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SECTION I

1H Number Theory

Prove that all binary quadratic forms of discriminant -7 are equivalent to
x2 + xy + 2y2.

Determine which prime numbers p are represented by x2 + xy + 2y2.

2G Topics in Analysis

(a) State Chebyshev’s equal ripple criterion.

(b) Let f : [−1, 1] → R be defined by

f(x) = cos 4πx ,

and let g be a polynomial of degree 7. Prove that there exists an x ∈ [−1, 1] such
that |f(x)− g(x)| > 1.

3F Geometry and Groups

Determine whether the following elements of PSL2(R) are elliptic, parabolic, or
hyperbolic. Justify your answers.(

5 8
−2 −3

)
,

(
−3 1
2 −1

)
.

In the case of the first of these transformations find the fixed points.

4G Coding and Cryptography

Let Σ1 and Σ2 be alphabets of sizes m and a. What does it mean to say that an
a-ary code f : Σ1 → Σ∗2 is decipherable? Show that if f is decipherable then the word
lengths s1, . . . , sm satisfy

m∑
i=1

a−si 6 1 .

Find a decipherable binary code consisting of codewords 011, 0111, 01111, 11111,
and three further codewords of length 2. How do you know the example you have given
is decipherable?

Paper 2
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5I Statistical Modelling

Let Y1, . . . , Yn be independent Poisson random variables with means µ1, . . . , µn, for
i = 1, . . . , n, where log(µi) = βxi, for some known constants xi and an unknown parameter
β. Find the log-likelihood for β.

By first computing the first and second derivatives of the log-likelihood for β,
explain the algorithm you would use to find the maximum likelihood estimator, β̂.

6B Mathematical Biology

Two interacting populations of prey and predators, with populations u(t), v(t)
respectively, obey the evolution equations (with all parameters positive)

du

dt
= u(µ1 − α1v − δu) ,

dv

dt
= v(−µ2 + α2u)− ε .

Give an explanation in terms of population dynamics of each of the terms in these
equations.

Show that if α2µ1 > δµ2 there are two non-trivial fixed points with u, v 6= 0,
provided ε is sufficiently small. Find the trace and determinant of the Jacobian in terms
of u, v and show that, when δ and ε are very small, the fixed point with u ≈ µ1/δ,
v ≈ εδ/µ1α2 is always unstable.

7E Dynamical Systems

Explain what is meant by a strict Lyapunov function on a domain D containing the
origin for a dynamical system ẋ = f(x) in Rn. Define the domain of stability of a fixed
point x0.

By considering the function V = 1
2 (x2+y2) show that the origin is an asymptotically

stable fixed point of
ẋ = −2x+ y + x3 − xy2 ,

ẏ = −x− 2y + 6x2y + 4y3 .

Show also that its domain of stability includes x2 +y2 < 1
2 and is contained in x2 +y2 6 2.
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8E Further Complex Methods

The function F (t) is defined, for Re t > −1, by

F (t) =
∫ ∞

0

ute−u

1 + u
du

and by analytic continuation elsewhere in the complex t-plane. By considering the integral
of a suitable function round a Hankel contour, obtain the analytic continuation of F (t)
and hence show that singularities of F (t) can occur only at z = −1, −2, −3, . . . .

9C Classical Dynamics

Two point masses, each of mass m, are constrained to lie on a straight line and
are connected to each other by a spring of force constant k. The left-hand mass is also
connected to a wall on the left by a spring of force constant j. The right-hand mass is
similarly connected to a wall on the right, by a spring of force constant `, so that the
potential energy is

V = 1
2k(η1 − η2)2 + 1

2jη
2
1 + 1

2`η
2
2 ,

where ηi is the distance from equilibrium of the ith mass. Derive the equations of motion.
Find the frequencies of the normal modes.

10D Cosmology

The total energy of a gas can be expressed in terms of a momentum integral

E =
∫ ∞

0

E(p) n̄(p) dp ,

where p is the particle momentum, E(p) = c
√
p2 +m2c2 is the particle energy and n̄(p) dp

is the average number of particles in the momentum range p→ p+ dp. Consider particles
in a cubic box of side L with p ∝ L−1. Explain why the momentum varies as

dp

dV
= − p

3V
.

Consider the overall change in energy dE due to the volume change dV . Given that the
volume varies slowly, use the thermodynamic result dE = −P dV (at fixed particle number
N and entropy S) to find the pressure

P =
1

3V

∫ ∞

0

p E ′(p) n̄(p) dp .

Use this expression to derive the equation of state for an ultrarelativistic gas.

During the radiation-dominated era, photons remain in equilibrium with energy
density εγ ∝ T 4 and number density nγ ∝ T 3. Briefly explain why the photon temperature
falls inversely with the scale factor, T ∝ a−1. Discuss the implications for photon number
and entropy conservation.
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SECTION II

11G Topics in Analysis

(a) Let K be a closed subset of the unit disc in C. Let f : C → C be a rational
function with all its poles of modulus strictly greater than 1. Explain why f can
be approximated uniformly on K by polynomials.
[Standard results from complex analysis may be assumed.]

(b) With K as above, define Λ to be the set of all λ ∈ C \ K such that the function
(z − λ)−1 can be uniformly approximated on K by polynomials. If λ ∈ Λ, prove
that there is some δ > 0 such that µ ∈ Λ whenever |λ− µ| < δ.

12G Coding and Cryptography

Define a cyclic code. Show that there is a bijection between the cyclic codes of
length n, and the factors of Xn − 1 in F2[X].

If n is an odd integer then we can find a finite extension K of F2 that contains
a primitive nth root of unity α. Show that a cyclic code of length n with defining set
{α, α2, . . . , αδ−1} has minimum distance at least δ. Show that if n = 7 and δ = 3 then we
obtain Hamming’s original code.

[You may quote a formula for the Vandermonde determinant without proof.]
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13B Mathematical Biology

Consider the discrete predator-prey model for two populations Nt, Pt of prey and
predators, respectively:

Nt+T = rNt exp(−aPt)
Pt+T = sNt(1− b exp(−aPt))

}
, (∗)

where r, s, a, b are constants, all assumed to be positive.

(a) Give plausible explanations of the meanings of T, r, s, a, b.

(b) Nondimensionalize equations (∗) to show that with appropriate rescaling they may
be reduced to the form

nt+1 = rnt exp(−pt)
pt+1 = nt(1− b exp(−pt))

}
.

(c) Now assume that b < 1, r > 1. Show that the origin is unstable, and that there is
a nontrivial fixed point (n, p) = (nc(b, r), pc(b, r)). Investigate the stability of this
point by writing (nt, pt) = (nc +n′t, pc + p′t) and linearizing. Express the linearized
equations as a second order recurrence relation for n′t, and hence show that n′t
satisfies an equation of the form

n′t = Aλt
1 +Bλt

2

where the quantities λ1,2 satisfy λ1 + λ2 = 1 + bnc/r, λ1λ2 = nc and A,B are
constants. Give a similar expression for p′t for the same values of A,B.

Show that when r is just greater than unity the λi (i = 1, 2) are real and both less
than unity, while if nc is just greater than unity then the λi are complex with modulus
greater than one. Show also that nc increases monotonically with r and that if the roots
are real neither of them can be unity.

Deduce that the fixed point is stable for sufficiently small r but loses stability for a
value of r that depends on b but is certainly less than e = exp(1). Give an equation that
determines the value of r where stability is lost, and an equation that gives the argument
of the eigenvalue at this point. Sketch the behaviour of the moduli of the eigenvalues as
functions of r.
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14E Dynamical Systems

Let F : I → I be a continuous one-dimensional map of an interval I ⊂ R. Explain
what is meant by saying (a) that F has a horseshoe, (b) that F is chaotic (Glendinning’s
definition).

Consider the tent map defined on the interval [0, 1] by

F (x) =
{
µx 0 6 x < 1

2
µ(1− x) 1

2 6 x 6 1

with 1 < µ 6 2.

Find the non-zero fixed point x0 and the points x−1 <
1
2 < x−2 that satisfy

F 2(x−2) = F (x−1) = x0 .

Sketch a graph of F and F 2 showing the points corresponding to x−2, x−1 and x0.
Hence show that F 2 has a horseshoe if µ > 21/2.

Explain briefly why F 4 has a horseshoe when 21/4 6 µ < 21/2 and why there are
periodic points arbitrarily close to x0 for µ > 21/2, but no such points for 21/4 6 µ < 21/2.
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15D Cosmology

(a) Consider a homogeneous and isotropic universe filled with relativistic matter of
mass density ρ(t) and scale factor a(t). Consider the energy E(t) ≡ ρ(t)c2V (t) of a
small fluid element in a comoving volume V0 where V (t) = a3(t)V0. Show that for
slow (adiabatic) changes in volume, the density will satisfy the fluid conservation
equation

ρ̇ = −3
ȧ

a

(
ρ+ P/c2

)
,

where P is the pressure.

(b) Suppose that a flat (k = 0) universe is filled with two matter components:

(i) radiation with an equation of state Pr = 1
3ρrc

2.

(ii) a gas of cosmic strings with an equation of state Ps = − 1
3ρsc

2.

Use the fluid conservation equation to show that the total relativistic mass density
behaves as

ρ =
ρr0

a4
+
ρs0

a2
,

where ρr0 and ρs0 are respectively the radiation and string densities today (that is,
at t = t0 when a(t0) = 1). Assuming that both the Hubble parameter today H0

and the ratio β ≡ ρr0/ρs0 are known, show that the Friedmann equation can be
rewritten as (

ȧ

a

)2

=
H2

0

a4

(
a2 + β

1 + β

)
.

Solve this equation to find the following solution for the scale factor

a(t) =
(H0t)1/2

(1 + β)1/2

[
H0t+ 2β1/2(1 + β)1/2

]1/2

.

Show that the scale factor has the expected asymptotic behaviour at early times
t→ 0.

Hence show that the age of this universe today is

t0 = H−1
0 (1 + β)1/2

[
(1 + β)1/2 − β1/2

]
,

and that the time teq of equal radiation and string densities (ρr = ρs) is

teq = H−1
0

(√
2− 1

)
β1/2(1 + β)1/2 .
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16H Logic and Set Theory

Which of the following statements are true, and which false? Justify your answers.

(a) For any ordinals α and β with β 6= 0, there exist ordinals γ and δ with δ < β such
that α = β.γ + δ.

(b) For any ordinals α and β with β 6= 0, there exist ordinals γ and δ with δ < β such
that α = γ.β + δ.

(c) α.(β + γ) = α.β + α.γ for all α, β, γ.

(d) (α+ β).γ = α.γ + β.γ for all α, β, γ.

(e) Any ordinal of the form ω.α is a limit ordinal.

(f) Any limit ordinal is of the form ω.α.

17F Graph Theory

Let G be a bipartite graph with vertex classes X and Y . State Hall’s necessary
condition for G to have a matching from X to Y , and prove that it is sufficient.

Deduce a necessary and sufficient condition for G to have |X|−d independent edges,
where d is a natural number.

Show that the maximum size of a set of independent edges in G is equal to the
minimum size of a subset S ⊂ V (G) such that every edge of G has an end vertex in S.

18H Galois Theory

Write an essay on ruler and compass construction.

19F Representation Theory

(a) Let G be S4, the symmetric group on four letters. Determine the character table
of G.
[Begin by listing the conjugacy classes and their orders.]

(b) For each irreducible representation V of G = S4, decompose ResS4
A4

(V ) into
irreducible representations. You must justify your answer.
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20G Number Fields

Let K = Q(
√

26) and let ε = 5 +
√

26. By Dedekind’s theorem, or otherwise, show
that the ideal equations

2 = [2, ε+ 1]2, 5 = [5, ε+ 1][5, ε− 1], [ε+ 1] = [2, ε+ 1][5, ε+ 1]

hold in K. Deduce that K has class number 2.

Show that ε is the fundamental unit in K. Hence verify that all solutions in integers
x, y of the equation x2 − 26y2 = ±10 are given by

x+
√

26y = ±εn(ε± 1) (n = 0,±1,±2, . . .) .

[It may be assumed that the Minkowski constant for K is 1
2 .]

21H Algebraic Topology

State the simplicial approximation theorem. Compute the number of 0-simplices
(vertices) in the barycentric subdivision of an n-simplex and also compute the number
of n-simplices. Finally, show that there are at most countably many homotopy classes of
continuous maps from the 2-sphere to itself.

22G Linear Analysis

Let X be a metric space. Define what it means for a subset E ⊂ X to be of first or
second category. State and prove a version of the Baire category theorem. For 1 6 p 6 ∞,
show that the set `p is of first category in the normed space `r when r > p and `r is given
its standard norm. What about r = p?

23F Riemann Surfaces

Define the terms Riemann surface, holomorphic map between Riemann surfaces,
and biholomorphic map.

(a) Prove that if two holomorphic maps f, g coincide on a non-empty open subset of a
connected Riemann surface R then f = g everywhere on R.

(b) Prove that if f : R → S is a non-constant holomorphic map between Riemann
surfaces and p ∈ R then there is a choice of co-ordinate charts φ near p and ψ near
f(p), such that (ψ ◦f ◦φ−1)(z) = zn, for some non-negative integer n. Deduce that
a holomorphic bijective map between Riemann surfaces is biholomorphic.

[The inverse function theorem for holomorphic functions on open domains in C may be
used without proof if accurately stated.]
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24H Differential Geometry

Let S ⊂ R3 be a surface.

(a) Define the exponential map expp at a point p ∈ S. Assuming that expp is smooth,
show that expp is a diffeomorphism in a neighbourhood of the origin in TpS.

(b) Given a parametrization around p ∈ S, define the Christoffel symbols and show
that they only depend on the coefficients of the first fundamental form.

(c) Consider a system of normal co-ordinates centred at p, that is, Cartesian co-
ordinates (x, y) in TpS and parametrization given by (x, y) 7→ expp(xe1 + ye2),
where {e1, e2} is an orthonormal basis of TpS. Show that all of the Christoffel
symbols are zero at p.

25J Probability and Measure

(a) What is meant by saying that (Ω,A, µ) is a measure space? Your answer should
include clear definitions of any terms used.

(b) Consider the following sequence of Borel-measurable functions on the measure space
(R,L, λ), with the Lebesgue σ-algebra L and Lebesgue measure λ:

fn(x) =
{

1/n if 0 6 x 6 en;
0 otherwise

for n ∈ N .

For each p ∈ [1,∞], decide whether the sequence (fn)n∈N converges in Lp as
n→∞.
Does (fn)n∈N converge almost everywhere?
Does (fn)n∈N converge in measure?
Justify your answers.

For parts (c) and (d), let (fn)n∈N be a sequence of real-valued, Borel-measurable functions
on a probability space (Ω,A, µ).

(c) Prove that {x ∈ Ω : fn(x) converges to a finite limit} ∈ A.

(d) Show that fn → 0 almost surely if and only if sup
m>n

|fm| → 0 in probability.
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26J Applied Probability

(a) Define a renewal process (Xt) with independent, identically-distributed holding
times S1, S2, .... State without proof the strong law of large numbers for (Xt). State
without proof the elementary renewal theorem for the mean value m(t) = EXt.

(b) A circular bus route consists of ten bus stops. At exactly 5am, the bus starts
letting passengers in at the main bus station (stop 1). It then proceeds to stop 2
where it stops to let passengers in and out. It continues in this fashion, stopping
at stops 3 to 10 in sequence. After leaving stop 10, the bus heads to stop 1 and the
cycle repeats. The travel times between stops are exponentially distributed with
mean 4 minutes, and the time required to let passengers in and out at each stop
are exponentially distributed with mean 1 minute. Calculate approximately the
average number of times the bus has gone round its route by 1pm.

When the driver’s shift finishes, at exactly 1pm, he immediately throws all the
passengers off the bus if the bus is already stopped, or otherwise, he drives to the
next stop and then throws the passengers off. He then drives as fast as he can
round the rest of the route to the main bus station. Giving reasons but not proofs,
calculate approximately the average number of stops he will drive past at the end
of his shift while on his way back to the main bus station, not including either the
stop at which he throws off the passengers or the station itself.

27J Principles of Statistics

Let {f(·|θ) : θ ∈ Θ} be a parametric family of densities for observation X. What
does it mean to say that the statistic T ≡ T (X) is sufficient for θ? What does it mean to
say that T is minimal sufficient?

State the Rao–Blackwell theorem. State the Cramér–Rao lower bound for the
variance of an unbiased estimator of a (scalar) parameter, taking care to specify any
assumptions needed.

Let X1, . . . , Xn be a sample from a U(0, θ) distribution, where the positive
parameter θ is unknown. Find a minimal sufficient statistic T for θ. If h(T ) is an unbiased
estimator for θ, find the form of h, and deduce that this estimator is minimum-variance
unbiased. Would it be possible to reach this conclusion using the Cramér–Rao lower
bound?
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28I Stochastic Financial Models

(a) In the context of a single-period financial market with n traded assets and a single
riskless asset earning interest at rate r, what is an arbitrage? What is an equivalent
martingale measure? Explain marginal utility pricing, and how it leads to an
equivalent martingale measure.

(b) Consider the following single-period market with two assets. The first is a riskless
bond, worth 1 at time 0, and 1 at time 1. The second is a share, worth 1 at time
0 and worth S1 at time 1, where S1 is uniformly distributed on the interval [0, a],
where a > 0. Under what condition on a is this model arbitrage free? When it is,
characterise the set E of equivalent martingale measures.

An agent with C2 utility U and with wealth w at time 0 aims to pick the number θ
of shares to hold so as to maximise his expected utility of wealth at time 1. Show
that he will choose θ to be positive if and only if a > 2.

An option pays (S1− 1)+ at time 1. Assuming that a = 2, deduce that the agent’s
price for this option will be 1/4, and show that the range of possible prices for this
option as the pricing measure varies in E is the interval (0, 1

2 ).

29I Optimization and Control

A policy π is to be chosen to maximize

F (π, x) = Eπ

∑
t>0

βtr(xt, ut)

∣∣∣∣∣ x0 = x

 ,
where 0 < β 6 1. Assuming that r > 0, prove that π is optimal if F (π, x) satisfies the
optimality equation.

An investor receives at time t an income of xt of which he spends ut, subject to
0 6 ut 6 xt. The reward is r(xt, ut) = ut, and his income evolves as

xt+1 = xt + (xt − ut)εt,

where (εt)t>0 is a sequence of independent random variables with common mean θ > 0.
If 0 < β 6 1/(1 + θ), show that the optimal policy is to take ut = xt for all t.

What can you say about the problem if β > 1/(1 + θ)?
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30A Partial Differential Equations

Define a fundamental solution of a constant-coefficient linear partial differential
operator, and prove that the distribution defined by the function N : R3 → R

N(x) = (4π|x|)−1

is a fundamental solution of the operator −∆ on R3.

State and prove the mean value property for harmonic functions on R3 and deduce
that any two smooth solutions of

−∆u = f , f ∈ C∞(R3)

which satisfy the condition
lim

|x|→∞
u(x) = 0

are in fact equal.

31E Integrable Systems

Let φ(t) satisfy the singular integral equation

(
t4 + t3 − t2

) φ(t)
2

+
(t4 − t3 − t2)

2πi

∮
C

φ(τ)
τ − t

dτ = (A− 1)t3 + t2 ,

where C denotes the circle of radius 2 centred on the origin,
∮

denotes the principal
value integral and A is a constant. Derive the associated Riemann–Hilbert problem, and
compute the canonical solution of the corresponding homogeneous problem.

Find the value of A such that φ(t) exists, and compute the unique solution φ(t) if
A takes this value.
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32A Principles of Quantum Mechanics

Let |↑〉 and |↓〉 denote the eigenstates of Sz for a particle of spin 1
2 . Show that

|↑θ〉 = cos
θ

2
|↑〉+ sin

θ

2
|↓〉 , |↓θ〉 = − sin

θ

2
|↑〉+ cos

θ

2
|↓〉

are eigenstates of Sz cos θ + Sx sin θ for any θ. Show also that the composite state

|χ〉 =
1√
2

(|↑〉 |↓〉 − |↓〉 |↑〉) ,

for two spin- 1
2 particles, is unchanged under a transformation

|↑〉 7→ |↑θ〉 , |↓〉 7→ |↓θ〉 (∗)

applied to all one-particle states. Hence, by considering the action of certain components
of the spin operator for the composite system, show that |χ〉 is a state of total spin zero.

Two spin- 1
2 particles A and B have combined spin zero (as in the state |χ〉 above)

but are widely separated in space. A magnetic field is applied to particle B in such a way
that its spin states are transformed according to (∗), for a certain value of θ, while the spin
states of particle A are unaffected. Once this has been done, a measurement is made of
Sz for particle A, followed by a measurement of Sz for particle B. List the possible results
for this pair of measurements and find the total probability, in terms of θ, for each pair of
outcomes to occur. For which outcomes is the two-particle system left in an eigenstate of
the combined total spin operator, S2, and what is the eigenvalue for each such outcome?

[
σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

]
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33D Applications of Quantum Mechanics

State and prove Bloch’s theorem for the electron wave functions for a periodic
potential V (r) = V (r + l) where l =

∑
i ni ai is a lattice vector.

What is the reciprocal lattice? Explain why the Bloch wave-vector k is arbitrary
up to k → k + g, where g is a reciprocal lattice vector.

Describe in outline why one can expect energy bands En(k) = En(k + g). Explain
how k may be restricted to a Brillouin zone B and show that the number of states in
volume d3k is

2
(2π)3

d3k .

Assuming that the velocity of an electron in the energy band with Bloch wave-vector k is

v(k) =
1
~
∂

∂k
En(k) ,

show that the contribution to the electric current from a full energy band is zero. Given
that n(k) = 1 for each occupied energy level, show that the contribution to the current
density is then

j = −e 2
(2π)3

∫
B

d3k n(k)v(k) ,

where −e is the electron charge.

34D Statistical Physics

What is meant by the heat capacity CV of a thermodynamic system? By
establishing a suitable Maxwell identity, show that

∂CV

∂V

∣∣∣
T

= T
∂2P

∂T 2

∣∣∣
V
. (∗)

In a certain model of N interacting particles in a volume V and at temperature T ,
the partition function is

Z =
1
N !

(V − aN)N (bT )3N/2 ,

where a and b are constants. Find the equation of state and the entropy for this gas of
particles. Find the energy and hence the heat capacity CV of the gas, and verify that the
relation (∗) is satisfied.
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35A General Relativity

The Schwarzschild metric is

ds2 =
(

1− 2M
r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
−

(
1− 2M

r

)
dt2 .

Writing u = 1/r, obtain the equation

d2u

dφ2
+ u = 3Mu2 , (∗)

determining the spatial orbit of a null (massless) particle moving in the equatorial plane
θ = π/2.

Verify that two solutions of (∗) are

(i) u =
1

3M
, and

(ii) u =
1

3M
− 1
M

1
coshφ+ 1

.

What is the significance of solution (i)? Sketch solution (ii) and describe its relation to
solution (i).

Show that, near φ = cosh−1 2, one may approximate the solution (ii) by

r sin(φ− cosh−1 2) ≈
√

27M ,

and hence obtain the impact parameter.
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36B Fluid Dynamics II

A very long cylinder of radius a translates steadily at speed V in a direction
perpendicular to its axis and parallel to a plane boundary. The centre of the cylinder
remains a distance a + b above the plane, where b � a, and the motion takes place
through an incompressible fluid of viscosity µ.

Consider the force F per unit length parallel to the plane that must be applied to
the cylinder to maintain the motion. Explain why F scales according to F ∝ µV (a/b)1/2.

Approximating the lower cylindrical surface by a parabola, or otherwise, determine
the velocity and pressure gradient fields in the space between the cylinder and the plane.
Hence, by considering the shear stress on the plane, or otherwise, calculate F explicitly.[
You may use∫ ∞

−∞
(1 + x2)−1 dx = π ,

∫ ∞

−∞
(1 + x2)−2 dx = 1

2π and
∫ ∞

−∞
(1 + x2)−3 dx = 3

8π .

]

37C Waves

The dispersion relation for waves in deep water is

ω2 = g|k| .
At time t = 0 the water is at rest and the elevation of its free surface is ζ = ζ0 exp(−|x|/b)
where b is a positive constant. Use Fourier analysis to find an integral expression for ζ(x, t)
when t > 0.

Use the method of stationary phase to find ζ(V t, t) for fixed V > 0 and t→∞.[∫ ∞

−∞
exp

(
ikx− |x|

b

)
dx =

2b
1 + k2b2

;
∫ ∞

−∞
exp(−ax2) dx =

√
π

a
(Re a > 0) .

]

38C Numerical Analysis

In the unit square the Poisson equation ∇2u = f , with zero Dirichlet boundary
conditions, is being solved by the five-point formula using a square grid of mesh size
h = 1/(M + 1),

ui,j−1 + ui,j+1 + ui−1,j + ui+1,j − 4ui,j = h2fi,j .

Let u(x, y) be the exact solution, and let ei,j = ui,j−u(ih, jh) be the error of the five-point
formula at the (i, j)th grid point. Justifying each step, prove that M∑

i,j=1

|ei,j |2
1/2

6 ch, h→ 0 ,

where c is some constant.

END OF PAPER
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