(xn) eventually constant? Is it the case that µ(

⋂

n xn) =
⋂

n µ(xn)? Justify
your answer.

17F Graph Theory

(a) State Brooks’ theorem concerning the chromatic number χ(G) of a graph G . Prove

it in the case when G is 3-connected.

[If you wish to assume that G is regular, you should explain why this assumption is

justified.]

(b) State Vizing’s theorem concerning the edge-chromatic number χ′
(G) of a graph G .

(c) Are the following statements true or false? Justify your answers.

(1) If G is a connected graph on more than two vertices then χ(G) 6 χ′
(G) .

(2) For every ordering of the vertices of a graph G, if we colour G using the greedy

algorithm (on this ordering) then the number of colours we use is at most 2χ(G) .

(3) For every ordering of the edges of a graph G, if we edge-colour G using the

greedy algorithm (on this ordering) then the number of colours we use is at most 2χ
′
(G) .
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18H Galois Theory

Let K = Fp(x), the function field in one variable, and let G = Fp. The group G acts

as automorphisms of K by σa(x) = x+ a. Show that KG = Fp(y), where y = xp − x.

[State clearly any theorems you use.]

Is K/KG a separable extension?

Now let

H =

{(

d a

0 1

)

: a ∈ Fp, d ∈ F
∗
p

}

and let H act on K by

(

d a

0 1

)

x = dx+a. (The group structure on H is given by matrix

multiplication.) Compute KH . Describe your answer in the form Fp(z) for an explicit

z ∈ K.

Is KG/KH a Galois extension? Find the minimum polynomial for y over the

field KH .

19F Representation Theory

Let G = SU(2). Let Vn be the complex vector space of homogeneous polynomials
of degree n in two variables z1, z2. Define the usual left action of G on Vn and denote by
ρn : G → GL(Vn) the representation induced by this action. Describe the character χn

afforded by ρn.

Quoting carefully any results you need, show that

(i) The representation ρn has dimension n+ 1 and is irreducible for n ∈ Z>0;

(ii) Every finite-dimensional continuous irreducible representation of G is one of
the ρn;

(iii) Vn is isomorphic to its dual V ∗
n .

Part II, Paper 3
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20G Algebraic Topology

(i) Suppose that (C, d) and (C ′, d′) are chain complexes, and f, g : C → C ′ are chain
maps. Define what it means for f and g to be chain homotopic.

Show that if f and g are chain homotopic, and f∗, g∗ : H∗(C) → H∗(C ′) are the
induced maps, then f∗ = g∗.

(ii) Define the Euler characteristic of a finite chain complex.

Given that one of the sequences below is exact and the others are not, which is the
exact one?

0 → Z
11 → Z

24 → Z
20 → Z

13 → Z
20 → Z

25 → Z
11 → 0,

0 → Z
11 → Z

24 → Z
20 → Z

13 → Z
20 → Z

24 → Z
11 → 0,

0 → Z
11 → Z

24 → Z
19 → Z

13 → Z
20 → Z

23 → Z
11 → 0.

Justify your choice.

21H Linear Analysis

(a) State the Arzela–Ascoli theorem, explaining the meaning of all concepts involved.

(b) Prove the Arzela–Ascoli theorem.

(c) Let K be a compact topological space. Let (fn)n∈N be a sequence in the Banach
space C(K) of real-valued continuous functions over K equipped with the supremum
norm ‖ · ‖. Assume that for every x ∈ K, the sequence fn(x) is monotone increasing and
that fn(x) → f(x) for some f ∈ C(K). Show that ‖fn − f‖ → 0 as n→ ∞.

22G Riemann Surfaces

(i) Let f(z) =
∑∞

n=1 z
2n

. Show that the unit circle is the natural boundary of the
function element (D(0, 1), f), where D(0, 1) = {z ∈ C : |z| < 1}.

(ii) Let X be a connected Riemann surface and (D,h) a function element on X
into C. Define a germ of (D,h) at a point p ∈ D. Let G be the set of all the germs of
function elements on X into C. Describe the topology and the complex structure on G, and
show that G is a covering of X (in the sense of complex analysis). Show that there is a one-
to-one correspondence between complete holomorphic functions on X into C and the con-
nected components of G. [You are not required to prove that the topology on G is second-
countable.]
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23G Algebraic Geometry

Let V be a smooth projective curve, and let D be an effective divisor on V . Explain
how D defines a morphism φD from V to some projective space. State the necessary and
sufficient conditions for φD to be finite. State the necessary and sufficient conditions for
φD to be an isomorphism onto its image.

Let V have genus 2, and let K be an effective canonical divisor. Show that the
morphism φK is a morphism of degree 2 from V to P

1.

By considering the divisor K + P1 + P2 for points Pi with P1 + P2 6∼ K, show that
there exists a birational morphism from V to a singular plane quartic.

[You may assume the Riemann–Roch Theorem.]

24H Differential Geometry

(a) State and prove the Theorema Egregium.

(b) Let X be a minimal surface without boundary in R
3 which is closed as a subset

of R
3, and assume that X is not contained in a closed ball. Let Π be a plane in R

3 with
the property that Dn → ∞ as n→ ∞, where for n = 0, 1, . . .,

Dn = inf
x∈X,d(x,0)>n

d(x,Π).

Here d(x, y) denotes the Euclidean distance between x and y and d(x,Π) = infy∈Π d(x, y).
Assume moreover that X contains no planar points. Show that X intersects Π.

25J Probability and Measure

State and prove the first and second Borel–Cantelli lemmas.

Let (Xn : n ∈ N) be a sequence of independent Cauchy random variables. Thus,
each Xn is real-valued, with density function

f(x) =
1

π(1 + x2)
.

Show that

lim sup
n→∞

logXn

log n
= c, almost surely,

for some constant c, to be determined.
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26J Applied Probability

(a) Define the Poisson process (Nt, t > 0) with rate λ > 0, in terms of its holding
times. Show that for all times t > 0, Nt has a Poisson distribution, with a parameter
which you should specify.

(b) Let X be a random variable with probability density function

f(x) =
1

2
λ3x2e−λx1{x>0}. (∗)

Prove that X is distributed as the sum Y1 + Y2 + Y3 of three independent exponential
random variables of rate λ. Calculate the expectation, variance and moment generating
function of X.

Consider a renewal process (Xt, t > 0) with holding times having density (∗). Prove
that the renewal function m(t) = E(Xt) has the form

m(t) =
λt

3
− 1

3
p1(t) −

2

3
p2(t),

where p1(t) = P
(

Nt = 1 mod 3
)

, p2(t) = P
(

Nt = 2 mod 3
)

and (Nt, t > 0) is the Poisson
process of rate λ.

(c) Consider the delayed renewal process
(

XD
t , t > 0

)

with holding times SD
1 , S2, S3, . . .

where (Sn, n > 1), are the holding times of (Xt, t > 0) from (b). Specify the distribution
of SD

1 for which the delayed process becomes the renewal process in equilibrium.

[You may use theorems from the course provided that you state them clearly.]

27I Principles of Statistics

What is meant by an equaliser decision rule? What is meant by an extended Bayes

rule? Show that a decision rule that is both an equaliser rule and extended Bayes is
minimax.

Let X1, . . . ,Xn be independent and identically distributed random variables with
the normal distribution N (θ, h−1), and let k > 0. It is desired to estimate θ with loss
function L(θ, a) = 1 − exp{−1

2k(a− θ)2}.
Suppose the prior distribution is θ ∼ N (m0, h

−1
0 ). Find the Bayes act and the

Bayes loss posterior to observing X1 = x1, . . . ,Xn = xn. What is the Bayes risk of the
Bayes rule with respect to this prior distribution?

Show that the rule that estimates θ by X = n−1
∑n

i=1Xi is minimax.
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28I Optimization and Control

Two scalar systems have dynamics

xt+1 = xt + ut + ǫt, yt+1 = yt + wt + ηt,

where {ǫt} and {ηt} are independent sequences of independent and identically distributed
random variables of mean 0 and variance 1. Let

F (x) = inf
π

E

[ ∞
∑

t=0

(

x2
t + u2

t

)

(2/3)t

∣

∣

∣

∣

∣

x0 = x

]

,

where π is a policy in which ut depends on only x0, . . . , xt.

Show that G(x) = Px2+d is a solution to the optimality equation satisfied by F (x),
for some P and d which you should find.

Find the optimal controls.

State a theorem that justifies F (x) = G(x).

For each of the two cases (a) λ = 0 and (b) λ = 1, find controls {ut, wt} which
minimize

E

[ ∞
∑

t=0

(

x2
t + 2λxtyt + y2

t + u2
t + w2

t

)

(2/3 + λ/12)t

∣

∣

∣

∣

∣

x0 = x , y0 = y

]

.

29J Stochastic Financial Models

What is a Brownian motion? State the assumptions of the Black–Scholes model of

an asset price, and derive the time-0 price of a European call option struck at K, and

expiring at T .

Find the time-0 price of a European call option expiring at T , but struck at St,

where t ∈ (0, T ), and St is the price of the underlying asset at time t.
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30B Partial Differential Equations

(a) Consider the nonlinear elliptic problem

{

∆u = f(u, x), x ∈ Ω ⊆ R
d,

u = uD, x ∈ ∂Ω.

Let ∂f
∂u(y, x) > 0 for all y ∈ R, x ∈ Ω. Prove that there exists at most one classical

solution.

[Hint: Use the weak maximum principle.]

(b) Let ϕ ∈ C∞
0 (Rn) be a radial function. Prove that the Fourier transform of ϕ is

radial too.

(c) Let ϕ ∈ C∞
0 (Rn) be a radial function. Solve

−∆u+ u = ϕ(x), x ∈ R
n

by Fourier transformation and prove that u is a radial function.

(d) State the Lax–Milgram lemma and explain its use in proving the existence and
uniqueness of a weak solution of

−∆u+ a(x)u = f(x), x ∈ Ω,

u = 0 on ∂Ω,

where Ω ⊆ R
d bounded, 0 6 a 6 a(x) 6 a <∞ for all x ∈ Ω and f ∈ L2(Ω).
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31A Asymptotic Methods

Consider the contour-integral representation

J0(x) = Re
1

iπ

∫

C
eix cosh t dt

of the Bessel function J0 for real x, where C is any contour from −∞− iπ
2 to +∞ + iπ

2 .

Writing t = u + iv, give in terms of the real quantities u, v the equation of the
steepest-descent contour from −∞− iπ

2 to +∞ + iπ
2 which passes through t = 0.

Deduce the leading term in the asymptotic expansion of J0(x), valid as x→ ∞

J0(x) ∼
√

2

πx
cos

(

x− π

4

)

.

32B Integrable Systems

Consider the partial differential equation

∂u

∂t
= un∂u

∂x
+
∂2k+1u

∂x2k+1
, (∗)

where u = u(x, t) and k, n are non-negative integers.

(i) Find a Lie point symmetry of (∗) of the form

(x, t, u) −→ (αx, βt, γu), (∗∗)

where (α, β, γ) are non-zero constants, and find a vector field generating this
symmetry. Find two more vector fields generating Lie point symmetries of (∗)
which are not of the form (∗∗) and verify that the three vector fields you have found
form a Lie algebra.

(ii) Put (∗) in a Hamiltonian form.
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33C Principles of Quantum Mechanics

(i) Consider two quantum systems with angular momentum states | j m 〉 and | 1 q 〉.
The eigenstates corresponding to their combined angular momentum can be written as

|J M 〉 =
∑

q m

CJ M
q m | 1 q 〉| j m 〉 ,

where CJ M
q m are Clebsch–Gordan coefficients for addition of angular momenta one and j.

What are the possible values of J and how must q, m and M be related for CJ M
q m 6= 0 ?

Construct all states |J M 〉 in terms of product states in the case j = 1
2 .

(ii) A general stationary state for an electron in a hydrogen atom |n ℓm〉 is specified

by the principal quantum number n in addition to the labels ℓ and m corresponding to

the total orbital angular momentum and its component in the 3-direction (electron spin

is ignored). An oscillating electromagnetic field can induce a transition to a new state

|n′ ℓ′m′〉 and, in a suitable approximation, the amplitude for this to occur is proportional

to

〈n′ ℓ′m′| x̂i |n ℓm〉 ,
where x̂i (i = 1, 2, 3) are components of the electron’s position. Give clear but concise

arguments based on angular momentum which lead to conditions on ℓ,m, ℓ′,m′ and i for

the amplitude to be non-zero.

Explain briefly how parity can be used to obtain an additional selection rule.

[Standard angular momentum states | j m 〉 are joint eigenstates of J2 and J3, obeying

J±| j m 〉 =
√

(j∓m)(j±m+1) | j m±1 〉, J3| j m 〉 = m| j m 〉.

You may also assume that X±1 = 1√
2
(∓x̂1− ix̂2) and X0 = x̂3 have commutation relations

with orbital angular momentum L given by

[L3,Xq] = qXq , [L±,Xq] =
√

(1∓q)(2±q)Xq±1 .

Units in which ~ = 1 are to be used throughout. ]
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34D Applications of Quantum Mechanics

An electron of charge −e and mass m is subject to a magnetic field of the form

B = (0, 0, B(y)), where B(y) is everywhere greater than some positive constant B0. In a

stationary state of energy E, the electron’s wavefunction Ψ satisfies

− ~
2

2m

(

∇ +
ie

~
A

)2

Ψ +
e~

2m
B · σΨ = EΨ, (∗)

where A is the vector potential and σ1, σ2 and σ3 are the Pauli matrices.

Assume that the electron is in a spin down state and has no momentum along the

z-axis. Show that with a suitable choice of gauge, and after separating variables, equation

(∗) can be reduced to

−d
2χ

dy2
+ (k + a(y))2 χ− b(y)χ = ǫχ, (∗∗)

where χ depends only on y, ǫ is a rescaled energy, and b(y) a rescaled magnetic field

strength. What is the relationship between a(y) and b(y)?

Show that (∗∗) can be factorized in the form M†Mχ = ǫχ where

M =
d

dy
+W (y)

for some function W (y), and deduce that ǫ is non-negative.

Show that zero energy states exist for all k and are therefore infinitely degenerate.
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35D Statistical Physics

Consider an ideal Bose gas in an external potential such that the resulting density
of single particle states is given by

g(ε) = B ε7/2,

where B is a positive constant.

(i) Derive an expression for the critical temperature for Bose–Einstein condensation
of a gas of N of these atoms.

[Recall

1

Γ(n)

∫ ∞

0

xn−1 dx

z−1ex − 1
=

∞
∑

ℓ=1

zℓ

ℓn
.

]

(ii) What is the internal energy E of the gas in the condensed state as a function
of N and T ?

(iii) Now consider the high temperature, classical limit instead. How does the
internal energy E depend on N and T ?

36C Electrodynamics

A particle of charge of q moves along a trajectory ya(s) in spacetime where s is the

proper time on the particle’s world-line.

Explain briefly why, in the gauge ∂aA
a = 0, the potential at the spacetime point x

is given by

Aa(x) =
µ0q

2π

∫

ds
dya

ds
θ

(

x0 − y0(s)
)

δ
(

(xc − yc(s))(xd − yd(s))ηcd

)

.

Evaluate this integral for a point charge moving relativistically along the z-axis,

x = y = 0, at constant velocity v so that z = vt.

Check your result by starting from the potential of a point charge at rest

A = 0,

φ =
µ0q

4π(x2 + y2 + z2)1/2
,

and making an appropriate Lorentz transformation.
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37E Fluid Dynamics II

An axisymmetric incompressible Stokes flow has the Stokes stream function Ψ(R, θ)
in spherical polar coordinates (R, θ, φ). Give expressions for the components uR and uθ

of the flow field in terms of Ψ, and show that

∇× u =

(

0, 0,− D2Ψ

R sin θ

)

,

where

D2Ψ =
∂2Ψ

∂R2
+

sin θ

R2

∂

∂θ

(

1

sin θ

∂Ψ

∂θ

)

.

Write down the equation satisfied by Ψ.

Verify that the Stokes stream function

Ψ(R, θ) =
1

2
U sin2 θ

(

R2 − 3

2
aR+

1

2

a3

R

)

represents the Stokes flow past a stationary sphere of radius a, when the fluid at large
distance from the sphere moves at speed U along the axis of symmetry.

A sphere of radius a moves vertically upwards in the z direction at speed U through
fluid of density ρ and dynamic viscosity µ, towards a free surface at z = 0. Its distance
d from the surface is much greater than a. Assuming that the surface remains flat, show
that the conditions of zero vertical velocity and zero tangential stress at z = 0 can be
approximately met for large d/a by combining the Stokes flow for the sphere with that of
an image sphere of the same radius located symmetrically above the free surface. Hence
determine the leading-order behaviour of the horizontal flow on the free surface as a
function of r, the horizontal distance from the sphere’s centre line.

What is the size of the next correction to your answer as a power of a/d? [Detailed
calculation is not required.]

[Hint: For an axisymmetric vector field u,

∇× u =

(

1

R sin θ

∂

∂θ
(uφ sin θ), − 1

R

∂

∂R
(Ruφ),

1

R

∂

∂R
(Ruθ) −

1

R

∂uR

∂θ

)

.

]
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38A Waves

Starting from the equations of motion for an inviscid, incompressible, stratified fluid

of density ρ0(z), where z is the vertical coordinate, derive the dispersion relation

ω2 =
N2

(

k2 + ℓ2
)

(k2 + ℓ2 +m2)

for small amplitude internal waves of wavenumber (k, ℓ,m), where N is the constant

Brunt–Väisälä frequency (which should be defined), explaining any approximations you

make. Describe the wave pattern that would be generated by a small body oscillating

about the origin with small amplitude and frequency ω, the fluid being otherwise at rest.

The body continues to oscillate when the fluid has a slowly-varying velocity

[U(z), 0, 0], where U ′(z) > 0. Show that a ray which has wavenumber (k0, 0,m0) with

m0 < 0 at z = 0 will propagate upwards, but cannot go higher than z = zc, where

U(zc) − U(0) = N
(

k2
0 +m2

0

)−1/2
.

Explain what happens to the disturbance as z approaches zc.
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39B Numerical Analysis

Prove that all Toeplitz tridiagonal M ×M matrices A of the form

A =















a b
−b a b

. . .
. . .

. . .

−b a b
−b a















share the same eigenvectors (v(k))Mk=1, with the components v
(k)
m = im sin kmπ

M+1 , m =

1, . . . ,M , where i =
√
−1, and find their eigenvalues.

The advection equation

∂u

∂t
=
∂u

∂x
, 0 6 x 6 1, 0 6 t 6 T,

is approximated by the Crank–Nicolson scheme

un+1
m − un

m =
1

4
µ

(

un+1
m+1 − un+1

m−1

)

+
1

4
µ

(

un
m+1 − un

m−1

)

,

where µ = ∆t
(∆x)2

, ∆x = 1
M+1 , and un

m is an approximation to u(m∆x, n∆t). Assuming

that u(0, t) = u(1, t) = 0, show that the above scheme can be written in the form

Bu
n+1 = Cu

n, 0 6 n 6 T/∆t− 1,

where u
n = [un

1 , . . . , u
n
M ]T and the real matrices B and C should be found. Using matrix

analysis, find the range of µ for which the scheme is stable. [Fourier analysis is not
acceptable.]

END OF PAPER
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