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SECTION I

1H Number Theory

Let p be an odd prime number. Assuming that the multiplicative group of Z/pZ is
cyclic, prove that the multiplicative group of units of Z/pnZ is cyclic for all n > 1.

Find an integer a such that its residue class in Z/11nZ generates the multiplicative
group of units for all n > 1.

2F Topics in Analysis

(a) State Runge’s theorem on uniform approximation of analytic functions by
polynomials.

(b) Suppose f is analytic on

Ω = {z ∈ C : |z| < 1} \ {z ∈ C : Im(z) = 0, Re(z) 6 0}.

Prove that there exists a sequence of polynomials which converges to f uniformly on
compact subsets of Ω.

3G Geometry of Group Actions

Define the hyperbolic metric (in the sense of metric spaces) on the 3-ball.

Given a finite set in hyperbolic 3-space, show there is at least one closed ball of
minimal radius containing that set.

4G Coding and Cryptography

What is a binary cyclic code of length N? What is the generator polynomial for
such a cyclic code? Prove that the generator polynomial is a factor of XN − 1 over the
field F2.

Find all the binary cyclic codes of length 5 .

Paper 4
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5J Statistical Modelling

A long-term agricultural experiment had n = 90 grassland plots, each 25m × 25m,
differing in biomass, soil pH, and species richness (the count of species in the whole plot).
While it was well-known that species richness declines with increasing biomass, it was not
known how this relationship depends on soil pH. In the experiment, there were 30 plots of
“low pH”, 30 of “medium pH” and 30 of “high pH”. Three lines of the data are reproduced
here as an aid.

> grass[c(1,31, 61), ]

pH Biomass Species

1 high 0.4692972 30

31 mid 0.1757627 29

61 low 0.1008479 18

Briefly explain the commands below. That is, explain the models being fitted.

> fit1 <- glm(Species ~ Biomass, family = poisson)

> fit2 <- glm(Species ~ pH + Biomass, family = poisson)

> fit3 <- glm(Species ~ pH * Biomass, family = poisson)

Let H1, H2 and H3 denote the hypotheses represented by the three models and fits.
Based on the output of the code below, what hypotheses are being tested, and which of
the models seems to give the best fit to the data? Why?

> anova(fit1, fit2, fit3, test = "Chisq")

Analysis of Deviance Table

Model 1: Species ~ Biomass

Model 2: Species ~ pH + Biomass

Model 3: Species ~ pH * Biomass

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 88 407.67

2 86 99.24 2 308.43 1.059e-67

3 84 83.20 2 16.04 3.288e-04

Finally, what is the value obtained by the following command?

> mu.hat <- exp(predict(fit2))

> -2 * (sum(dpois(Species, mu.hat, log = TRUE)) - sum(dpois(Species,

+ Species, log = TRUE)))

Paper 4 [TURN OVER
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6B Mathematical Biology

A semi-infinite elastic filament lies along the positive x-axis in a viscous fluid. When
it is perturbed slightly to the shape y = h(x, t), it evolves according to

ζ ht = −Ahxxxx ,

where ζ characterises the viscous drag and A the bending stiffness. Motion is forced by
boundary conditions

h = h0 cos(ωt) and hxx = 0 at x = 0, while h → 0 as x → ∞.

Use dimensional analysis to find the characteristic length `(ω) of the disturbance.
Show that the steady oscillating solution takes the form

h(x, t) = h0 Re
[
e iωtF (η)

]
with η = x/`,

finding the ordinary differential equation for F .

Find two solutions for F which decay as x→∞. Without solving explicitly for the
amplitudes, show that h(x, t) is the superposition of two travelling waves which decay with
increasing x, one with crests moving to the left and one to the right. Which dominates?

7A Dynamical Systems

Let F : I → I be a continuous one-dimensional map of an interval I ⊂ R. State
when F is chaotic according to Glendinning’s definition.

Prove that if F has a 3-cycle then F 2 has a horseshoe.

[You may assume the Intermediate Value Theorem.]

8C Further Complex Methods

The Hilbert transform f̂ of a function f is defined by

f̂(t) =
1
π
P
∫ ∞
−∞

f(τ)
t− τ

dτ,

where P denotes the Cauchy principal value.

Show that the Hilbert transform of
sin t
t

is
1− cos t

t
.
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9B Classical Dynamics

(a) Show that the principal moments of inertia for an infinitesimally thin uniform
rectangular sheet of mass M with sides of length a and b (with b < a) about its centre of
mass are I1 = Mb2/12, I2 = Ma2/12 and I3 = M(a2 + b2)/12.

(b) Euler’s equations governing the angular velocity (ω1, ω2, ω3) of the sheet as
viewed in the body frame are

I1
dω1

dt
= (I2 − I3)ω2ω3,

I2
dω2

dt
= (I3 − I1)ω3ω1,

and
I3
dω3

dt
= (I1 − I2)ω1ω2.

A possible solution of these equations is such that the sheet rotates with ω1 = ω3 = 0,
and ω2 = Ω = constant.

By linearizing, find the equations governing small motions in the neighbourhood
of this solution that have (ω1, ω3) 6= 0. Use these to show that there are solutions
corresponding to instability such that ω1 and ω3 are both proportional to exp(βΩt), with
β =

√
(a2 − b2)/(a2 + b2).

10E Cosmology

The Friedmann and Raychaudhuri equations are respectively(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
and

ä

a
= −4πG

3

(
ρ+

3P
c2

)
,

where ρ is the mass density, P is the pressure, k is the curvature and ȧ ≡ da/dt with t
the cosmic time. Using conformal time τ (defined by dτ = dt/a) and the equation of state
P = wρc2, show that these can be rewritten as

kc2

H2
= Ω− 1 and 2

dH
dτ

= −(3w + 1)
(
H2 + kc2

)
,

where H = a−1da/dτ and the relative density is Ω ≡ ρ/ρcrit = 8πGρa2/(3H2).

Use these relations to derive the following evolution equation for Ω

dΩ
dτ

= (3w + 1)HΩ(Ω− 1).

For both w = 0 and w = −1, plot the qualitative evolution of Ω as a function of τ in an
expanding universe H > 0 (i.e. include curves initially with Ω > 1 and Ω < 1).

Hence, or otherwise, briefly describe the flatness problem of the standard cosmology
and how it can be solved by inflation.
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SECTION II

11H Number Theory

Let N > 1 be an integer, which is not a square, and let pk/qk (k = 1, 2, . . .) be the
convergents to

√
N . Prove that

|p2
k − q2kN | < 2

√
N (k = 1, 2, . . .).

Explain briefly how this result can be used to generate a factor base B, and a set of
B-numbers which may lead to a factorization of N .

12G Geometry of Group Actions

What does it mean for a subgroup G of the Möbius group to be discrete?

Show that a discrete group necessarily acts properly discontinuously in hyperbolic
3-space.

[You may assume that a discrete subgroup of a matrix group is a closed subset.]

Paper 4
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13J Statistical Modelling

Consider the following generalized linear model for responses y1, . . . , yn as a function
of explanatory variables x1, . . . , xn, where xi = (xi1, . . . , xip)> for i = 1, . . . , n. The
responses are modelled as observed values of independent random variables Y1, . . . , Yn,
with

Yi ∼ ED(µi, σ2
i ), g(µi) = x>i β, σ2

i = σ2ai,

Here, g is a given link function, β and σ2 are unknown parameters, and the ai are treated
as known.

[Hint: recall that we write Y ∼ ED(µ, σ2) to mean that Y has density function of
the form

f(y;µ, σ2) = a(σ2, y) exp
{

1
σ2

[θ(µ)y −K(θ(µ))]
}

for given functions a and θ.]

[ You may use without proof the facts that, for such a random variable Y ,

E(Y ) = K ′(θ(µ)), var(Y ) = σ2K ′′(θ(µ)) ≡ σ2V (µ).]

Show that the score vector and Fisher information matrix have entries:

Uj(β) =
n∑
i=1

(yi − µi)xij
σ2
i V (µi)g′(µi)

, j = 1, . . . , p,

and

ijk(β) =
n∑
i=1

xijxik
σ2
i V (µi)(g′(µi))2

, j, k = 1, . . . , p.

How do these expressions simplify when the canonical link is used?

Explain briefly how these two expressions can be used to obtain the maximum
likelihood estimate β̂ for β.
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14A Dynamical Systems

Explain the difference between a hyperbolic and a nonhyperbolic fixed point x0 for
a dynamical system ẋ = f(x) in Rn.

Consider the system in R2, where µ is a real parameter,

ẋ = x(µ− x+ y2),

ẏ = y(1− x− y2).

Show that the fixed point (µ, 0) has a bifurcation when µ = 1, while the fixed points
(0,±1) have a bifurcation when µ = −1.

[The fixed point at (0,−1) should not be considered further.]

Analyse each of the bifurcations at (µ, 0) and (0, 1) in turn as follows. Make a
change of variable of the form X = x − x0(µ), ν = µ − µ0. Identify the (non-extended)
stable and centre linear subspaces at the bifurcation in terms of X and Y . By finding
the leading-order approximation to the extended centre manifold, construct the evolution
equation on the extended centre manifold, and determine the type of bifurcation. Sketch
the local bifurcation diagram, showing which fixed points are stable.

[Hint: the leading-order approximation to the extended centre manifold of the
bifurcation at (0, 1) is Y = aX for some coefficient a.]

Show that there is another fixed point in y > 0 for µ < 1, and that this fixed point
connects the two bifurcations.
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15B Classical Dynamics

(a) A Hamiltonian system with n degrees of freedom has Hamiltonian H = H(p,q),
where the coordinates q = (q1, q2, q3, . . . , qn) and the momenta p = (p1, p2, p3, . . . , pn)
respectively.

Show from Hamilton’s equations that when H does not depend on time explicitly,
for any function F = F (p,q),

dF

dt
= [F,H] ,

where [F,H] denotes the Poisson bracket.

For a system of N interacting vortices

H(p,q) = −κ
4

N∑
i=1

N∑
j=1
j 6=i

ln
[
(pi − pj)2 + (qi − qj)2

]
,

where κ is a constant. Show that the quantity defined by

F =
N∑
j=1

(q2j + p2
j )

is a constant of the motion.

(b) The action for a Hamiltonian system with one degree of freedom with
H = H(p, q) for which the motion is periodic is

I =
1

2π

∮
p(H, q)dq.

Show without assuming any specific form for H that the period of the motion T is given
by

2π
T

=
dH

dI
.

Suppose now that the system has a parameter that is allowed to vary slowly with
time. Explain briefly what is meant by the statement that the action is an adiabatic
invariant. Suppose that when this parameter is fixed, H = 0 when I = 0. Deduce that, if
T decreases on an orbit with any I when the parameter is slowly varied, then H increases.
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16G Logic and Set Theory

Prove Hartog’s Lemma that for any set x there is an ordinal α which cannot be
mapped injectively into x.

Now assume the Axiom of Choice. Prove Zorn’s Lemma and the Well-ordering
Principle.

[If you appeal to a fixed point theorem then you should state it clearly.]

17F Graph Theory

For s > 2, let R(s) be the least integer n such that for every 2-colouring of the
edges of Kn there is a monochromatic Ks. Prove that R(s) exists.

For any k > 1 and s1, . . . , sk > 2, define the Ramsey number Rk(s1, . . . , sk), and
prove that it exists.

Show that, whenever the positive integers are partitioned into finitely many classes,
some class contains x, y, z with x+ y = z.

[Hint: given a finite colouring of the positive integers, induce a colouring of the
pairs of positive integers by giving the pair ij (i < j) the colour of j − i.]

18H Galois Theory

Let L = C(z) be the function field in one variable, n > 0 an integer, and ζn = e2πi/n.

Define σ, τ : L→ L by the formulae

(σf)(z) = f(ζnz), (τf)(z) = f(1/z),

and let G = 〈σ, τ〉 be the group generated by σ and τ .

(i) Find w ∈ C(z) such that LG = C(w).

[You must justify your answer, stating clearly any theorems you use.]

(ii) Suppose n is an odd prime. Determine the subgroups of G and the correspond-
ing intermediate subfields M , with C(w) ⊆M ⊆ L.

State which intermediate subfields M are Galois extensions of C(w), and for these
extensions determine the Galois group.
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19G Representation Theory

(a) Let A be a normal subgroup of a finite group G, and let V be an irreducible
representation of G. Show that either V restricted to A is isotypic (a sum of copies of one
irreducible representation of A), or else V is induced from an irreducible representation of
some proper subgroup of G.

(b) Using (a), show that every (complex) irreducible representation of a p-group is
induced from a 1-dimensional representation of some subgroup.

[You may assume that a nonabelian p-group G has an abelian normal subgroup A
which is not contained in the centre of G.]

20G Number Fields

(a) Explain what is meant by an integral basis of an algebraic number field. Specify
such a basis for the quadratic field k = Q(

√
2).

(b) Let K = Q(α) with α = 4
√

2, a fourth root of 2. Write an element θ of K as

θ = a+ bα+ cα2 + dα3

with a, b, c, d ∈ Q. By computing the relative traces TK/k(θ) and TK/k(αθ), show that if
θ is an algebraic integer of K, then 2a, 2b, 2c and 4d are rational integers. By further
computing the relative norm NK/k(θ), show that

a2 + 2c2 − 4bd and 2ac− b2 − 2d2

are rational integers. Deduce that 1, α, α2, α3 is an integral basis of K.

21F Algebraic Topology

Let X and Y be topological spaces.

(i) Show that a map f :X → Y is a homotopy equivalence if there exist maps
g, h:Y → X such that fg ' 1Y and hf ' 1X . More generally, show that a map f :X → Y
is a homotopy equivalence if there exist maps g, h:Y → X such that fg and hf are
homotopy equivalences.

(ii) Suppose that X̃ and Ỹ are universal covering spaces of the path-connected,
locally path-connected spaces X and Y . Using path-lifting properties, show that if X ' Y
then X̃ ' Ỹ .
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22F Linear Analysis

Let H be a Hilbert space. Show that if V is a closed subspace of H then any f ∈ H
can be written as f = v + w with v ∈ V and w ⊥ V .

Suppose U : H → H is unitary (that is to say UU∗ = U∗U = I). Let

Anf =
1
n

n−1∑
k=0

Ukf

and consider
X = {g − Ug : g ∈ H}.

(i) Show that U is an isometry and ‖An‖ 6 1.

(ii) Show that X is a subspace of H and Anf → 0 as n→∞ whenever f ∈ X.

(iii) Let V be the closure of X. Show that Anv → 0 as n→∞ whenever v ∈ V .

(iv) Show that, if w ⊥ X, then Uw = w. Deduce that, if w ⊥ V , then Uw = w.

(v) If f ∈ H show that there is a w ∈ H such that Anf → w as n→∞.

23H Riemann Surfaces

Let Λ be a lattice in C generated by 1 and τ , where Im τ > 0. The Weierstrass
function ℘ is the unique meromorphic Λ-periodic function on C, such that the only poles
of ℘ are at points of Λ and ℘(z)− 1/z2 → 0 as z → 0.

Show that ℘ is an even function. Find all the zeroes of ℘′.

Suppose that a is a complex number such that 2a 6∈ Λ. Show that the function

h(z) = (℘(z − a)− ℘(z + a))(℘(z)− ℘(a))2 − ℘′(z)℘′(a)

has no poles in C \ Λ. By considering the Laurent expansion of h at z = 0, or otherwise,
deduce that h is constant.

[General properties of meromorphic doubly-periodic functions may be used without
proof if accurately stated.]
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24H Differential Geometry

Let S ⊂ R3 be a surface.

(a) In the case where S is compact, define the Euler characteristic χ and genus g
of S.

(b) Define the notion of geodesic curvature kg for regular curves γ : I → S. When
is kg = 0? State the Global Gauss–Bonnet Theorem (including boundary term).

(c) Let S = S2 (the standard 2-sphere), and suppose γ ⊂ S2 is a simple closed
regular curve such that S2\γ is the union of two distinct connected components with equal
areas. Can γ have everywhere strictly positive or everywhere strictly negative geodesic
curvature?

(d) Prove or disprove the following statement: if S is connected with Gaussian
curvature K = 1 identically, then S is a subset of a sphere of radius 1.

25J Probability and Measure

(i) A stepfunction is any function s on R which can be written in the form

s(x) =
n∑
k=1

ckI(ak,bk](x), x ∈ R,

where ak, bk, ck are real numbers, with ak < bk for all k. Show that the set of all
stepfunctions is dense in L1(R,B, µ). Here, B denotes the Borel σ-algebra, and µ denotes
Lebesgue measure.

[You may use without proof the fact that, for any Borel set B of finite measure,
and any ε > 0, there exists a finite union of intervals A such that µ(A4B) < ε.]

(ii) Show that the Fourier transform

ŝ(t) =
∫

R
s(x)eitx dx

of a stepfunction has the property that ŝ(t)→ 0 as |t| → ∞.

(iii) Deduce that the Fourier transform of any integrable function has the same
property.
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26I Applied Probability

On a hot summer night, opening my window brings some relief. This attracts
hordes of mosquitoes who manage to negotiate a dense window net. But, luckily, I have a
mosquito trapping device in my room.

Assume the mosquitoes arrive in a Poisson process at rate λ; afterwards they wander
around for independent and identically distributed random times with a finite mean ES,
where S denotes the random wandering time of a mosquito, and finally are trapped by
the device.

(a) Identify a mathematical model, which was introduced in the course, for the number
of mosquitoes present in the room at times t > 0.

(b) Calculate the distribution of Q(t) in terms of λ and the tail probabilities P(S > x)
of the wandering time S, where Q(t) is the number of mosquitoes in the room at
time t > 0 (assuming that at the initial time, Q(0) = 0).

(c) Write down the distribution for QE, the number of mosquitoes in the room in
equilibrium, in terms of λ and ES.

(d) Instead of waiting for the number of mosquitoes to reach equilibrium, I close the
window at time t > 0. For v > 0 let X (t+ v) be the number of mosquitoes left at
time t+ v, i.e. v time units after closing the window. Calculate the distribution of
X (t+ v).

(e) Let V (t) be the time needed to trap all mosquitoes in the room after closing the
window at time t > 0. By considering the event {X (t+ v) > 1}, or otherwise,
compute P [V (t) > v].

(f) Now suppose that the time t at which I shut the window is very large, so that I
can assume that the number of mosquitoes in the room has the distribution of QE .
Let V E be the further time needed to trap all mosquitoes in the room. Show that

P
[
V E > v

]
= 1− exp

(
−λE

[
(S − v)+

])
,

where x+ ≡ max (x, 0).
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27I Principles of Statistics

Define sufficient statistic, and state the factorisation criterion for determining
whether a statistic is sufficient. Show that a Bayesian posterior distribution depends
on the data only through the value of a sufficient statistic.

Given the value µ of an unknown parameter M, observables X1, . . . , Xn are
independent and identically distributed with distribution N (µ, 1). Show that the statistic
X := n−1

∑n
i=1Xi is sufficient for M .

If the prior distribution is M ∼ N (0, τ2), determine the posterior distribution of M
and the predictive distribution of X.

In fact, there are two hypotheses as to the value of M. Under hypothesis H0,
M takes the known value 0; under H1, M is unknown, with prior distribution N (0, τ2).
Explain why the Bayes factor for choosing between H0 and H1 depends only on X, and
determine its value for data X1 = x1, . . . , Xn = xn .

The frequentist 5%-level test of H0 against H1 rejects H0 when |X| > 1.96/
√
n.

What is the Bayes factor for the critical case |x| = 1.96/
√
n? How does this behave as

n→∞? Comment on the similarities or differences in behaviour between the frequentist
and Bayesian tests.

Paper 4 [TURN OVER



16

28J Stochastic Financial Models

(a) Consider a family (Xn : n > 0) of independent, identically distributed, positive
random variables and fix z0 > 0. Define inductively

zn+1 = znXn, n > 0.

Compute, for n ∈ {1, . . . , N}, the conditional expectation E(zN |zn).

(b) Fix R ∈ [0, 1). In the setting of part (a), compute also E(U(zN )|zn), where

U(x) = x1−R/(1−R), x > 0.

(c) Let U be as in part (b). An investor with wealth w0 > 0 at time 0 wishes to
invest it in such a way as to maximise E(U(wN )) where wN is the wealth at the start of
day N . Let α ∈ [0, 1] be fixed. On day n, he chooses the proportion θ ∈ [α, 1] of his wealth
to invest in a single risky asset, so that his wealth at the start of day n+ 1 will be

wn+1 = wn{θXn + (1− θ)(1 + r)}.

Here, (Xn : n > 0) is as in part (a) and r is the per-period riskless rate of interest. If
Vn(w) = sup E(U(wN )|wn = w) denotes the value function of this optimization problem,
show that Vn(wn) = anU(wn) and give a formula for an. Verify that, in the case α = 1,
your answer is in agreement with part (b).

Paper 4
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29I Optimization and Control

State Pontryagin’s maximum principle for the controllable dynamical system with
state-space R+, given by

ẋt = b(t, xt, ut), t > 0,

where the running costs are given by c(t, xt, ut), up to an unconstrained terminal time τ
when the state first reaches 0, and there is a terminal cost C(τ).

A company pays a variable price p(t) per unit time for electrical power, agreed in
advance, which depends on the time of day. The company takes on a job at time t = 0,
which requires a total amount E of electrical energy, but can be processed at a variable
level of power consumption u(t) ∈ [0, 1]. If the job is completed by time τ , then the
company will receive a reward R(τ). Thus, it is desired to minimize∫ τ

0

u(t)p(t)dt−R(τ),

subject to ∫ τ

0

u(t)dt = E, u(t) ∈ [0, 1],

with τ > 0 unconstrained. Take as state variable the energy xt still needed at time t to
complete the job. Use Pontryagin’s maximum principle to show that the optimal control
is to process the job on full power or not at all, according as the price p(t) lies below or
above a certain threshold value p∗.

Show further that, if τ∗ is the completion time for the optimal control, then

p∗ + Ṙ(τ∗) = p(τ∗) .

Consider a case in which p is periodic, with period one day, where day 1 corresponds
to the time interval [0, 2], and p(t) = (t − 1)2 during day 1. Suppose also that
R(τ) = 1/(1+τ) and E = 1/2. Determine the total energy cost and the reward associated
with the threshold p∗ = 1/4 .

Hence, show that any threshold low enough to carry processing over into day 2 is
suboptimal.

Show carefully that the optimal price threshold is given by p∗ = 1/4 .
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30C Partial Differential Equations

(i) Define the Fourier transform f̂ = F(f) of a Schwartz function f ∈ S(Rn), and
also of a tempered distribution u ∈ S ′(Rn).

(ii) From your definition, compute the Fourier transform of the distribution
Wt ∈ S ′(R3) given by

Wt(ψ) =< Wt, ψ >=
1

4πt

∫
‖y‖=t

ψ(y) dΣ(y)

for every Schwartz function ψ ∈ S(R3). Here dΣ(y) = t2dΩ(y) is the integration element
on the sphere of radius t.

Hence deduce the formula of Kirchoff for the solution of the initial value problem
for the wave equation in three space dimensions,

∂2u

∂t2
−∆u = 0,

with initial data u(0, x) = 0 and ∂u
∂t (0, x) = g(x), x ∈ R3, where g ∈ S(R3). Explain

briefly why the formula is also valid for arbitrary smooth g ∈ C∞(R3).

(iii) Show that any C2 solution of the initial value problem in (ii) is given by the
formula derived in (ii) (uniqueness).

(iv) Show that any two C2 solutions of the initial value problem for

∂2u

∂t2
+
∂u

∂t
−∆u = 0 ,

with the same initial data as in (ii), also agree for any t > 0 .
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31A Asymptotic Methods

The Bessel equation of order n is

z2y′′ + zy′ +
(
z2 − n2

)
y = 0 . (1)

Here, n is taken to be an integer, with n > 0 . The transformation w(z) = z
1
2 y(z)

converts (1) to the form
w′′ + q(z)w = 0 , (2)

where

q(z) = 1−
(
n2 − 1

4

)
z2

.

Find two linearly independent solutions of the form

w = e sz
∞∑
k=0

ckz
ρ−k , (3)

where ck are constants, with c0 6= 0 , and s and ρ are to be determined. Find recurrence
relationships for the ck.

Find the first two terms of two linearly independent Liouville–Green solutions of
(2) for w(z) valid in a neighbourhood of z = ∞. Relate these solutions to those of the
form (3).

32D Principles of Quantum Mechanics

Define the interaction picture for a quantum mechanical system with Schrödinger
picture Hamiltonian H0 + V (t) and explain why either picture gives the same physical
predictions. Derive an equation of motion for interaction picture states and use this to
show that the probability of a transition from a state |n〉 at time zero to a state |m〉 at
time t is

P (t) =
1
~2

∣∣∣∣ ∫ t

0

ei(Em−En)t′/~〈m|V (t′)|n〉 dt′
∣∣∣∣2

correct to second order in V , where the initial and final states are orthogonal eigenstates
of H0 with eigenvalues En and Em.

Consider a perturbed harmonic oscillator:

H0 = ~ω(a†a+ 1
2 ) , V (t) = ~λ( aeiνt + a†e−iνt )

with a and a† annihilation and creation operators (all usual properties may be assumed).
Working to order λ2, find the probability for a transition from an initial state with
En = ~ω(n+ 1

2 ) to a final state with Em = ~ω(m+ 1
2 ) after time t.

Suppose t becomes large and perturbation theory still applies. Explain why the
rate P (t)/t for each allowed transition is sharply peaked, as a function of ν, around ν = ω.
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33E Applications of Quantum Mechanics

Explain why the allowed energies of electrons in a three-dimensional crystal lie
in energy bands. What quantum numbers can be used to classify the electron energy
eigenstates?

Describe the effect on the energy level structure of adding a small density of
impurity atoms randomly to the crystal.

34D Statistical Physics

Show that the Fermi momentum pF of a gas of N non-interacting electrons in
volume V is

pF =
(

3π2~3N

V

)1/3

.

Consider the electrons to be effectively massless, so that an electron of momentum p has
(relativistic) energy cp. Show that the mean energy per electron at zero temperature is
3cpF /4.

When a constant external magnetic field of strength B is applied to the electron gas,
each electron gets an energy contribution ±µB depending on whether its spin is parallel or
antiparallel to the field. Here µ is the magnitude of the magnetic moment of an electron.
Calculate the total magnetic moment of the electron gas at zero temperature, assuming
µB is much less than cpF .
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35D Electrodynamics

The Maxwell field tensor is given by

F ab =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 .

A general 4-velocity is written as Ua = γ(1,v), where γ = (1 − |v|2)−1/2, and c = 1. A
general 4-current density is written as Ja = (ρ, j), where ρ is the charge density and j is
the 3-current density. Show that

F abUb = γ(E · v, E + v ×B).

In the rest frame of a conducting medium, Ohm’s law states that j = σE where
σ is the conductivity. Show that the relativistic generalization to a frame in which the
medium moves with uniform velocity v is

Ja − (JbUb)Ua = σF abUb.

Show that this implies

j = ρv + σγ(E + v ×B− (v ·E)v).

Simplify this formula, given that the charge density vanishes in the rest frame of the
medium.
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36E General Relativity

A solution of the Einstein equations is given by the metric

ds2 = −
(

1− 2M
r

)
dt2 +

1(
1− 2M

r

) dr2 + r2(dθ2 + sin2 θdφ2) .

For an incoming light ray, with constant θ, φ, show that

t = v − r − 2M log
∣∣∣ r
2M
− 1
∣∣∣ ,

for some fixed v and find a similar solution for an outgoing light ray. For the outgoing
case, assuming r > 2M , show that in the far past r

2M −1 ∝ exp( t
2M ) and in the far future

r ∼ t.

Obtain the transformed metric after the change of variables (t, r, θ, φ)→ (v, r, θ, φ).
With coordinates t̂ = v − r, r sketch, for fixed θ, φ, the trajectories followed by light rays.
What is the significance of the line r = 2M?

Show that, whatever path an observer with initial r = r0 < 2M takes, he must
reach r = 0 in a finite proper time.
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37A Fluid Dynamics II

Viscous incompressible fluid of uniform density is extruded axisymmetrically from
a thin circular slit of small radius centred at the origin and lying in the plane z = 0 in
cylindrical polar coordinates r, θ, z . There is no external radial pressure gradient. It is
assumed that the fluid forms a thin boundary layer, close to and symmetric about the plane
z = 0 . The layer has thickness δ(r) � r . The r-component of the steady Navier–Stokes
equations may be approximated by

ur
∂ur
∂r

+ uz
∂ur
∂z

= ν
∂2ur
∂z2

.

(i) Prove that the quantity (proportional to the flux of radial momentum)

F =
∫ ∞
−∞

u2
r r dz

is independent of r.

(ii) Show, by balancing terms in the momentum equation and assuming constancy
of F , that there is a similarity solution of the form

ur = −1
r

∂Ψ
∂z

, uz =
1
r

∂Ψ
∂r

, Ψ = −Aδ(r)f(η), η =
z

δ(r)
, δ(r) = Cr,

where A,C are constants. Show that for suitable choices of A and C the equation for f
takes the form

−f ′ 2 − ff ′′ = f ′′′;

f = f ′′ = 0 at η = 0; f ′ → 0 as η →∞;∫ ∞
−∞

f2
η dη = 1.

(iii) Give an inequality connecting F and ν that ensures that the boundary layer
approximation (δ � r) is valid. Solve the equation to give a complete solution to the
problem for ur when this inequality holds.

[Hint:
∫∞
−∞ sech4x dx = 4/3 . ]
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38B Waves

A layer of rock of shear modulus µ̄ and shear wave speed c̄s occupies the region
0 6 y 6 h with a free surface at y = h . A second rock having shear modulus µ and shear
wave speed cs > c̄s occupies y 6 0 . Show that elastic SH waves of wavenumber k and
phase speed c can propagate in the layer with zero disturbance at y = −∞ if c̄s < c < cs
and c satisfies the dispersion relation

tan
[
kh
√
c2/c̄2s − 1

]
=

µ

µ̄

√
1− c2/c2s√
c2/c̄2s − 1

.

Show graphically, or otherwise, that this equation has at least one real solution for
any value of kh, and determine the smallest value of kh for which the equation has at least
two real solutions.

39C Numerical Analysis

Let A ∈ Rn×n be a real matrix with n linearly independent eigenvectors. When
calculating eigenvalues of A, the sequence x(k), k = 0, 1, 2, . . ., is generated by the power
method x(k+1) = Ax(k)/‖Ax(k)‖, where x(0) is a real nonzero vector.

(a) Describe the asymptotic properties of the sequence x(k), both in the case where
the eigenvalues λi of A satisfy |λi| < |λn|, i = 1, . . . , n − 1, and in the case where
|λi| < |λn−1| = |λn|, i = 1, . . . , n−2. In the latter case explain how the (possibly complex-
valued) eigenvalues λn−1, λn and their corresponding eigenvectors can be determined.

(b) Let n = 3, and suppose that, for a large k, we obtain the vectors

yk = xk =

 1
1
1

 , yk+1 = Axk =

 2
3
4

 , yk+2 = A2xk =

 2
4
6

 .
Find two eigenvalues of A and their corresponding eigenvectors.

END OF PAPER
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