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SECTION I

1H Number Theory

What does it mean for a positive definite quadratic form with integer coefficients
to be reduced?

Show that there are precisely three reduced forms of this type with discriminant
equal to −23.

Which odd primes are properly represented by some positive definite binary
quadratic form (with integer coefficients) of discriminant −23?

2F Topics in Analysis

(a) State Brouwer’s fixed point theorem in the plane and prove that the statement is
equivalent to non-existence of a continuous retraction of the closed disk D to its boundary
∂D.

(b) Use Brouwer’s fixed point theorem to prove that there is a complex number z
in the closed unit disc such that z6 − z5 + 2z2 + 6z + 1 = 0.

3G Geometry of Group Actions

State a theorem classifying lattices in R2. Define a frieze group.

Show there is a frieze group which is isomorphic to Z but is not generated by a
translation, and draw a picture whose symmetries are this group.

4G Coding and Cryptography

Describe briefly the Shannon–Fano and Huffman binary codes for a finite alphabet.
Find examples of such codes for the alphabet A = {a, b, c, d} when the four letters are
taken with probabilities 0.4, 0.3, 0.2 and 0.1 respectively.
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5J Statistical Modelling

Suppose that we want to estimate the angles α, β and γ (in radians, say) of the
triangle ABC, based on a single independent measurement of the angle at each corner.
Suppose that the error in measuring each angle is normally distributed with mean zero
and variance σ2. Thus, we model our measurements yA, yB , yC as the observed values of
random variables

YA = α+ εA, YB = β + εB , YC = γ + εC ,

where εA, εB , εC are independent, each with distribution N(0, σ2). Find the maximum
likelihood estimate of α based on these measurements.

Can the assumption that εA, εB , εC ∼ N(0, σ2) be criticized? Why or why not?

6B Mathematical Biology

The population dynamics of a species is governed by the discrete model

Nt+1 = f(Nt) = Nt exp
[
r

(
1− Nt

K

)]
,

where r and K are positive constants.

Determine the steady states and their eigenvalues. Show that a period-doubling
bifurcation occurs at r = 2.

Show graphically that the maximum possible population after t = 0 is

Nmax = f(K/r).
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7A Dynamical Systems

Explain the difference between a stationary bifurcation and an oscillatory bifurca-
tion for a fixed point x0 of a dynamical system ẋ = f(x;µ) in Rn with a real parameter
µ.

The normal form of a Hopf bifurcation in polar coordinates is

ṙ = µr − ar3 +O(r5),

θ̇ = ω + cµ− br2 +O(r4),

where a, b, c and ω are constants, a 6= 0, and ω > 0. Sketch the phase plane near the
bifurcation for each of the cases (i) µ < 0 < a, (ii) 0 < µ, a, (iii) µ, a < 0 and (iv)
a < 0 < µ.

Let R be the radius and T the period of the limit cycle when one exists. Sketch
how R varies with µ for the case when the limit cycle is subcritical. Find the leading-order
approximation to dT/dµ for |µ| � 1.

8C Further Complex Methods

The Beta function is defined for Re z > 0 by

B(z, q) =
∫ 1

0

tq−1(1− t)z−1dt (Re q > 0)

and by analytic continuation elsewhere in the complex z-plane.

Show that (
z + q

z

)
B(z + 1, q) = B(z, q)

and explain how this result can be used to obtain the analytic continuation of B(z, q).
Hence show that B(z, q) is analytic except for simple poles and find the residues at the
poles.
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9A Classical Dynamics

A system of N particles i = 1, 2, 3, . . . , N , with mass mi, moves around a circle of
radius a. The angle between the radius to particle i and a fixed reference radius is θi. The
interaction potential for the system is

V =
1
2
k

N∑
j=1

(θj+1 − θj)2,

where k is a constant and θN+1 = θ1 + 2π.

The Lagrangian for the system is

L =
1
2
a2

N∑
j=1

mj θ̇
2
j − V.

Write down the equation of motion for particle i and show that the system is in equilibrium
when the particles are equally spaced around the circle.

Show further that the system always has a normal mode of oscillation with zero
frequency. What is the form of the motion associated with this?

Find all the frequencies and modes of oscillation when N = 2, m1 = km/a2 and
m2 = 2km/a2, where m is a constant.

10E Cosmology

A spherically-symmetric star obeys the pressure-support equation

dP

dr
= −Gmρ

r2
,

where P (r) is the pressure at a distance r from the centre, ρ(r) is the density, and m(r)
is the mass within a sphere of radius r. Show that this implies

d

dr

(
r2

ρ

dP

dr

)
= −4πGr2ρ.

Propose and justify appropriate boundary conditions for the pressure P (r) at the centre
of the star (r = 0) and at its outer edge r = R.

Show that the function

F (r) = P (r) +
Gm2

8πr4

is a decreasing function of r. Deduce that the central pressure Pc ≡ P (0) satisfies

Pc >
GM2

8πR4
,

where M ≡ m(R) is the mass of the star.
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SECTION II

11F Topics in Analysis

Let L : C([0, 1])→ C([0, 1]) be an operator satisfying the conditions

(i) Lf > 0 for any f ∈ C([0, 1]) with f > 0,

(ii) L(af + bg) = aLf + bLg for any f, g ∈ C([0, 1]) and a, b ∈ R and

(iii) Zf ⊆ ZLf for any f ∈ C([0, 1]), where Zf denotes the set of zeros of f .

Prove that there exists a function h ∈ C([0, 1]) with h > 0 such that Lf = hf for
every f ∈ C([0, 1]).

12G Coding and Cryptography

Describe the Rabin cipher with modulus N , explaining how it can be deciphered
by the intended recipient and why it is difficult for an interceptor to decipher it.

The Bursars’ Committee decides to communicate using Rabin ciphers to maintain
confidentiality. The secretary of the committee encrypts a message, thought of as a positive
integer m, using the Rabin cipher with modulus N (with 0 < m < N) and publishes both
the encrypted message and the modulus. A foolish bursar deciphers this message to read
it but then encrypts it again using a Rabin cipher with a different modulus N ′ (with
m < N ′) and publishes the newly encrypted message and N ′. The president of CUSU,
who happens to be a talented mathematician, knows that this has happened. Explain
how the president can work out what the original message was using the two different
encrypted versions.

Can the president of CUSU also decipher other messages sent out by the Bursars’
Committee?

Paper 2



7

13B Mathematical Biology

Consider the nonlinear equation describing the invasion of a population u(x, t)

ut = muxx + f(u), (1)

with m > 0, f(u) = −u (u− r)(u− 1) and 0 < r < 1 a constant.

(a) Considering time-dependent spatially homogeneous solutions, show that there
are two stable and one unstable uniform steady states.

(b) In the case r = 1
2 , find the stationary ‘front’ which has

u→ 1 as x→ −∞ and u→ 0 as x→∞. (2)

[Hint: f(u) = F ′(u) where F (u) = − 1
4u

2(1− u)2 + 1
6 (r − 1

2 )u2(2u− 3).]

(c) Now consider travelling-wave solutions to (1) of the form u(x, t) = U(z) where
z = x− vt. Show that U satisfies an equation of the form

mÜ + v U̇ = −V ′(U),

where ˙( ) ≡ d

dz
( ) and ( )′ ≡ d

dU
( ) .

Sketch the form of V (U) for r = 1
2 , r > 1

2 and r < 1
2 . Using conditions (2), show

that
v

∫ ∞
−∞

U̇2 dz = F (1)− F (0).

Deduce how the sign of the travelling-wave velocity v depends on r.
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14C Further Complex Methods

(i) The function f is defined by

f(z) =
∫
C

tz−1dt ,

where C is the circle |t| = r, described anti-clockwise starting on the positive real axis and
where the value of tz−1 at each point on C is determined by analytic continuation along
C with arg t = 0 at the starting point. Verify by direct integration that f is an entire
function, the values of which depend on r.

(ii) The function J is defined by

J(z) =
∫
γ

et(t2 − 1)zdt,

where γ is a figure of eight, starting at t = 0, looping anti-clockwise round t = 1 and
returning to t = 0, then looping clockwise round t = −1 and returning again to t = 0.
The value of (t2−1)z is determined by analytic continuation along γ with arg(t2−1) = −π
at the start. Show that, for Re z > −1,

J(z) = −2i sinπz I(z),

where

I(z) =
∫ 1

−1

et(t2 − 1)zdt.

Explain how this provides the analytic continuation of I(z). Classify the singular points
of the analytically continued function, commenting on the points z = 0, 1, . . . .

Explain briefly why the analytic continuation could not be obtained by this method
if γ were replaced by the circle |t| = 2.
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15B Classical Dynamics

A particle of mass m, charge e and position vector r = (x1, x2, x3) ≡ q moves in a
magnetic field whose vector potential is A. Its Hamiltonian is given by

H(p,q) =
1

2m

(
p− eA

c

)2

.

Write down Hamilton’s equations and use them to derive the equations of motion for the
charged particle.

Define the Poisson bracket [F,G] for general F (p,q) and G(p,q). Show that for
motion governed by the above Hamiltonian

[mẋi, xj ] = −δij , and [mẋi,mẋj ] =
e

c

(
∂Aj
∂xi
− ∂Ai
∂xj

)
.

Consider the vector potential to be given by A = (0, 0, F (r)), where r =
√
x2

1 + x2
2.

Use Hamilton’s equations to show that p3 is constant and that circular motion at radius
r with angular frequency Ω is possible provided that

Ω2 = −
(
p3 − eF

c

)
e

m2cr

dF

dr
.

16G Logic and Set Theory

(i) State the Completeness Theorem and the Compactness Theorem for the predi-
cate calculus.

(ii) Show that if a theory has arbitrarily large finite models then it has an infinite
model. Deduce that there is no first order theory whose models are just the finite fields of
characteristic 2. Show that the theory of infinite fields of characteristic 2 does not have a
finite axiomatisation.

(iii) Let T be the collection of closed terms in some first order language L. Suppose
that ∃x.φ(x) is a provable sentence of L with φ quantifier-free. Show that the set of
sentences {¬φ(t) : t ∈ T } is inconsistent.

[Hint: consider the minimal substructure of a model.]

Deduce that there are t1, t2, . . . , tn in T such that φ(t1) ∨ φ(t2) ∨ · · · ∨ φ(tn) is
provable.
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17F Graph Theory

Prove that every graph G on n > 3 vertices with minimum degree δ(G) > n
2 is

Hamiltonian. For each n > 3, give an example to show that this result does not remain
true if we weaken the condition to δ(G) > n

2 − 1 (for n even) or δ(G) > n−1
2 (for n odd).

For any graph G, let Gk denote the graph formed by adding k new vertices to G,
all joined to each other and to all vertices of G. By considering G1, show that if G is a
graph on n > 3 vertices with δ(G) > n−1

2 then G has a Hamilton path (a path passing
through all the vertices of G).

For each positive integer k, exhibit a connected graph G such that Gk is not
Hamiltonian. Is this still possible if we replace ‘connected’ with ‘2-connected’?

18H Galois Theory

(i) Let K be a field, θ ∈ K, and n > 0 not divisible by the characteristic. Suppose
that K contains a primitive nth root of unity. Show that the splitting field of xn − θ has
cyclic Galois group.

(ii) Let L/K be a Galois extension of fields and ζn denote a primitive nth root of
unity in some extension of L, where n is not divisible by the characteristic. Show that
Aut(L(ζn)/K(ζn)) is a subgroup of Aut(L/K).

(iii) Determine the minimal polynomial of a primitive 6th root of unity ζ6 over Q.

Compute the Galois group of x6 + 3 ∈ Q[x].

19G Representation Theory

A finite group G of order 360 has conjugacy classes C1 = {1}, C2, . . . , C7 of sizes
1, 45, 40, 40, 90, 72, 72. The values of four of its irreducible characters are given in the
following table.

C1 C2 C3 C4 C5 C6 C7

5 1 2 −1 −1 0 0
8 0 −1 −1 0 (1−√5)/2 (1 +

√
5)/2

8 0 −1 −1 0 (1 +
√

5)/2 (1−√5)/2
10 −2 1 1 0 0 0

Complete the character table.

[Hint: it will not suffice just to use orthogonality of characters.]

Deduce that the group G is simple.
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20G Number Fields

(a) Factorise the ideals [2], [3] and [5] in the ring of integers OK of the field
K = Q(

√
30). Using Minkowski’s bound

n!
nn

(
4
π

)s√
|dK |,

determine the ideal class group of K.

[Hint: it might be helpful to notice that 3
2 = NK/Q(α) for some α ∈ K.]

(b) Find the fundamental unit of K and determine all solutions of the equations
x2 − 30y2 = ±5 in integers x, y ∈ Z. Prove that there are in fact no solutions of
x2 − 30y2 = 5 in integers x, y ∈ Z.

21F Algebraic Topology

Prove the Borsuk–Ulam theorem in dimension 2: there is no map f :S2 → S1 such
that f(−x) = −f(x) for every x ∈ S2. Deduce that S2 is not homeomorphic to any subset
of R2.
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22F Linear Analysis

State and prove the principle of uniform boundedness.

[You may assume the Baire category theorem.]

Suppose that X, Y and Z are Banach spaces. Suppose that

F : X × Y → Z

is linear and continuous in each variable separately, that is to say that, if y is fixed,

F (·, y) : X → Z

is a continuous linear map and, if x is fixed,

F (x, ·) : Y → Z

is a continuous linear map. Show that there exists an M such that

‖F (x, y)‖Z 6 M‖x‖X‖y‖Y

for all x ∈ X, y ∈ Y . Deduce that F is continuous.

Suppose X, Y , Z and W are Banach spaces. Suppose that

G : X × Y ×W → Z

is linear and continuous in each variable separately. Does it follow that G is continuous?
Give reasons.

Suppose that X, Y and Z are Banach spaces. Suppose that

H : X × Y → Z

is continuous in each variable separately. Does it follow that H is continuous? Give
reasons.
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23H Riemann Surfaces

Explain what is meant by a divisor D on a compact connected Riemann surface S.
Explain briefly what is meant by a canonical divisor. Define the degree of D and the
notion of linear equivalence between divisors. If two divisors on S have the same degree
must they be linearly equivalent? Give a proof or a counterexample as appropriate, stating
accurately any auxiliary results that you require.

Define `(D) for a divisor D, and state the Riemann–Roch theorem. Deduce that
the dimension of the space of holomorphic differentials is determined by the genus g of S
and that the same is true for the degree of a canonical divisor. Show further that if g = 2
then S admits a non-constant meromorphic function with at most two poles (counting
with multiplicities).

[General properties of meromorphic functions and meromorphic differentials on S
may be used without proof if clearly stated.]

24H Differential Geometry

(a) For a regular curve in R3, define curvature and torsion and state the Frenet
formulas.

(b) State and prove the isoperimetric inequality for domains Ω ⊂ R2 with compact
closure and C1 boundary ∂Ω.

[You may assume Wirtinger’s inequality.]

(c) Let γ : I → R2 be a closed plane regular curve such that γ is contained in a disc
of radius r. Show that there exists s ∈ I such that |k(s)| > r−1, where k(s) denotes the
signed curvature. Show by explicit example that the assumption of closedness is necessary.

25J Probability and Measure

Explain what is meant by a simple function on a measurable space (S,S).

Let (S,S, µ) be a finite measure space and let f : S → R be a non-negative Borel
measurable function. State the definition of the integral of f with respect to µ.

Prove that, for any sequence of simple functions (gn) such that 0 6 gn(x) ↑ f(x)
for all x ∈ S, we have ∫

gndµ ↑
∫
fdµ.

State and prove the Monotone Convergence Theorem for finite measure spaces.
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26I Applied Probability

Consider a continuous-time Markov chain (Xt) given by the diagram below.

W0 W1 W(i− 1) Wi

C0 C1 C(i− 1) Ci

λ
. . .

λ
. . .

µ
. . .

µ
. . .

βα βα βα βα

We will assume that the rates α, β, λ and µ are all positive.

(a) Is the chain (Xt) irreducible?

(b) Write down the standard equations for the hitting probabilities

hCi = PCi

(
hit W0

)
, i > 0,

and
hWi = PWi

(
hit W0

)
, i > 1.

Explain how to identify the probabilities hCi and hWi among the solutions to these
equations.

[You should state the theorem you use but its proof is not required.]

(c) Set h(i) =
(
hCi

hWi

)
and find a matrix A such that

h(i) = Ah(i−1), i = 1, 2, . . . .

The recursion matrix A has a ‘standard’ eigenvalue and a ‘standard’ eigenvector
that do not depend on the transition rates: what are they and why are they always
present?

(d) Calculate the second eigenvalue ϑ of the matrix A, and the corresponding eigen-

vector, in the form
(
b
1

)
, where b > 0.

(e) Suppose the second eigenvalue ϑ is > 1. What can you say about hCi and hWi? Is
the chain (Xt) transient or recurrent? Justify your answer.

(f) Now assume the opposite: the second eigenvalue ϑ is < 1. Check that in this case
b < 1. Is the chain transient or recurrent under this condition?

(g) Finally, specify, by means of inequalities between the parameters α, β, λ and µ,
when the chain (Xt) is recurrent and when it is transient.
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27I Principles of Statistics

Under hypothesis Hi (i = 0, 1), a real-valued observable X, taking values in X ,
has density function pi(·). Define the Type I error α and the Type II error β of a test
φ : X → [0, 1] of the null hypothesis H0 against the alternative hypothesis H1. What are
the size and power of the test in terms of α and β?

Show that, for 0 < c <∞ , φ minimises cα+ β among all possible tests if and only
if it satisfies

p1(x) > cp0(x)⇒ φ(x) = 1,
p1(x) < cp0(x)⇒ φ(x) = 0.

What does this imply about the admissibility of such a test?

Given the value θ of a parameter variable Θ ∈ [0, 1), the observable X has density
function

p(x | θ) =
2(x− θ)
(1− θ)2 (θ 6 x 6 1).

For fixed θ ∈ (0, 1), describe all the likelihood ratio tests of H0 : Θ = 0 against
Hθ : Θ = θ.

For fixed k ∈ (0, 1), let φk be the test that rejects H0 if and only if X > k . Is φk
admissible as a test of H0 against Hθ for every θ ∈ (0, 1)? Is it uniformly most powerful for
its size for testing H0 against the composite hypothesis H1 : Θ ∈ (0, 1)? Is it admissible
as a test of H0 against H1?

Paper 2 [TURN OVER



16

28J Stochastic Financial Models

(a) Let (Bt : t > 0) be a Brownian motion and consider the process

Yt = Y0e
σBt+(µ− 1

2σ
2)t

for Y0 > 0 deterministic. For which values of µ is (Yt : t > 0) a supermartingale? For
which values of µ is (Yt : t > 0) a martingale? For which values of µ is (1/Yt : t > 0) a
martingale? Justify your answers.

(b) Assume that the riskless rates of return for Dollar investors and Euro investors
are rD and rE respectively. Thus, 1 Dollar at time 0 in the bank account of a Dollar investor
will grow to erDt Dollars at time t. For a Euro investor, the Dollar is a risky, tradable asset.
Let QE be his equivalent martingale measure and assume that the EUR/USD exchange
rate at time t, that is, the number of Euros that one Dollar will buy at time t, is given by

Yt = Y0e
σBt+(µ− 1

2σ
2)t,

where (Bt) is a Brownian motion under QE . Determine µ as function of rD and rE . Verify
that Y is a martingale if rD = rE .

(c) Let rD, rE be as in part (b). Let now QD be an equivalent martingale measure
for a Dollar investor and assume that the EUR/USD exchange rate at time t is given by

Yt = Y0e
σBt+(µ− 1

2σ
2)t,

where now (Bt) is a Brownian motion under QD. Determine µ as function of rD and
rE . Given rD = rE , check, under QD, that is Y is not a martingale but that 1/Y is a
martingale.

(d) Assuming still that rD = rE , rederive the final conclusion of part (c), namely
the martingale property of 1/Y , directly from part (b).
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29I Optimization and Control

Consider a stochastic controllable dynamical system P with action-space A and
countable state-space S. Thus P = (pxy(a) : x, y ∈ S, a ∈ A) and pxy(a) denotes the
transition probability from x to y when taking action a. Suppose that a cost c(x, a)
is incurred each time that action a is taken in state x, and that this cost is uniformly
bounded. Write down the dynamic optimality equation for the problem of minimizing the
expected long-run average cost.

State in terms of this equation a general result, which can be used to identify an
optimal control and the minimal long-run average cost.

A particle moves randomly on the integers, taking steps of size 1. Suppose we can
choose at each step a control parameter u ∈ [α, 1− α], where α ∈ (0, 1/2) is fixed, which
has the effect that the particle moves in the positive direction with probability u and
in the negative direction with probability 1 − u. It is desired to maximize the long-run
proportion of time π spent by the particle at 0. Show that there is a solution to the
optimality equation for this example in which the relative cost function takes the form
θ(x) = µ |x| , for some constant µ .

Determine an optimal control and show that the maximal long-run proportion of
time spent at 0 is given by

π =
1− 2α

2 (1− α)
.

You may assume that it is valid to use an unbounded function θ in the optimality equation
in this example.

30C Partial Differential Equations

(i) Define the concept of “fundamental solution” of a linear constant-coefficient
partial differential operator and write down the fundamental solution for the operator −∆
on R3.

(ii) State and prove the mean value property for harmonic functions on R3.

(iii) Let u ∈ C2(R3) be a harmonic function which satisfies u(p) > 0 at every point
p in an open set Ω ⊂ R3. Show that if B(z, r) ⊂ B(w,R) ⊂ Ω , then

u(w) >
( r
R

)3

u (z) .

Assume that B(x, 4r) ⊂ Ω. Deduce, by choosing R = 3r and w, z appropriately, that

inf
B(x,r)

u > 3−3 sup
B(x,r)

u .

[In (iii), B(z, ρ) = {x ∈ R3 : ‖x − z‖ < ρ} is the ball of radius ρ > 0 centred at
z ∈ R3.]
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31C Integrable Systems

Describe the inverse scattering transform for the KdV equation, paying particular
attention to the Lax representation and the evolution of the scattering data.

[Hint: you may find it helpful to consider the operator

A = 4
d3

dx3
− 3
(
u
d

dx
+

d

dx
u
)
.]

32D Principles of Quantum Mechanics

Derive approximate expressions for the eigenvalues of a Hamiltonian H + λV ,
working to second order in the parameter λ and assuming the eigenstates and eigenvalues
of H are known and non-degenerate.

Let J = (J1, J2, J3) be angular momentum operators with |j m〉 joint eigenstates
of J2 and J3. What are the possible values of the labels j and m and what are the
corresponding eigenvalues of the operators?

A particle with spin j is trapped in space (its position and momentum can be
ignored) but is subject to a magnetic field of the form B = (B1, 0, B3), resulting in
a Hamiltonian −γ(B1J1 + B3J3). Starting from the eigenstates and eigenvalues of
this Hamiltonian when B1 = 0, use perturbation theory to compute the leading order
corrections to the energies when B1 is non-zero but much smaller than B3. Compare with
the exact result.

[You may set ~ = 1 and use J±|j m〉 =
√

(j ∓m)(j ±m+ 1)|j m±1〉.]
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33E Applications of Quantum Mechanics

Consider a large, essentially two-dimensional, rectangular sample of conductor of
area A, and containing 2N electrons of charge −e. Suppose a magnetic field of strength
B is applied perpendicularly to the sample. Write down the Landau Hamiltonian for one
of the electrons assuming that the electron interacts just with the magnetic field.

[You may ignore the interaction of the electron spin with the magnetic field.]

Find the allowed energy levels of the electron.

Find the total energy of the 2N electrons at absolute zero temperature as a function
of B, assuming that B is in the range

π~N
eA

6 B 6
2π~N
eA

.

Comment on the values of the total energy when B takes the values at the two ends
of this range.

34E Statistical Physics

Prove that energy fluctuations in a canonical distribution are given by〈
(E − 〈E〉)2

〉
= kBT

2CV

where T is the absolute temperature, CV = ∂〈E〉
∂T |V is the heat capacity at constant volume,

and kB is Boltzmann’s constant.

Prove the following relation in a similar manner:〈
(E − 〈E〉)3

〉
= k2

B

[
T 4 ∂CV

∂T

∣∣∣∣
V

+ 2T 3CV

]
.

Show that, for an ideal gas of N monatomic molecules where 〈E〉 = 3
2NkBT , these

equations can be reduced to

1
〈E〉2

〈
(E − 〈E〉)2

〉
=

2
3N

and
1
〈E〉3

〈
(E − 〈E〉)3

〉
=

8
9N2

.
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35E General Relativity

Let xa(λ) be a path P with tangent vector T a = d
dλx

a(λ). For vectors Xa(x(λ))
and Y a(x(λ)) defined on P let

∇TXa =
d

dλ
Xa + Γabc(x(λ))XbT c,

where Γabc(x) is the metric connection for a metric gab(x). ∇TY a is defined similarly.
Suppose P is geodesic and λ is an affine parameter. Explain why ∇TT a = 0. Show that
if ∇TXa = ∇TY a = 0 then gab(x(λ))Xa(x(λ))Y b(x(λ)) is constant along P .

If xa(λ, µ) is a family of geodesics which depend on µ, let Sa = ∂
∂µx

a and define

∇SXa =
∂

∂µ
Xa + Γabc(x(λ))XbSc.

Show that ∇TSa = ∇ST a and obtain

∇T 2Sa ≡ ∇T (∇TSa) = RabcdT
bT cSd.

What is the physical relevance of this equation in general relativity? Describe briefly how
this is relevant for an observer moving under gravity.

[You may assume [∇T ,∇S ]Xa = RabcdX
bT cSd.]
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36A Fluid Dynamics II

Viscous fluid with dynamic viscosity µ flows with velocity (ux, uy, uz) ≡ (uH , uz)
(in cartesian coordinates x, y, z) in a shallow container with a free surface at z = 0 . The
base of the container is rigid, and is at z = −h(x, y) . A horizontal stress S(x, y) is applied
at the free surface. Gravity may be neglected.

Using lubrication theory (conditions for the validity of which should be clearly
stated), show that the horizontal volume flux q(x, y) ≡ ∫ 0

−h uH dz satisfies the equations

∇ · q = 0 , µq = −1
3
h3∇p +

1
2
h2 S ,

where p(x, y) is the pressure. Find also an expression for the surface velocity u0(x, y) ≡
uH(x, y, 0) in terms of S , q and h .

Now suppose that the container is cylindrical with boundary at x2+y2 = a2 , where
a� h , and that the surface stress is uniform and in the x-direction, so S = (S0, 0) with S0

constant. It can be assumed that the correct boundary condition to apply at x2 + y2 = a2

is q · n = 0 , where n is the unit normal.

Write q = ∇ψ(x, y)× ẑ , and show that ψ satisfies the equation

∇ ·
(

1
h3
∇ψ
)

= − S0

2µh2

∂h

∂y
.

Deduce that if h = h0 (constant) then q = 0 . Find u0 in this case.

Now suppose that h = h0(1 + εy/a) , where ε � 1 . Verify that to leading order
in ε, ψ = εC(x2 + y2− a2) for some constant C to be determined. Hence determine u0 up
to and including terms of order ε .

[Hint: ∇× (A× ẑ) = ẑ · ∇A− ẑ∇ ·A for any vector field A .]
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37B Waves

Show that, in one-dimensional flow of a perfect gas at constant entropy, the
Riemann invariants u± 2(c− c0)/(γ− 1) are constant along characteristics dx/dt = u± c .

A perfect gas occupies a tube that lies parallel to the x-axis. The gas is initially at
rest and is in x > 0 . For times t > 0 a piston is pulled out of the gas so that its position
at time t is

x = X(t) = − 1
2
ft2,

where f > 0 is a constant. Sketch the characteristics of the resulting motion in the
(x, t) plane and explain why no shock forms in the gas.

Calculate the pressure exerted by the gas on the piston for times t > 0 , and show
that at a finite time tv a vacuum forms. What is the speed of the piston at t = tv?

38C Numerical Analysis

The advection equation

ut = ux, x ∈ R, t > 0,

is solved by the leapfrog scheme

un+1
m = µ

(
unm+1 − unm−1

)
+ un−1

m ,

where n > 1 and µ = ∆t/∆x is the Courant number.

(a) Determine the local error of the method.

(b) Applying the Fourier technique, find the range of µ > 0 for which the method
is stable.

END OF PAPER
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