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SECTION I

1H Number Theory

Let N = p1p2 . . . pr be a product of distinct primes, and let λ(N) be the least
common multiple of p1 − 1, p2 − 1, . . . , pr − 1. Prove that

aλ(N) ≡ 1 mod N when (a,N) = 1.

Now take N = 7× 13× 19, and prove that

aN−1 ≡ 1 mod N when (a,N) = 1.

2G Topics in Analysis

Let a0, a1, a2, . . . be positive integers and, for each n, let

pn

qn
= a0 +

1

a1 +
1

a2 + .. .
+

1
an

,

with (pn, qn) = 1.

Obtain an expression for the matrix
(
pn pn−1

qn qn−1

)
and use it to show that

pnqn−1 − qnpn−1 = (−1)n+1.

3F Geometry and Groups

Let G be a discrete subgroup of the Möbius group. Define the limit set of G in
S2. If G contains two loxodromic elements whose fixed point sets in S2 are different, show
that the limit set of G contains no isolated points.
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4G Coding and Cryptography

What does it mean to say that a binary code C has length n, size m and minimum
distance d? Let A(n, d) be the largest value of m for which there exists an [n,m, d]-code.
Prove that

2n

V (n, d− 1)
6 A(n, d) 6

2n

V (n, b 1
2 (d− 1)c)

where V (n, r) =
r∑

j=0

(
n

j

)
.

5I Statistical Modelling

Consider a generalized linear model for independent observations Y1, . . . , Yn, with
E(Yi) = µi for i = 1, . . . , n. What is a linear predictor? What is meant by the link
function? If Yi has model function (or density) of the form

f(yi;µi, σ
2) = exp

[
1
σ2

{
θ(µi)yi −K(θ(µi))

}]
a(σ2, yi),

for yi ∈ Y ⊆ R, µi ∈ M ⊆ R, σ2 ∈ Φ ⊆ (0,∞), where a(σ2, yi) is a known positive
function, define the canonical link function.

Now suppose that Y1, . . . , Yn are independent with Yi ∼ Bin(1, µi) for i = 1, . . . , n.
Derive the canonical link function.

6B Mathematical Biology

The SIR epidemic model for an infectious disease divides the population N into
three categories of susceptible S(t), infected I(t) and recovered (non-infectious) R(t). It is
supposed that the disease is non-lethal, so that the population does not change in time.

Explain the reasons for the terms in the following model equations:

dS

dt
= pR− rIS,

dI

dt
= rIS − aI,

dR

dt
= aI − pR.

At time t = 0, S ≈ N while I,R� 1.

(a) Show that if rN < a no epidemic occurs.

(b) Now suppose that p > 0 and there is an epidemic. Show that the system has a non-
trivial fixed point, and that it is stable to small disturbances. Show also that for
both small and large p both the trace and the determinant of the Jacobian matrix
are O(p), and deduce that the matrix has complex eigenvalues for sufficiently small
p, and real eigenvalues for sufficiently large p.
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7E Dynamical Systems

State the normal-form equations for (a) a saddle-node bifurcation, (b) a transcritical
bifurcation, and (c) a pitchfork bifurcation, for a dynamical system ẋ = f(x, µ).

Consider the system

ẋ = µ+ y − x2 + 2xy + 3y2

ẏ = −y + 2x2 + 3xy .

Compute the extended centre manifold near x = y = µ = 0, and the evolution equation
on the centre manifold, both correct to second order in x and µ. Deduce the type of
bifurcation and show that the equation can be put in normal form, to the same order, by
a change of variables of the form T = αt, X = x− βµ, µ̃ = γ(µ) for suitably chosen α, β
and γ(µ).

8E Further Complex Methods

Show that, for b 6= 0,

P
∫ ∞

0

cosu
u2 − b2

du = − π

2b
sin b

where P denotes the Cauchy principal value.

9C Classical Dynamics

A pendulum of length ` oscillates in the xy plane, making an angle θ(t) with
the vertical y axis. The pivot is attached to a moving lift that descends with constant
acceleration a , so that the position of the bob is

x = ` sin θ , y = 1
2at

2 + ` cos θ .

Given that the Lagrangian for an unconstrained particle is

L = 1
2m(ẋ2 + ẏ2) +mgy ,

determine the Lagrangian for the pendulum in terms of the generalized coordinate θ.
Derive the equation of motion in terms of θ. What is the motion when a = g?

Find the equilibrium configurations for arbitrary a. Determine which configuration
is stable when

(i) a < g

and when
(ii) a > g .
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10D Cosmology

(a) Consider a spherically symmetric star with outer radius R, density ρ(r) and pressure
P (r). By balancing the gravitational force on a shell at radius r against the force
due to the pressure gradient, derive the pressure support equation

dP

dr
= −Gmρ

r2
,

where m(r) =
∫ r

0
ρ(r′) 4πr′2 dr′. Show that this implies

d

dr

(
r2

ρ

dP

dr

)
= −4πGr2ρ .

Suggest appropriate boundary conditions at r = 0 and r = R, together with a brief
justification.

(b) Describe qualitatively the endpoint of stellar evolution for our sun when all its
nuclear fuel is spent. Your discussion should briefly cover electron degeneracy
pressure and the relevance of stability against inverse beta-decay.

[Note that mn−mp ≈ 2.6me, where mn, mp, me are the masses of the neutron,
proton and electron respectively.]
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SECTION II

11H Number Theory

State the prime number theorem, and Dirichlet’s theorem on primes in arithmetic
progression.

If p is an odd prime number, prove that -1 is a quadratic residue modulo p if and
only if p ≡ 1 mod 4.

Let p1, . . . , pm be distinct prime numbers, and define

N1 = 4p1 . . . pm − 1, N2 = 4 (p1 . . . pm)2 + 1.

Prove that N1 has at least one prime factor which is congruent to 3 mod 4, and
that every prime factor of N2 must be congruent to 1 mod 4.

Deduce that there are infinitely many primes which are congruent to 1 mod 4, and
infinitely many primes which are congruent to 3 mod 4.

12G Coding and Cryptography

Describe the RSA system with public key (N, e) and private key (N, d). Briefly
discuss the possible advantages or disadvantages of taking (i) e = 216+1 or (ii) d = 216+1.

Explain how to factor N when both the private key and public key are known.

Describe the bit commitment problem, and briefly indicate how RSA can be used
to solve it.
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13B Mathematical Biology

A chemical system with concentrations u(x, t), v(x, t) obeys the coupled reaction-
diffusion equations

du

dt
= ru+ u2 − uv + κ1

d2u

dx2
,

dv

dt
= s(u2 − v) + κ2

d2v

dx2
,

where r, s, κ1, κ2 are constants with s, κ1, κ2 positive.

(a) Find conditions on r, s such that there is a steady homogeneous solution u = u0,

v = u2
0 which is stable to spatially homogeneous perturbations.

(b) Investigate the stability of this homogeneous solution to disturbances proportional
to exp(ikx). Assuming that a solution satisfying the conditions of part (a) exists,
find the region of parameter space in which the solution is stable to space-dependent
disturbances, and show in particular that one boundary of this region for fixed s is
given by

d ≡
√
κ2

κ1
=
√

2s+
1
u0

√
s(2u2

0 − u0) .

Sketch the various regions of existence and stability of steady, spatially homoge-
neous solutions in the (d, u0) plane for the case s = 2.

(c) Show that the critical wavenumber k = kc for the onset of the instability satisfies
the relation

k2
c =

1
√
κ1κ2

[
s(d−

√
2s)

d(2
√

2s− d)

]
.

Explain carefully what happens when d <
√

2s and when d > 2
√

2s.
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14E Further Complex Methods

It is given that the hypergeometric function F (a, b; c; z) is the solution of the
hypergeometric equation determined by the Papperitz symbol

P

 0 ∞ 1
0 a 0 z

1− c b c− a− b

 (∗)

that is analytic at z = 0 and satisfies F (a, b; c; 0) = 1, and that for Re(c− a− b) > 0

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.

[You may assume that a, b, c are such that F (a, b; c; 1) exists.]

(a) Show, by manipulating Papperitz symbols, that

F (a, b; c; z) = (1− z)−aF

(
a, c− b; c;

z

z − 1

)
(| arg(1− z)| < π).

(b) Let w1(z) = (−z)−aF

(
a, 1 + a− c; 1 + a− b;

1
z

)
, where | arg(−z)| < π. Show

that w1(z) satisfies the hypergeometric equation determined by (∗).

(c) By considering the limit z → ∞ in parts (a) and (b) above, deduce that, for
| arg(−z)| < π,

F (a, b; c; z) =
Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

w1(z) + (a similar term with a and b interchanged).

15C Classical Dynamics

A particle of mass m is constrained to move on the surface of a sphere of radius `.
The Lagrangian is given in spherical polar coordinates by

L = 1
2m`

2(θ̇2 + φ̇2 sin2 θ) +mg` cos θ ,

where gravity g is constant. Find the two constants of the motion.

The particle is projected horizontally with velocity v from a point whose depth
below the centre is ` cos θ = D. Find v such that the particle trajectory

(i) just grazes the horizontal equatorial plane θ = π/2;

(ii) remains at depth D for all time t.
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16H Logic and Set Theory

Explain what is meant by a structure for a first-order signature Σ, and describe
how first-order formulae over Σ are interpreted in a given structure. Show that if B is a
substructure of A, and φ is a quantifier-free formula (with n free variables), then

[[φ]]B = [[φ]]A ∩Bn.

A first-order theory is said to be inductive if its axioms all have the form

(∀x1, . . . , xn)(∃y1, . . . , ym)φ

where φ is quantifier-free (and either of the strings x1, . . . , xn or y1, . . . , ym may be empty).
If T is an inductive theory, and A is a structure for the appropriate signature, show that
the poset of those substructures of A which are T -models is chain-complete.

Which of the following can be expressed as inductive theories over the signature
with one binary predicate symbol 6? Justify your answers.

(a) The theory of totally ordered sets without greatest or least elements.

(b) The theory of totally ordered sets with greatest and least elements.

17F Graph Theory

Let R(s) be the least integer n such that every colouring of the edges of Kn with
two colours contains a monochromatic Ks. Prove that R(s) exists.

Prove that a connected graph of maximum degree d > 2 and order dk contains two
vertices distance at least k apart.

Let C(s) be the least integer n such that every connected graph of order n contains,
as an induced subgraph, either a complete graph Ks, a star K1,s or a path Ps of length s.
Show that C(s) 6 R(s)s.

18H Galois Theory

Let K be a field and m a positive integer, not divisible by the characteristic of K.
Let L be the splitting field of the polynomial Xm − 1 over K. Show that Gal(L/K) is
isomorphic to a subgroup of (Z/mZ)∗.

Now assume that K is a finite field with q elements. Show that [L : K] is equal to
the order of the residue class of q in the group (Z/mZ)∗. Hence or otherwise show that
the splitting field of X11 − 1 over F4 has degree 5.

Paper 3 [TURN OVER
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19F Representation Theory

(a) Let G = SU2, and let Vn be the space of homogeneous polynomials of degree n in
the variables x and y. Thus dimVn = n + 1. Define the action of G on Vn and
show that Vn is an irreducible representation of G.

(b) Decompose V3 ⊗ V3 into irreducible representations. Decompose ∧2V3 and S2V3

into irreducible representations.

(c) Given any representation V of a group G, define the dual representation V ∗. Show
that V ∗n is isomorphic to Vn as a representation of SU2.

[You may use any results from the lectures provided that you state them clearly.]

20H Algebraic Topology

Let X be the union of two circles identified at a point: the “figure eight”. Classify
all the connected double covering spaces of X. If we view these double coverings just as
topological spaces, determine which of them are homeomorphic to each other and which
are not.

21G Linear Analysis

Let X be a complex Banach space. We say a sequence xi ∈ X converges to x ∈ X
weakly if φ(xi) → φ(x) for all φ ∈ X∗. Let T : X → Y be bounded and linear. Show that
if xi converges to x weakly, then Txi converges to Tx weakly.

Now let X = `2. Show that for a sequence xi ∈ X, i = 1, 2, . . ., with ||xi|| 6 1, there
exists a subsequence xik such that xik converges weakly to some x ∈ X with ||x|| 6 1.

Now let Y = `1, and show that yi ∈ Y converges to y ∈ Y weakly if and only if
yi → y in the usual sense.

Define what it means for a linear operator T : X → Y to be compact, and deduce
from the above that any bounded linear T : `2 → `1 is compact.

Paper 3
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22F Riemann Surfaces

Define the branching order vf (p) at a point p and the degree of a non-constant
holomorphic map f between compact Riemann surfaces. State the Riemann–Hurwitz
formula.

Let Wm ⊂ C2 be an affine curve defined by the equation sm = tm + 1, where
m > 2 is an integer. Show that the projective curve Wm ⊂ P2 corresponding to Wm is
non-singular and identify the points of Wm \Wm. Let F be a continuous map from Wm

to the Riemann sphere S2 = C ∪ {∞}, such that the restriction of F to Wm is given by
F (s, t) = s. Show that F is holomorphic on Wm. Find the degree and the ramification
points of F on Wm and their branching orders. Determine the genus of Wm.

[Basic properties of the complex structure on an algebraic curve may be used without proof
if accurately stated.]

23H Differential Geometry

Let S ⊂ R3 be a connected oriented surface.

(a) Define the Gauss map N : S → S2 of S. Given p ∈ S, show that the derivative of
N ,

dNp : TpS → TN(p)S
2 = TpS

is self-adjoint.

(b) Show that if N is a diffeomorphism, then the Gaussian curvature is positive
everywhere. Is the converse true?

24J Probability and Measure

Let X be a real-valued random variable. Define the characteristic function φX .
Show that φX(u) ∈ R for all u ∈ R if and only if X and −X have the same distribution.

For parts (a) and (b) below, let X and Y be independent and identically distributed
random variables.

(a) Show that X = Y almost surely implies that X is almost surely constant.

(b) Suppose that there exists ε > 0 such that |φX(u)| = 1 for all |u| < ε. Calculate
φX−Y to show that E

(
1− cos(u(X − Y ))

)
= 0 for all |u| < ε, and conclude that X

is almost surely constant.

(c) Let X,Y, and Z be independent N(0, 1) random variables. Calculate the charac-
teristic function of η = XY − Z , given that φX(u) = e−u2/2.
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25J Applied Probability

A passenger plane with N numbered seats is about to take off; N − 1 seats have
already been taken, and now the last passenger enters the cabin. The first N−1 passengers
were advised by the crew, rather imprudently, to take their seats completely at random,
but the last passenger is determined to sit in the place indicated on his ticket. If his place
is free, he takes it, and the plane is ready to fly. However, if his seat is taken, he insists
that the occupier vacates it. In this case the occupier decides to follow the same rule: if
the free seat is his, he takes it, otherwise he insists on his place being vacated. The same
policy is then adopted by the next unfortunate passenger, and so on. Each move takes
a random time which is exponentially distributed with mean µ−1. What is the expected
duration of the plane delay caused by these displacements?

26J Principles of Statistics

Write an essay on the rôle of the Metropolis–Hastings algorithm in computational
Bayesian inference on a parametric model. You may for simplicity assume that the
parameter space is finite. Your essay should:

(a) explain what problem in Bayesian inference the Metropolis–Hastings algorithm is
used to tackle;

(b) fully justify that the algorithm does indeed deliver the required information about
the model;

(c) discuss any implementational issues that need care.

Paper 3
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27I Stochastic Financial Models

Let r denote the riskless rate and let σ > 0 be a fixed volatility parameter.

(a) Let (St)t>0 be a Black–Scholes asset with zero dividends:

St = S0 exp(σBt + (r − σ2/2)t) ,

where B is standard Brownian motion. Derive the Black–Scholes partial differential
equation for the price of a European option on S with bounded payoff ϕ(ST ) at
expiry T :

∂tV + 1
2σ

2S2∂SSV + r S∂SV − rV = 0, V (T, ·) = ϕ(·) .

[You may use the fact that for C2 functions f : R × R → R satisfying exponential
growth conditions, and standard Brownian motion B, the process

Cf
t = f(t, Bt)−

∫ t

0

(
∂tf + 1

2∂BBf
)
(s,Bs) ds

is a martingale.]

(b) Indicate the changes in your argument when the asset pays dividends continuously
at rate D > 0. Find the corresponding Black–Scholes partial differential equation.

(c) Assume D = 0. Find a closed form solution for the time-0 price of a European
power option with payoff Sn

T .
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28I Optimization and Control

A discrete-time controlled Markov process evolves according to

Xt+1 = λXt + ut + εt, t = 0, 1, . . . ,

where the ε are independent zero-mean random variables with common variance σ2, and
λ is a known constant.

Consider the problem of minimizing

Ft,T (x) = E

 T−1∑
j=t

βj−tC(Xj , uj) + βT−tR(XT )

 ,
where C(x, u) = 1

2 (u2 + ax2), β ∈ (0, 1) and R(x) = 1
2a0x

2 + b0. Show that the optimal
control at time j takes the form uj = kT−jXj for certain constants ki. Show also that the
minimized value for Ft,T (x) is of the form

1
2aT−tx

2 + bT−t

for certain constants aj , bj . Explain how these constants are to be calculated. Prove that
the equation

f(z) ≡ a+
λ2βz

1 + βz
= z

has a unique positive solution z = a∗, and that the sequence (aj)j>0 converges monotoni-
cally to a∗.

Prove that the sequence (bj)j>0 converges, to the limit

b∗ ≡
βσ2a∗

2(1− β)
.

Finally, prove that kj → k∗ ≡ −βa∗λ/(1 + βa∗).
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29A Partial Differential Equations

Write down the formula for the solution u = u(t, x) for t > 0 of the initial value
problem for the n-dimensional heat equation

∂u

∂t
−∆u = 0 ,

u(0, x) = g(x) ,

for g : Rn → C a given smooth bounded function.

State and prove the Duhamel principle giving the solution v(t, x) for t > 0 to the
inhomogeneous initial value problem

∂v

∂t
−∆v = f ,

v(0, x) = g(x) ,

for f = f(t, x) a given smooth bounded function.

For the case n = 4 and when f = f(x) is a fixed Schwartz function (independent
of t), find v(t, x) and show that w(x) = limt→+∞ v(t, x) is a solution of

−∆w = f .

[Hint: you may use without proof the fact that the fundamental solution of the Laplacian
on R4 is −1/(4π2|x|2).]

30B Asymptotic Methods

The Airy function Ai(z) is defined by

Ai(z) =
1

2πi

∫
C

exp
(
−1

3
t3 + zt

)
dt ,

where the contour C begins at infinity along the ray arg(t) = 4π/3 and ends at infinity
along the ray arg(t) = 2π/3. Restricting attention to the case where z is real and positive,
use the method of steepest descent to obtain the leading term in the asymptotic expansion
for Ai(z) as z →∞:

Ai(z) ∼
exp

(
− 2

3z
3/2

)
2π1/2z1/4

.

[Hint: put t = z1/2τ .]
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31E Integrable Systems

The solution of the initial value problem of the KdV equation is given by

q(x, t) = −2i lim
k→∞

k
∂N

∂x
(x, t, k) ,

where the scalar function N(x, t, k) can be obtained by solving the following Riemann–
Hilbert problem:

M(x, t, k)
a(k)

= N(x, t,−k) +
b(k)
a(k)

exp
(
2ikx+ 8ik3t

)
N(x, t, k), k ∈ R,

M , N and a are the boundary values of functions of k that are analytic for Im k > 0 and
tend to unity as k →∞. The functions a(k) and b(k) can be determined from the initial
condition q(x, 0).

Assume that M can be written in the form

M

a
= M(x, t, k) +

c exp
(
−2px+ 8p3t

)
N(x, t, ip)

k − ip
, Im k > 0,

where M as a function of k is analytic for Im k > 0 and tends to unity as k → ∞; c and
p are constants and p > 0.

(a) By solving the above Riemann–Hilbert problem find a linear equation relating
N(x, t, k) and N(x, t, ip).

(b) By solving this equation explicitly in the case that b = 0 and letting c = 2ipe−2x0 ,
compute the one-soliton solution.

(c) Assume that q(x, 0) is such that a(k) has a simple zero at k = ip. Discuss the
dominant form of the solution as t→∞ and x/t = O(1).

Paper 3
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32D Principles of Quantum Mechanics

Consider a Hamiltonian H with known eigenstates and eigenvalues (possibly
degenerate). Derive a general method for calculating the energies of a new Hamiltonian
H + λV to first order in the parameter λ. Apply this method to find approximate
expressions for the new energies close to an eigenvalue E of H, given that there are
just two orthonormal eigenstates |1〉 and |2〉 corresponding to E and that

〈1|V |1〉 = 〈2|V |2〉 = α , 〈1|V |2〉 = 〈2|V |1〉 = β .

A charged particle of mass m moves in two-dimensional space but is confined to a
square box 0 6 x, y 6 a. In the absence of any potential within this region the allowed
wavefunctions are

ψpq(x, y) =
2
a

sin
pπx

a
sin

qπy

a
, p, q = 1, 2, . . . ,

inside the box, and zero outside. A weak electric field is now applied, modifying the
Hamiltonian by a term λxy/a2, where λma2/~2 is small. Show that the three lowest new
energy levels for the particle are approximately

~2π2

ma2
+
λ

4
,

5~2π2

2ma2
+ λ

( 1
4
±

( 4
3π

)4 )
.

[It may help to recall that 2 sin θ sinϕ = cos(θ−ϕ)− cos(θ+ϕ).]

Paper 3 [TURN OVER



18

33A Applications of Quantum Mechanics

Consider a one-dimensional crystal of lattice space b, with atoms having positions
xs and momenta ps, s = 0, 1, 2, . . . , N − 1, such that the classical Hamiltonian is

H =
N−1∑
s=0

(
p2

s

2m
+ 1

2mλ
2
(
xs+1 − xs − b

)2
)
,

where we identify xN = x0. Show how this may be quantized to give the energy eigenstates
consisting of a ground state |0〉 together with free phonons with energy ~ω(kr) where
kr = 2πr/Nb for suitable integers r. Obtain the following expression for the quantum
operator xs

xs = s b+
(

~
2mN

) 1
2 ∑

r

1√
ω(kr)

(
are

ikrsb + ar
†e−ikrsb

)
,

where ar, ar
† are annihilation and creation operators, respectively.

An interaction involves the matrix element

M =
N−1∑
s=0

〈0|eiqxs |0〉 .

Calculate this and show that |M |2 has its largest value when q = 2πn/b for integer n.
Disregard the case ω(kr) = 0.

[You may use the relations

N−1∑
s=0

eikrsb =
{
N , r = Nb ;
0 otherwise,

and eA+B = eAeBe−
1
2 [A,B] if [A,B] commutes with A and with B.]
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34D Statistical Physics

What is meant by the chemical potential of a thermodynamic system? Derive the
Gibbs distribution with variable particle number N , for a system at temperature T and
chemical potential µ. (You may assume that the volume does not vary.)

Consider a non-interacting gas of fermions in a box of fixed volume, at temperature
T and chemical potential µ. Use the Gibbs distribution to find the mean occupation
number of a one-particle quantum state of energy ε. Assuming that the density of states
is Cε1/2, for some constant C, deduce that the mean number of particles with energies
between ε and ε+ dε is

Cε
1
2 dε

e(ε−µ)/T + 1
.

Why can µ be identified with the Fermi energy εF when T = 0? Estimate the
number of particles with energies greater than εF when T is small but non-zero.

35E Electrodynamics

A particle of rest mass m and charge q is moving along a trajectory xa(s), where
s is the particle’s proper time, in a given external electromagnetic field with 4-potential
Aa(xc). Consider the action principle δS = 0 where the action is S =

∫
L ds and

L(s, xa, ẋa) = −m
√
ηabẋaẋb − qAa(xc)ẋa,

and variations are taken with fixed endpoints.

Show first that the action is invariant both under reparametrizations s → αs + β
where α and β are constants and also under a change of electromagnetic gauge. Next
define the generalized momentum Pa = ∂L/∂ẋa, and obtain the equation of motion

mẍa = qF a
bẋ

b, (∗)

where the tensor F a
b should be defined and you may assume that d/ds (ηabẋ

aẋb) = 0.
Then verify from (∗) that indeed d/ds (ηabẋ

aẋb) = 0.

How does Pa differ from the momentum pa of an uncharged particle? Comment
briefly on the principle of minimal coupling.
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36B Fluid Dynamics II

Define the rate of strain tensor eij in terms of the velocity components ui.

Write down the relation between eij , the pressure p and the stress tensor σij in an
incompressible Newtonian fluid of viscosity µ.

Prove that 2µeijeij is the local rate of dissipation per unit volume in the fluid.

Incompressible fluid of density ρ and viscosity µ occupies the semi-infinite domain
y > 0 above a rigid plane boundary y = 0 that oscillates with velocity (V cosωt, 0, 0),
where V and ω are constants. The fluid is at rest at y = ∞. Determine the velocity field
produced by the boundary motion after any transients have decayed.

Evaluate the time-averaged rate of dissipation in the fluid, per unit area of
boundary.

37C Waves

An acoustic waveguide consists of a long straight tube z > 0 with square cross-
section 0<x<a, 0<y <a bounded by rigid walls. The sound speed of the gas in the
tube is c0. Find the dispersion relation for the propagation of sound waves along the tube.
Show that for every dispersive mode there is a cut-off frequency, and determine the lowest
cut-off frequency ωmin.

An acoustic disturbance is excited at z = 0 with a prescribed pressure perturbation
p̃(x, y, 0, t) = P̃ (x, y) exp(−iωt) with ω = 1

2ωmin. Find the pressure perturbation
p̃(x, y, z, t) at distances z � a along the tube.
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38C Numerical Analysis

(a) For the equation y′ = f(t, y), consider the following multistep method with s steps,

s∑
i=0

ρiyn+i = h

s∑
i=0

σif(tn+i, yn+i) ,

where h is the step size and ρi, σi are specified constants with ρs = 1. Prove that
this method is of order p if and only if

s∑
i=0

ρiQ(tn+i) = h

s∑
i=0

σiQ
′(tn+i)

for any polynomial Q of degree 6 p. Deduce that there is no s-step method of order
2s+ 1.

[You may use the fact that, for any ai, bi, the Hermite interpolation problem

Q(xi) = ai, Q′(xi) = bi, i = 0, . . . , s

is uniquely solvable in the space of polynomials of degree 2s+ 1.]

(b) State the Dahlquist equivalence theorem regarding the convergence of a multistep
method. Determine all the values of the real parameter a 6= 0 for which the
multistep method

yn+3 + (2a− 3)[yn+2 − yn+1]− yn = ha [fn+2 + fn+1]

is convergent, and determine the order of convergence.

END OF PAPER
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