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SECTION I

1D Algebra and Geometry

Give an example of a real 3× 3 matrix A with eigenvalues −1, (1 ± i)/
√

2. Prove
or give a counterexample to the following statements:

(i) any such A is diagonalisable over C ;

(ii) any such A is orthogonal;

(iii) any such A is diagonalisable over R.

2D Algebra and Geometry

Show that if H and K are subgroups of a group G, then H ∩K is also a subgroup
of G. Show also that if H and K have orders p and q respectively, where p and q are
coprime, then H ∩K contains only the identity element of G. [You may use Lagrange’s
theorem provided it is clearly stated.]

3A Vector Calculus

Consider the vector field F(x) =
(
(3x3 − x2)y, (y3 − 2y2 + y)x, z2 − 1

)
and let S

be the surface of a unit cube with one corner at (0, 0, 0), another corner at (1, 1, 1) and
aligned with edges along the x-, y- and z-axes. Use the divergence theorem to evaluate

I =
∫

S

F · dS .

Verify your result by calculating the integral directly.

4A Vector Calculus

Use suffix notation in Cartesian coordinates to establish the following two identities
for the vector field v:

∇ · (∇× v) = 0 , (v · ∇)v = ∇( 1
2 |v|

2)− v × (∇× v) .
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SECTION II

5D Algebra and Geometry

Let G be a group and let A be a non-empty subset of G. Show that

C(A) = {g ∈ G : gh = hg for all h ∈ A}

is a subgroup of G.

Show that ρ : G×G → G given by

ρ(g, h) = ghg−1

defines an action of G on itself.

Suppose G is finite, let O1, . . . , On be the orbits of the action ρ and let hi ∈ Oi for
i = 1, . . . , n. Using the Orbit–Stabilizer Theorem, or otherwise, show that

|G| = |C(G)|+
∑

i

|G|/|C({hi})|

where the sum runs over all values of i such that |Oi| > 1.

Let G be a finite group of order pr, where p is a prime and r is a positive integer.
Show that C(G) contains more than one element.

6D Algebra and Geometry

Let θ : G → H be a homomorphism between two groups G and H. Show that the
image of θ, θ(G), is a subgroup of H; show also that the kernel of θ, ker(θ), is a normal
subgroup of G.

Show that G/ker(θ) is isomorphic to θ(G).

Let O(3) be the group of 3 × 3 real orthogonal matrices and let SO(3) ⊂ O(3) be
the set of orthogonal matrices with determinant 1. Show that SO(3) is a normal subgroup
of O(3) and that O(3)/SO(3) is isomorphic to the cyclic group of order 2.

Give an example of a homomorphism from O(3) to SO(3) with kernel of order 2.
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7D Algebra and Geometry

Let SL(2, R) be the group of 2 × 2 real matrices with determinant 1 and let
σ : R → SL(2, R) be a homomorphism. On K = R× R2 consider the product

(x,v) ∗ (y,w) = (x + y,v + σ(x)w).

Show that K with this product is a group.

Find the homomorphism or homomorphisms σ for which K is a commutative group.

Show that the homomorphisms σ for which the elements of the form (0,v) with
v = (a, 0), a ∈ R, commute with every element of K are precisely those such that

σ(x) =
(

1 r(x)
0 1

)
,

with r : (R,+) → (R,+) an arbitrary homomorphism.

8D Algebra and Geometry

Show that every Möbius transformation can be expressed as a composition of maps
of the forms: S1(z) = z + α, S2(z) = λ z and S3(z) = 1/z, where α, λ ∈ C.

Show that if z1, z2, z3 and w1, w2, w3 are two triples of distinct points in C∪{∞},
there exists a unique Möbius transformation that takes zj to wj (j = 1, 2, 3).

Let G be the group of those Möbius transformations which map the set {0, 1,∞}
to itself. Find all the elements of G. To which standard group is G isomorphic?

9A Vector Calculus

Evaluate the line integral∫
α(x2 + xy)dx + β(x2 + y2)dy,

with α and β constants, along each of the following paths between the points A = (1, 0)
and B = (0, 1):

(i) the straight line between A and B;

(ii) the x-axis from A to the origin (0, 0) followed by the y-axis to B;

(iii) anti-clockwise from A to B around the circular path centred at the origin (0, 0).

You should obtain the same answer for the three paths when α = 2β. Show that
when α = 2β, the integral takes the same value along any path between A and B.
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10A Vector Calculus

State Stokes’ theorem for a vector field A.

By applying Stokes’ theorem to the vector field A = φk, where k is an arbitrary
constant vector in R3 and φ is a scalar field defined on a surface S bounded by a curve
∂S, show that ∫

S

dS×∇φ =
∫

∂S

φ dx .

For the vector field A = x2y4(1, 1, 1) in Cartesian coordinates, evaluate the line integral

I =
∫

A · dx ,

around the boundary of the quadrant of the unit circle lying between the x- and y-
axes, that is, along the straight line from (0, 0, 0) to (1, 0, 0), then the circular arc
x2 + y2 = 1, z = 0 from (1, 0, 0) to (0, 1, 0) and finally the straight line from (0, 1, 0)
back to (0, 0, 0).

11A Vector Calculus

In a region R of R3 bounded by a closed surface S, suppose that φ1 and φ2 are both
solutions of ∇2φ = 0, satisfying boundary conditions on S given by φ = f on S, where f
is a given function. Prove that φ1 = φ2.

In R2 show that

φ(x, y) = (a1 coshλx + a2 sinhλx)(b1 cos λy + b2 sinλy)

is a solution of ∇2φ = 0, for any constants a1, a2, b1, b2 and λ. Hence, or otherwise, find
a solution φ(x, y) in the region x > 0 and 0 6 y 6 a which satisfies:

φ(x, 0) = 0 , φ(x, a) = 0, x > 0 ,

φ(0, y) = sin
nπy

a
, φ(x, y) → 0 as x →∞ , 0 6 y 6 a ,

where a is a real constant and n is an integer.
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12A Vector Calculus

Define what is meant by an isotropic tensor. By considering a rotation of a second
rank isotropic tensor Bij by 90◦ about the z-axis, show that its components must satisfy
B11 = B22 and B13 = B31 = B23 = B32 = 0. Now consider a second and different rotation
to show that Bij must be a multiple of the Kronecker delta, δij .

Suppose that a homogeneous but anisotropic crystal has the conductivity tensor

σij = αδij + γninj ,

where α, γ are real constants and the ni are the components of a constant unit vector n
(n · n = 1). The electric current density J is then given in components by

Ji = σijEj ,

where Ej are the components of the electric field E. Show that

(i) if α 6= 0 and γ 6= 0, then there is a plane such that if E lies in this
plane, then E and J must be parallel, and

(ii) if γ 6= −α and α 6= 0, then E 6= 0 implies J 6= 0.

If Dij = εijknk, find the value of γ such that

σijDjkDkm = −σim .

END OF PAPER
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