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SECTION I

1G Number Theory

State the Chinese Remainder Theorem.

Determine all integers x satisfying the congruences x ≡ 2 mod 3, x ≡ 2 mod 5,

x ≡ 6 mod 7.

2F Topics in Analysis

(i) Let n > 1 and let x1, . . . , xn be distinct points in [−1, 1]. Show that there exist
numbers A1, . . . , An such that

∫ 1

−1
P (x) dx =

n
∑

j=1

AjP (xj) (∗)

for every polynomial P of degree 6 n− 1.

(ii) Explain, without proof, how one can choose the points x1, . . . , xn and the
numbers A1, . . . , An such that (∗) holds for all polynomials P of degree 6 2n− 1.

3F Geometry of Group Actions

Explain what is meant by stereographic projection from the 2-dimensional sphere to

the complex plane.

Prove that u and v are the images under stereographic projection of antipodal points

on the sphere if and only if uv̄ = −1.

Part II, Paper 1
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4H Coding and Cryptography

I am putting up my Christmas lights. If I plug in a set of bulbs and one is defective,
none will light up. A badly written note left over from the previous year tells me that
exactly one of my 10 bulbs is defective and that the probability that the kth bulb is
defective is k/55.

(i) Find an explicit procedure for identifying the defective bulb in the least expected
number of steps.

[You should explain your method but no proof is required.]

(ii) Is there a different procedure from the one you gave in (i) with the same expected
number of steps? Either write down another procedure and explain briefly why it gives
the same expected number or explain briefly why no such procedure exists.

(iii) Because I make such a fuss about each test, my wife wishes me to tell her
the maximum number N of trials that might be required. Will the procedure in (i) give
the minimum N? Either write down another procedure and explain briefly why it gives a
smallerN or explain briefly why no such procedure exists.

5I Statistical Modelling

Consider a binomial generalised linear model for data y1, . . . , yn, modelled as

realisations of independent Yi ∼ Bin(1, µi) and logit link, i.e. log µi

1−µi
= βxi, for some

known constants x1, . . . , xn, and an unknown parameter β. Find the log-likelihood for β,

and the likelihood equations that must be solved to find the maximum likelihood estimator

β̂ of β.

Compute the first and second derivatives of the log-likelihood for β, and explain the

algorithm you would use to find β̂.

6A Mathematical Biology

A discrete model for a population Nt consists of

Nt+1 =
rNt

(1 + bNt)
2 ,

where t is discrete time and r, b > 0. What do r and b represent in this model? Show that
for r > 1 there is a stable fixed point.

Suppose the initial condition is N1 = 1/b, and that r > 4. Show, with the help of a
cobweb, that the population Nt is bounded by

4r2

(4 + r)2 b
6 Nt 6

r

4b
,

and attains those bounds.
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7E Dynamical Systems

Let ẋ = f(x) be a two-dimensional dynamical system with a fixed point at x = 0.
Define a Lyapunov function V (x) and explain what it means for x = 0 to be Lyapunov
stable.

Determine the values of β for which V = x2 + βy2 is a Lyapunov function in a
sufficiently small neighbourhood of the origin for the system

ẋ = −x+ 2y + 2xy − x2 − 4y2,

ẏ = −y + xy.

What can be deduced about the basin of attraction of the origin using V when
β = 2?

8B Further Complex Methods

Find all second order linear ordinary homogenous differential equations which have
a regular singular point at z = 0, a regular singular point at z = ∞, and for which every
other point in the complex z-plane is an analytic point.

[You may use without proof Liouville’s theorem.]
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9E Classical Dynamics

Lagrange’s equations for a system with generalized coordinates qi(t) are given by

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
= 0,

where L is the Lagrangian. The Hamiltonian is given by

H =
∑

j

pj q̇j − L,

where the momentum conjugate to qj is

pj =
∂L

∂q̇j
.

Derive Hamilton’s equations in the form

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

Explain what is meant by the statement that qk is an ignorable coordinate and give an

associated constant of the motion in this case.

The Hamiltonian for a particle of mass m moving on the surface of a sphere of radius

a under a potential V (θ) is given by

H =
1

2ma2

(

p2
θ +

p2
φ

sin2 θ

)

+ V (θ),

where the generalized coordinates are the spherical polar angles (θ, φ). Write down two

constants of the motion and show that it is possible for the particle to move with constant

θ provided that

pφ
2 =

(

ma2 sin3 θ

cos θ

)

dV

dθ
.
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10D Cosmology

Prior to a time t ∼ 100, 000 years, the Universe was filled with a gas of photons

and non-relativistic free electrons and protons maintained in equilibrium by Thomson

scattering. At around t ∼ 400, 000 years, the protons and electrons began combining to

form neutral hydrogen,

p+ e− ↔ H + γ. (∗)

[You may assume that the equilibrium number density of a non-relativistic species

(kT ≪ mc2) is given by

n = gs

(

2πmkT

h2

)3/2

exp
(

(µ−mc2)/kT
)

while the photon number density is

nγ = 16πζ(3)

(

kT

hc

)3

, (ζ(3) ≈ 1.20 . . .).





Deduce Saha’s equation for the recombination process (∗) stating clearly your

assumptions and the steps made in the calculation,

n2
e

nH
=

(

2πmekT

h2

)3/2

exp(−I/kT ),

where I is the ionization energy of hydrogen.

Consider now the fractional ionization Xe = ne/nB where nB = np + nH = ηnγ is

the baryon number of the Universe and η is the baryon to photon ratio. Find an expression

for the ratio

(1 −Xe)/X
2
e

in terms only of kT and constants such as η and I.

Suggest a reason why neutral hydrogen forms at a temperature kT ≈ 0.3eV which

is much lower than the hydrogen ionization temperature kT = I ≈ 13eV.
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SECTION II

11F Geometry of Group Actions

Define frieze group and crystallographic group and give three examples of each,

identifying them as abstract groups as well as geometrically.

Let G be a discrete group of isometries of the Euclidean plane which contains a trans-

lation. Prove thatG contains no element of order 5.

12H Coding and Cryptography

(i) State and prove Gibbs’ inequality.

(ii) A casino offers me the following game: I choose strictly positive numbers
a1, . . . , an with

∑n
j=1 aj = 1. I give the casino my entire fortune f and roll an n-sided

die. With probability pj the casino returns u−1
j ajf for j = 1, 2, . . . , n. If I intend to play

the game many times (staking my entire fortune each time) explain carefully why I should
choose a1, . . . , an to maximise

∑n
j=1 pj log(u−1

j aj).

[You should assume n > 2 and uj , pj > 0 for each j.]

(iii) Determine the appropriate a1, . . . , an. Let
∑n

i=1 ui = U . Show that, if U < 1,
then, in the long run with high probability, my fortune increases. Show that, if U > 1, the
casino can choose u1, . . . , un in such a way that, in the long run with high probability, my
fortune decreases. Is it true that, if U > 1, any choice of u1, . . . , un will ensure that, in the
long run with high probability, my fortune decreases? Why?
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13I Statistical Modelling

A three-year study was conducted on the survival status of patients suffering from

cancer. The age of the patients at the start of the study was recorded, as well as whether

or not the initial tumour was malignant. The data are tabulated in R as follows:

> cancer

age malignant survive die

1 <50 no 77 10

2 <50 yes 51 13

3 50-69 no 51 11

4 50-69 yes 38 20

5 70+ no 7 3

6 70+ yes 6 3

Describe the model that is being fitted by the following R commands:

> total <- survive + die

> fit1 <- glm(survive/total ~ age + malignant, family = binomial,

+ weights = total)

Explain the (slightly abbreviated) output from the code below, describing how the

hypothesis tests are performed and your conclusions based on their results.

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0730 0.2812 7.372 1.68e-13 ***

age50-69 -0.6318 0.3112 -2.030 0.0424 *

age70+ -0.9282 0.5504 -1.686 0.0917 .

malignantyes -0.7328 0.2985 -2.455 0.0141 *

----

Null deviance: 12.65585 on 5 degrees of freedom

Residual deviance: 0.49409 on 2 degrees of freedom

AIC: 30.433

Based on the summary above, motivate and describe the following alternative model:

> age2 <- as.factor(c("<50", "<50", "50+", "50+", "50+", "50+"))

> fit2 <- glm(survive/total ~ age2 + malignant, family = binomial,

+ weights = total)

This question continues on the next page
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Based on the output of the code that follows, which of the two models do you prefer?

Why?

> summary(fit2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0721 0.2811 7.372 1.68e-13 ***

age250+ -0.6744 0.3000 -2.248 0.0246 *

malignantyes -0.7310 0.2983 -2.451 0.0143 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Null deviance: 12.656 on 5 degrees of freedom

Residual deviance: 0.784 on 3 degrees of freedom

AIC: 28.723

What is the final value obtained by the following commands?

> mu.hat <- inv.logit(predict(fit2))

> -2 * (sum(dbinom(survive, total, mu.hat, log = TRUE)

+ - sum(dbinom(survive, total, survive/total, log = TRUE)))

14B Further Complex Methods

Let F (z) be defined by

F (z) =

∫ ∞

0

e−2zt

1 + t3
dt, | arg z| < π

2
.

Let F̃ (z) be defined by

F̃ (z) =

∫ −i∞

0

e−2zζ

1 + ζ3
dζ, α < arg z < β,

where the above integral is along the negative imaginary axis of the complex ζ-plane and
the real constants α and β are to be determined.

Using Cauchy’s theorem, or otherwise, compute F (z)−F̃ (z) and hence find a formula
for the analytic continuation of F (z) for π

2 6 arg z < π.

Part II, Paper 1 [TURN OVER



10

15D Cosmology

(i) In a homogeneous and isotropic universe, the scalefactor a(t) obeys the Fried-

mann equation
(

ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ,

where ρ(t) is the matter density which, together with the pressure P (t), satisfies

ρ̇ = −3
ȧ

a

(

ρ+ P/c2
)

.

Use these two equations to derive the Raychaudhuri equation,

ä

a
= −4πG

3

(

ρ+ 3P/c2
)

.

(ii) Conformal time τ is defined by taking dt/dτ = a, so that ȧ = a′/a ≡ H where

primes denote derivatives with respect to τ . For matter obeying the equation of state

P = wρc2, show that the Friedmann and energy conservation equations imply

H2 + kc2 =
8πG

3
ρ0a

−(1+3w),

where ρ0 = ρ(t0) and we take a(t0) = 1 today. Use the Raychaudhuri equation to derive

the expression

H′ + 1
2(1 + 3w)[H2 + kc2] = 0.

For a kc2 = 1 closed universe, by solving first for H (or otherwise), show that the scale

factor satisfies

a = α(sin βτ)2/(1+3w)

where α, β are constants. [Hint: You may assume that
∫

dx/(1+x2) = − cot−1 x+const.]

For a closed universe dominated by pressure-free matter (P = 0), find the complete

parametric solution

a = 1
2α(1 − cos 2βτ), t =

α

4β
(2βτ − sin 2βτ).

Part II, Paper 1
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16G Logic and Set Theory

Prove that if G : On × V → V is a definable function, then there is a definable
function F : On → V satisfying

F (α) = G(α, {F (β) : β < α}).

Define the notion of an initial ordinal, and explain its significance for cardinal
arithmetic. State Hartogs’ lemma. Using the recursion theorem define, giving justification,
a function ω : On → On which enumerates the infinite initial ordinals.

Is there an ordinal α with α = ωα? Justify your answer.

17F Graph Theory

(i) State and prove Hall’s theorem concerning matchings in bipartite graphs.

(ii) The matching number of a graph G is the maximum size of a family of

independent edges (edges without shared vertices) in G. Deduce from Hall’s theorem

that if G is a k-regular bipartite graph on n vertices (some k > 0) then G has matching

number n/2.

(iii) Now suppose that G is an arbitrary k-regular graph on n vertices (some k > 0).

Show that G has a matching number at least k
4k−2n. [Hint: Let S be the set of vertices

in a maximal set of independent edges. Consider the edges of G with exactly one endpoint

in S.]

For k = 2, show that there are infinitely many graphs G for which equality holds.

18H Galois Theory

Define a K-isomorphism, ϕ : L → L′, where L, L′ are fields containing a field K,

and define AutK(L).

Suppose α and β are algebraic over K. Show that K(α) and K(β) are K-isomorphic

via an isomorphism mapping α to β if and only if α and β have the same minimal

polynomial.

Show that AutKK(α) is finite, and a subgroup of the symmetric group Sd, where d

is the degree of α.

Give an example of a field K of characteristic p > 0 and α and β of the same

degree, such that K(α) is not isomorphic to K(β). Does such an example exist if K is

finite? Justify your answer.
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19F Representation Theory

Let G be a finite group, and suppose G acts on the finite sets X1,X2. Define the
permutation representation ρX1

corresponding to the action of G on X1, and compute its
character πX1

. State and prove “Burnside’s Lemma”.

Let G act on X1 ×X2 via the usual diagonal action. Prove that the character inner
product 〈πX1

, πX2
〉 is equal to the number of G-orbits on X1 ×X2.

Hence, or otherwise, show that the general linear group GL2(q) of invertible 2 × 2
matrices over the finite field of q elements has an irreducible complex representation of
dimension equal to q.

Let Sn be the symmetric group acting on the set X = {1, 2, . . . , n}. Denote by
Z the set of all 2-element subsets {i, j} (i 6= j) of elements of X, with the natural ac-
tion of Sn. If n > 4, decompose πZ into irreducible complex representations, and de-
termine the dimension of each irreducible constituent. What can you say when n = 3?

20H Number Fields

Suppose that K is a number field with ring of integers OK .

(i) Suppose that M is a sub-Z-module of OK of finite index r and that M is
closed under multiplication. Define the discriminant of M and of OK , and show that
disc(M) = r2 disc(OK).

(ii) Describe OK when K = Q[X]/(X3 + 2X + 1).

[You may assume that the polynomial X3 + pX + q has discriminant −4p3 − 27q2.]

(iii) Suppose that f, g ∈ Z[X] are monic quadratic polynomials with equal discrimi-
nant d, and that d /∈ {0, 1} is square-free. Show that Z[X]/(f) is isomorphic to Z[X]/(g).

[Hint: Classify quadratic fields in terms of discriminants.]

21G Algebraic Topology

Let X be the space obtained by identifying two copies of the Möbius strip along their
boundary. Use the Seifert–Van Kampen theorem to find a presentation of the fundamental
group π1(X). Show that π1(X) is an infinite non-abelian group.

Part II, Paper 1
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22H Linear Analysis

(a) State and prove the Baire category theorem.

(b) Let X be a normed space. Show that every proper linear subspace V ⊂ X has
empty interior.

(c) Let P be the vector space of all real polynomials in one variable. Using the
Baire category theorem and the result from (b), prove that for any norm ‖ · ‖ on P, the
normed space (P, ‖ · ‖) is not a Banach space.

23G Riemann Surfaces

(a) Let X = C ∪ {∞} be the Riemann sphere. Define the notion of a rational

function r and describe the function f : X → X determined by r. Assuming that f is
holomorphic and non-constant, define the degree of r as a rational function and the degree

of f as a holomorphic map, and prove that the two degrees coincide. [You are not required
to prove that the degree of f is well-defined.]

Let A = {a1, a2, a3} and B = {b1, b2, b3} be two subsets of X each containing three
distinct elements. Prove that X \ A is biholomorphic to X \B.

(b) Let Z ⊂ C2 be the algebraic curve defined by the vanishing of the polynomial
p(z,w) = w2 − z3 + z2 + z. Prove that Z is smooth at every point. State the implicit
function theorem and define a complex structure on Z, so that the maps g, h : Z → C

given by g(z,w) = w, h(z,w) = z are holomorphic.

Define what is meant by a ramification point of a holomorphic map between Riemann
surfaces. Give an example of a ramification point of g and calculate the branching order
of g at that point.

24G Algebraic Geometry

Define what is meant by a rational map from a projective variety V ⊂ Pn to Pm.
What is a regular point of a rational map?

Consider the rational map φ : P2 −→ P2 given by

(X0 : X1 : X2) 7→ (X1X2 : X0X2 : X0X1).

Show that φ is not regular at the points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and that it is
regular elsewhere, and that it is a birational map from P2 to itself.

Let V ⊂ P2 be the plane curve given by the vanishing of the polynomial
X2

0X
3
1 +X2

1X
3
2 +X2

2X
3
0 over a field of characteristic zero. Show that V is irreducible, and

that φ determines a birational equivalence between V and a nonsingular plane quartic.
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25H Differential Geometry

(i) Define manifold and manifold with boundary for subsets X ⊂ R
N .

(ii) Let X and Y be manifolds and f : X → Y a smooth map. Define what it means
for y ∈ Y to be a regular value of f .

(iii) Let n > 0 and let S
n denote the set {(x1, . . . , xn+1) ∈ R

n+1 :
∑n+1

i=1 (xi)2 = 1}.
Let Bn+1 denote the set {(x1, . . . , xn+1) ∈ R

n+1 :
∑n+1

i=1 (xi)2 6 1}. Show that S
n is an

n-dimensional manifold and Bn+1 is an (n+1)-dimensional manifold with boundary, with
∂Bn+1 = S

n.

[You may use standard theorems involving regular values of smooth functions provided
that you state them clearly.]

(iv) For n > 0, consider the map h : S
n → S

n taking x to −x. Show that h is
smooth. Now let f be a smooth map f : S

n → S
n such that f ◦ h = f . Show that f is not

smoothly homotopic to the identity map.

26J Probability and Measure

Let (E, E , µ) be a measure space. Explain what is meant by a simple function on
(E, E , µ) and state the definition of the integral of a simple function with respect to µ.

Explain what is meant by an integrable function on (E, E , µ) and explain how the
integral of such a function is defined.

State the monotone convergence theorem.

Show that the following map is linear

f 7→ µ(f) : L1(E, E , µ) → R,

where µ(f) denotes the integral of f with respect to µ.

[You may assume without proof any fact concerning simple functions and their integrals.
You are not expected to prove the monotone convergence theorem.]
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27J Applied Probability

(a) Let (Xt, t > 0) be a continuous-time Markov chain on a countable state space
I. Explain what is meant by a stopping time for the chain (Xt, t > 0). State the strong

Markov property. What does it mean to say that X is irreducible?

(b) Let (Xt, t > 0) be a Markov chain on I = {0, 1, . . .} with Q-matrix given by
Q = (qi,j)i,j∈I such that:

(1) qi,0 > 0 for all i > 1, but q0,j = 0 for all j ∈ I, and

(2) qi,i+1 > 0 for all i > 1, but qi,j = 0 if j > i+ 1.

Is (Xt, t > 0) irreducible? Fix M > 1, and assume that X0 = i, where 1 6 i 6 M .
Show that if J1 = inf{t > 0 : Xt 6= X0} is the first jump time, then there exists δ > 0 such
that Pi(XJ1

= 0) > δ, uniformly over 1 6 i 6 M . Let T0 = 0 and define recursively for
m > 0,

Tm+1 = inf{t > Tm : Xt 6= XTm and 1 6 Xt 6 M}.
Let Am be the event Am = {Tm <∞}. Show that Pi(Am) 6 (1 − δ)m, for 1 6 i 6 M .

(c) Let (Xt, t > 0) be the Markov chain from (b). Define two events E and F by

E = {Xt = 0 for all t large enough}, F = { lim
t→∞

Xt = +∞}.

Show that Pi(E ∪ F ) = 1 for all i ∈ I.

28I Principles of Statistics

(i) Let X1, . . . ,Xn be independent and identically distributed random variables,
having the exponential distribution E(λ) with density p(x|λ) = λ exp(−λx) for x, λ > 0.
Show that Tn =

∑n
i=1Xi is minimal sufficient and complete for λ.

[You may assume uniqueness of Laplace transforms.]

(ii) For given x > 0, it is desired to estimate the quantity φ = Prob(X1 > x|λ).
Compute the Fisher information for φ.

(iii) State the Lehmann–Scheffé theorem. Show that the estimator φ̃n of φ defined
by

φ̃n =

{

0, if Tn < x,
(

1 − x
Tn

)n−1
, if Tn > x

is the minimum variance unbiased estimator of φ based on (X1, . . . ,Xn). Without doing
any computations, state whether or not the variance of φ̃n achieves the Cramér–Rao lower
bound, justifying your answer briefly.

Let k 6 n. Show that E(φ̃k | Tn, λ) = φ̃n.
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29J Stochastic Financial Models

An investor must decide how to invest his initial wealth w0 in n assets for the coming

year. At the end of the year, one unit of asset i will be worth Xi, i = 1, . . . , n, where

X = (X1, . . . ,Xn)T has a multivariate normal distribution with mean µ and non-singular

covariance matrix V . At the beginning of the year, one unit of asset i costs pi. In addition,

he may invest in a riskless bank account; an initial investment of 1 in the bank account

will have grown to 1 + r > 1 at the end of the year.

(a) The investor chooses to hold θi units of asset i, with the remaining ϕ = w0−θ ·p in the

bank account. His objective is to minimise the variance of his wealth w1 = ϕ(1+r)+θ ·X
at the end of the year, subject to a required mean value m for w1. Derive the optimal

portfolio θ∗, and the minimised variance.

(b) Describe the set A ⊆ R
2 of achievable pairs (E[w1], var(w1)) of mean and variance of

the terminal wealth. Explain what is meant by the mean-variance efficient frontier as you

do so.

(c) Suppose that the investor requires expected mean wealth at time 1 to be m. He wishes

to minimise the expected shortfall E[(w1 − (1+ r)w0)
−] subject to this requirement. Show

that he will choose a portfolio corresponding to a point on the mean-variance efficient

frontier.
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30B Partial Differential Equations

Consider the initial value problem for the so-called Liouville equation

ft + v · ∇xf −∇V (x) · ∇vf = 0, (x, v) ∈ R
2d, t ∈ R,

f(x, v, t = 0) = fI(x, v),

for the function f = f(x, v, t) on R
2d ×R. Assume that V = V (x) is a given function with

V , ∇xV Lipschitz continuous on R
d.

(i) Let fI(x, v) = δ(x − x0, v − v0), for x0, v0 ∈ R
d given. Show that a solution f is

given by
f(x, v, t) = δ(x− x̂(t, x0, v0), v − v̂(t, x0, v0)),

where (x̂, v̂) solve the Newtonian system

˙̂x = v̂, x̂(t = 0) = x0,

˙̂v = −∇V (x̂), v̂(t = 0) = v0.

(ii) Let fI ∈ L1
loc(R

2d), fI > 0. Prove (by using characteristics) that f remains non-
negative (as long as it exists).

(iii) Let fI ∈ Lp(R2d), fI > 0 on R
2d. Show (by a formal argument) that

‖f(·, ·, t)‖Lp(R2d) = ‖fI‖Lp(R2d)

for all t ∈ R, 1 6 p <∞.

(iv) Let V (x) = 1
2 |x|2. Use the method of characteristics to solve the initial value

problem for general initial data.
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31A Asymptotic Methods

Consider the integral

I(λ) =

∫ A

0
e−λt f(t)dt , A > 0,

in the limit λ→ ∞, given that f(t) has the asymptotic expansion

f(t) ∼
∞
∑

n=0

ant
nβ

as t→ 0+ , where β > 0. State Watson’s lemma.

Now consider the integral

J(λ) =

∫ b

a
eλφ(t) F (t)dt ,

where λ ≫ 1 and the real function φ(t) has a unique maximum in the interval [a, b] at c,
with a < c < b, such that

φ′(c) = 0 , φ′′(c) < 0.

By making a monotonic change of variable from t to a suitable variable ζ (Laplace’s
method), or otherwise, deduce the existence of an asymptotic expansion for J(λ) as
λ→ ∞. Derive the leading term

J(λ) ∼ eλφ(c) F (c)

(

2π

λ|φ′′(c)|

)
1

2

.

The gamma function is defined for x > 0 by

Γ(x+ 1) =

∫ ∞

0
exp (x log t− t) dt .

By means of the substitution t = xs, or otherwise, deduce Stirling’s formula

Γ(x+ 1) ∼ x(x+ 1

2
) e−x

√
2π

(

1 +
1

12x
+ · · ·

)

as x→ ∞.
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32B Integrable Systems

Let H be a smooth function on a 2n–dimensional phase space with local coordinates
(pj , qj). Write down the Hamilton equations with the Hamiltonian given by H and state
the Arnold–Liouville theorem.

By establishing the existence of sufficiently many first integrals demonstrate that
the system of n coupled harmonic oscillators with the Hamiltonian

H =
1

2

n
∑

k=1

(p2
k + ω2

kq
2
k),

where ω1, . . . , ωn are constants, is completely integrable. Find the action variables for this
system.

33C Principles of Quantum Mechanics

The position and momentum for a harmonic oscillator can be written

x̂ =
(

~

2mω

)1/2
( a+ a† ), p̂ =

(

~mω

2

)1/2
i( a† − a ),

where m is the mass, ω is the frequency, and the Hamiltonian is

H =
1

2m
p̂2 +

1

2
mω2x̂2 = ~ω

(

a†a+
1

2

)

.

Starting from the commutation relations for a and a†, determine the energy levels of the

oscillator. Assuming a unique ground state, explain how all other energy eigenstates can

be constructed from it.

Consider a modified Hamiltonian

H ′ = H + λ~ω ( a2 + a† 2 ),

where λ is a dimensionless parameter. Calculate the modified energy levels to second

order in λ, quoting any standard formulas which you require. Show that the modified

Hamiltonian can be written as

H ′ =
1

2m
αp̂2 +

1

2
mω2βx̂2,

where α and β depend on λ. Hence find the modified energies exactly, assuming |λ| < 1
2 ,

and show that the results are compatible with those obtained from perturbation theory.
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34D Applications of Quantum Mechanics

Consider the scaled one-dimensional Schrödinger equation with a potential V (x)

such that there is a complete set of real, normalized bound states ψn(x), n = 0, 1, 2, . . .,

with discrete energies E0 < E1 < E2 < . . ., satisfying

−d
2ψn

dx2
+ V (x)ψn = Enψn.

Show that the quantity

〈E〉 =

∫ ∞

−∞

(

(

dψ

dx

)2

+ V (x)ψ2

)

dx,

where ψ(x) is a real, normalized trial function depending on one or more parameters α,

can be used to estimate E0, and show that 〈E〉 > E0.

Let the potential be V (x) = |x|. Using a suitable one-parameter family of either

Gaussian or piecewise polynomial trial functions, find a good estimate for E0 in this case.

How could you obtain a good estimate for E1? [ You should suggest suitable trial

functions, but DO NOT carry out any further integration.]

35C Electrodynamics

The action for a modified version of electrodynamics is given by

I =

∫

d4x

(

−1

4
FabF

ab − 1

2
m2AaA

a + µ0J
aAa

)

,

where m is an arbitrary constant, Fab = ∂aAb − ∂bAa and Ja is a conserved current.

(i) By varying Aa, derive the field equations analogous to Maxwell’s equations by

demanding that δI = 0 for an arbitrary variation δAa.

(ii) Show that ∂aA
a = 0.

(iii) Suppose that the current Ja(x) is a function of position only. Show that

Aa(x) =
µ0

4π

∫

d3x′
Ja(x′)

|x− x′|e
−m|x−x

′|.
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36D General Relativity

Write down the differential equations governing geodesic curves xa(λ) both when λ

is an affine parameter and when it is a general one.

A conformal transformation of a spacetime is given by

gab → g̃ab = Ω2(x)gab.

Obtain a formula for the new Christoffel symbols Γ̃a
bc in terms of the old ones and the

derivatives of Ω. Hence show that null geodesics in the metric gab are also geodesic in the

metric g̃ab.

Show that the Riemann tensor has only one independent component in two dimen-

sions, and hence derive

R = 2det(gab)R0101,

where R is the Ricci scalar.

It is given that in a 2-dimensional spacetime M , R transforms as

R→ R̃ = Ω−2(R− 2� log Ω),

where �φ = gab∇a∇b φ. Assuming that the equation �φ = ρ(x) can always be solved,

show that Ω can be chosen to set g̃ to be the metric of 2-dimensional Minkowski spacetime.

Hence show that all null curves in M are geodesic.

Discuss the null geodesics if the line element of M is

ds2 = −t−1dt2 + t dθ2,

where t ∈ (−∞, 0) or (0,∞) and θ ∈ [0, 2π].
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37E Fluid Dynamics II

Explain the assumptions of lubrication theory and its use in determining the flow
in thin films.

A cylindrical roller of radius a rotates at angular velocity Ω below the free surface
at y = 0 of a fluid of density ρ and dynamic viscosity µ. The gravitational acceleration is
g, and the pressure above the free surface is p0. The minimum distance of the roller below
the fluid surface is b, where b ≪ a. The depth of the roller d(x) below the free surface
may be approximated by d(x) ≈ b+ x2/2a, where x is the horizontal distance.

(i) State the conditions for lubrication theory to be applicable to this problem. On
the further assumption that the free surface may be taken to be flat, find the flow above the
roller and calculate the horizontal volume flux Q (per unit length in the third dimension)
and the horizontal pressure gradient.

(ii) Use the pressure gradient you have found to estimate the order of magnitude of
the departure h(x) of the free surface from y = 0, and give conditions on the parameters
that ensure that |h| ≪ b, as required for part (i).

[Hint: Integrals of the form

In =

∫ ∞

−∞
(1 + t2)−n dt

satisfy I1 = π and

In+1 =

(

2n − 1

2n

)

In

for n > 1. ]
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38A Waves

The wave equation with spherical symmetry may be written

1

r

∂2

∂r2
(rp̃) − 1

c2
∂2

∂t2
p̃ = 0 .

Find the solution for the pressure disturbance p̃ in an outgoing wave, driven by a time-

varying source with mass outflow rate q(t) at the origin, in an infinite fluid.

A semi-infinite fluid of density ρ and sound speed c occupies the half space x > 0.

The plane x = 0 is occupied by a rigid wall, apart from a small square element of side h

that is centred on the point (0, y′, z′) and oscillates in and out with displacement f0e
iωt.

By modelling this element as a point source, show that the pressure field in x > 0 is given

by

p̃(t, x, y, z) = −2ρω2f0h
2

4πR
eiω(t−R

c
),

where R = [x2 +(y−y′)2 +(z−z′)2]1/2, on the assumption that R≫ c/ω ≫ f0, h. Explain

the factor 2 in the above formula.

Now suppose that the plane x = 0 is occupied by a loudspeaker whose displacement

is given by

x = f(y, z)eiωt ,

where f(y, z) = 0 for |y|, |z| > L. Write down an integral expression for the pressure in

x > 0. In the far field where r = (x2 + y2 + z2)1/2 ≫ L, ωL2/c, c/ω, show that

p̃(t, x, y, z) ≈ −ρω
2

2πr
eiω(t−r/c)f̂(m,n),

where m = −ωy
rc

, n = −ωz
rc

and

f̂(m,n) =

∫ ∞

−∞

∫ ∞

−∞
f
(

y′, z′
)

e−i(my′+nz′)dy′dz′.

Evaluate this integral when f is given by

f(y, z) =

{

1, −a < y < a,−b < z < b,

0, otherwise,

and discuss the result in the case ωb/c is small but ωa/c is of order unity.
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39B Numerical Analysis

(i) Define the Jacobi method with relaxation for solving the linear system Ax = b.

(ii) For x
∗ and x

(ν) being the exact and the iterated solution, respectively, let
e

(ν) := x
(ν) − x

∗ be the error and Hω the iteration matrix, so that

e
(ν+1) = Hωe

(ν) .

Express Hω in terms of the matrix A, its diagonal part D and the relaxation parameter
ω, and find the eigenvectors vk and the eigenvalues λk(ω) of Hω for the n× n tridiagonal
matrix

A =















2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2















.

[Hint: The eigenvectors and eigenvalues of A are

(uk)i = sin kiπ
n+1

, i = 1, . . . , n, λk(A) = 4 sin2 kπ
2(n+1)

, k = 1, . . . , n . ]

(iii) For A as above, let

e
(ν) =

n
∑

k=1

a
(ν)
k vk

be the expansion of the error with respect to the eigenvectors (vk) of Hω.

Find the range of parameter ω which provides convergence of the method for any
n, and prove that, for any such ω, the rate of convergence e

(ν) → 0 is not faster than
(1 − c/n2)ν .

(iv) Show that, for some ω, the high frequency components (n+1
2 6 k 6 n) of

the error e
(ν) tend to zero much faster. Determine the optimal parameter ω∗ which

provides the largest suppression of the high frequency components per iteration, and find

the corresponding attenuation factor µ∗ (i.e. the least µω such that |a(ν+1)
k | 6 µω|a(ν)

k | for
n+1

2 6 k 6 n).

END OF PAPER
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