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1/I/1H Number Theory

Define the Legendre symbol
(

a
p

)
. Prove that, if p is an odd prime, then

(2
p

)
= (−1)

p2−1
8 .

Use the law of quadratic reciprocity to calculate
(

91
167

)
.

[You may use the Gauss Lemma without proof.]

2/I/1H Number Theory

Recall that, if p is an odd prime, a primitive root modulo p is a generator of the
cyclic (multiplicative) group (Z/pZ)×. Let p be an odd prime of the form 22n

+ 1; show
that a is a primitive root mod p if and only if a is not a quadratic residue mod p. Use this
result to prove that 7 is a primitive root modulo every such prime.

3/I/1H Number Theory

Let π(x) be the number of primes p 6 x. State the Legendre formula, and prove
that

lim
x→∞

π(x)
x

= 0.

[You may use the formula ∏
p6x

(1− 1/p)−1 > log x

without proof.]

3/II/11H Number Theory

Show that there are exactly two reduced positive definite integer binary quadratic
forms with discriminant −20; write these forms down.

State a criterion for an odd integer n to be properly represented by a positive
definite integer binary quadratic form of given discriminant d.

Describe, in terms of congruences modulo 20, which primes other than 2, 5 are
properly represented by the form x2 + 5y2, and justify your answer.
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4/I/1H Number Theory

If n is an odd integer and b is an integer prime with n, state what it means for n
to be a pseudoprime to the base b. What is a Carmichael number? State a criterion for n
to be a Carmichael number and use the criterion to show that:

(i) Every Carmichael number is the product of at least three distinct primes.

(ii) 561 is a Carmichael number.

4/II/11H Number Theory

(a) Let N be a non-square integer. Describe the integer solutions of the Pell
equation x2 −Ny2 = 1 in terms of the convergents to

√
N . Show that the set of integer

solutions forms an abelian group. Denote the addition law in this group by ◦; given
solutions (x0, y0) and (x1, y1), write down an explicit formula for (x0, y0) ◦ (x1, y1). If
(x, y) is a solution, write down an explicit formula for (x, y) ◦ (x, y) ◦ (x, y) in the group
law.

(b) Find the continued fraction expansion of
√

11. Find the smallest solution in
integers x, y > 0 of the Pell equation x2 − 11y2 = 1. Use the formula in Part (a) to
compute (x, y) ◦ (x, y) ◦ (x, y).
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1/I/2F Topics in Analysis

Prove that cosh(1/2) is irrational.

1/II/11F Topics in Analysis

State and prove a discrete form of Brouwer’s theorem, concerning colourings of
points in triangular grids. Use it to deduce that there is no continuous retraction from a
disc to its boundary.

2/I/2F Topics in Analysis

(i) Let α be an algebraic number and let p and q be integers with q 6= 0. What
does Liouville’s theorem say about α and p/q?

(ii) Let p and q be integers with q 6= 0. Prove that∣∣∣∣√2− p

q

∣∣∣∣ > 1
4q2

.

[In (ii), you may not use Liouville’s theorem unless you prove it.]

2/II/11F Topics in Analysis

(i) State the Baire category theorem. Deduce from it a statement about nowhere
dense sets.

(ii) Let X be the set of all real numbers with decimal expansions consisting of the
digits 4 and 5 only. Prove that there is a real number t that cannot be written in the form
x+ y with x ∈ X and y rational.
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3/I/2F Topics in Analysis

Let −1 6 x1 < x2 < . . . < xn 6 1 and let a1, a2, . . . , an be real numbers such that∫ 1

−1

p(t) dt =
n∑

i=1

aip(xi)

for every polynomial p of degree less than 2n. Prove the following three facts.

(i) ai > 0 for every i.

(ii)
∑n

i=1 ai = 2.

(iii) The numbers x1, x2, . . . , xn are the roots of the Legendre polynomial of
degree n.

[You may assume standard orthogonality properties of the Legendre polynomials.]

4/I/2F Topics in Analysis

(i) Let D ⊂ C be a domain, let f : D → C be an analytic function and let z0 ∈ D.
What does Taylor’s theorem say about z0, f and D?

(ii) Let K be the square consisting of all complex numbers z such that

−1 6 Re(z) 6 1 and − 1 6 Im(z) 6 1 ,

and let w be a complex number not belonging to K. Prove that the function f(z) =
(z − w)−1 can be uniformly approximated on K by polynomials.
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1/I/3G Geometry of Group Actions

Let G be a subgroup of the group of isometries Isom(R2) of the Euclidean plane.
What does it mean to say that G is discrete?

Supposing that G is discrete, show that the subgroup GT of G consisting of all
translations in G is generated by translations in at most two linearly independent vectors
in R2. Show that there is a homomorphism G→ O(2) with kernel GT .

Draw, and briefly explain, pictures which illustrate two different possibilities for G
when GT is isomorphic to the additive group Z.

1/II/12G Geometry of Group Actions

What is the limit set of a subgroup G of Möbius transformations?

Suppose that G is complicated and has no finite orbit in C ∪ {∞}. Prove that the
limit set of G is infinite. Can the limit set be countable?

State Jørgensen’s inequality, and deduce that not every two-generator subgroup
G = 〈A,B〉 of Möbius transformations is discrete. Briefly describe two examples of discrete
two-generator subgroups, one for which the limit set is connected and one for which it is
disconnected.

2/I/3G Geometry of Group Actions

Describe the geodesics in the disc model of the hyperbolic plane H2.

Define the area of a region in H2. Compute the area A(r) of a hyperbolic circle of
radius r from the definition just given. Compute the circumference C(r) of a hyperbolic
circle of radius r, and check explicitly that dA(r)/dr = C(r).

How could you define π geometrically if you lived in H2? Briefly justify your answer.

3/I/3G Geometry of Group Actions

By considering fixed points in C ∪ {∞}, prove that any complex Möbius transfor-
mation is conjugate either to a map of the form z 7→ kz for some k ∈ C or to z 7→ z + 1.
Deduce that two Möbius transformations g,h (neither the identity) are conjugate if and
only if tr2(g) = tr2(h).

Does every Möbius transformation g also have a fixed point in H3? Briefly justify
your answer.
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4/I/3G Geometry of Group Actions

Show that a set F ⊂ Rn with Hausdorff dimension strictly less than one is totally
disconnected.

What does it mean for a Möbius transformation to pair two discs? By considering
a pair of disjoint discs and a pair of tangent discs, or otherwise, explain in words why there
is a 2-generator Schottky group with limit set Λ ⊂ S2 which has Hausdorff dimension at
least 1 but which is not homeomorphic to a circle.

4/II/12G Geometry of Group Actions

For real s > 0 and F ⊂ Rn, give a careful definition of the s-dimensional Hausdorff
measure of F and of the Hausdorff dimension dimH(F ) of F .

For 1 6 i 6 k, suppose Si : Rn → Rn is a similarity with contraction factor
ci ∈ (0, 1). Prove there is a unique non-empty compact invariant set I for the {Si}. State
a formula for the Hausdorff dimension of I, under an assumption on the Si you should
state.

Hence show the Hausdorff dimension of the fractal F given by iterating the scheme
below (at each stage replacing each edge by a new copy of the generating template) is
dimH(F ) = 3/2.

4

[Numbers denote lengths]

1

1

1

1

1

2

1
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1/I/4J Coding and Cryptography

Briefly describe the methods of Shannon-Fano and Huffman for economical coding.
Illustrate both methods by finding decipherable binary codings in the case where messages
µ1, . . . , µ5 are emitted with probabilities 0.45, 0.25, 0.2, 0.05, 0.05. Compute the expected
word length in each case.

2/I/4J Coding and Cryptography

What is a linear binary code? What is the weight w(C) of a linear binary code C?
Define the bar product C1|C2 of two binary linear codes C1 and C2, stating the conditions
that C1 and C2 must satisfy. Under these conditions show that

w(C1|C2) > min(2w(C1), w(C2)).

2/II/12J Coding and Cryptography

What does it means to say that f : Fd
2 → Fd

2 is a linear feedback shift register?
Let (xn)n>0 be a stream produced by such a register. Show that there exist N , M with
N +M 6 2d − 1 such that xr+N = xr for all r > M .

Explain and justify the Berlekamp–Massey method for ‘breaking’ a cipher stream
arising from a linear feedback register of unknown length.

Let xn, yn, zn be three streams produced by linear feedback registers. Set

kn = xn if yn = zn

kn = yn if yn 6= zn .

Show that kn is also a stream produced by a linear feedback register. Sketch proofs of any
theorems that you use.

3/I/4J Coding and Cryptography

Briefly explain how and why a signature scheme is used. Describe the el Gamal
scheme.
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3/II/12J Coding and Cryptography

Define a cyclic code. Define the generator and check polynomials of a cyclic code
and show that they exist.

Show that Hamming’s original code is a cyclic code with check polynomial
X4 + X2 + X + 1. What is its generator polynomial? Does Hamming’s original code
contain a subcode equivalent to its dual?

4/I/4J Coding and Cryptography

What does it mean to transmit reliably at rate r through a binary symmetric
channel (BSC) with error probability p? Assuming Shannon’s second coding theorem,
compute the supremum of all possible reliable transmission rates of a BSC. What happens
if (i) p is very small, (ii) p = 1/2, or (iii) p > 1/2?
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1/I/5I Statistical Modelling

Suppose that Y1, . . . , Yn are independent random variables, and that Yi has prob-
ability density function

f(yi|θi, φ) = exp
[ (yiθi − b(θi))

φ
+ c(yi, φ)

]
.

Assume that E(Yi) = µi and that there is a known link function g(.) such that

g(µi) = βTxi ,

where x1, . . . , xn are known p-dimensional vectors and β is an unknown p-dimensional
parameter. Show that E(Yi) = b′(θi) and that, if `(β, φ) is the log-likelihood function
from the observations (y1, . . . , yn), then

∂`(β, φ)
∂β

=
n∑
1

(yi − µi)xi

g′(µi)Vi
,

where Vi is to be defined.

1/II/13I Statistical Modelling

The Independent, June 1999, under the headline ‘Tourists get hidden costs warn-
ings’ gave the following table of prices in pounds, called ‘How the resorts compared’.

Algarve 8.00 0.50 3.50 3.00 4.00 100.00

CostaDelSol 6.95 1.30 4.10 12.30 4.10 130.85

Majorca 10.25 1.45 5.35 6.15 3.30 122.20

Tenerife 12.30 1.25 4.90 3.70 2.90 130.85

Florida 15.60 1.90 5.05 5.00 2.50 114.00

Tunisia 10.90 1.40 5.45 1.90 2.75 218.10

Cyprus 11.60 1.20 5.95 3.00 3.60 149.45

Turkey 6.50 1.05 6.50 4.90 2.85 263.00

Corfu 5.20 1.05 3.75 4.20 2.50 137.60

Sorrento 7.70 1.40 6.30 8.75 4.75 215.40

Malta 11.20 0.70 4.55 8.00 4.80 87.85

Rhodes 6.30 1.05 5.20 3.15 2.70 261.30

Sicily 13.25 1.75 4.20 7.00 3.85 174.40

Madeira 10.25 0.70 5.10 6.85 6.85 153.70
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Here the column headings are, respectively: Three-course meal, Bottle of Beer,
Suntan Lotion, Taxi (5km), Film (24 exp), Car Hire (per week). Interpret the R
commands, and explain how to interpret the corresponding (slightly abbreviated) R output
given below. Your solution should include a careful statement of the underlying statistical
model, but you may quote without proof any distributional results required.

> price = scan("dresorts") ; price

> Goods = gl(6,1,length=84); Resort=gl(14,6,length=84)

> first.lm = lm(log(price) ~ Goods + Resort)

> summary(first.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.8778 0.1629 11.527 < 2e-16

Goods2 -2.1084 0.1295 -16.286 < 2e-16

Goods3 -0.6343 0.1295 -4.900 6.69e-06

Goods4 -0.6284 0.1295 -4.854 7.92e-06

Goods5 -0.9679 0.1295 -7.476 2.49e-10

Goods6 2.8016 0.1295 21.640 < 2e-16

Resort2 0.4463 0.1978 2.257 0.02740

Resort3 0.4105 0.1978 2.076 0.04189

Resort4 0.3067 0.1978 1.551 0.12584

Resort5 0.4235 0.1978 2.142 0.03597

Resort6 0.2883 0.1978 1.458 0.14963

Resort7 0.3457 0.1978 1.748 0.08519

Resort8 0.3787 0.1978 1.915 0.05993

Resort9 0.0943 0.1978 0.477 0.63508

Resort10 0.5981 0.1978 3.025 0.00356

Resort11 0.3281 0.1978 1.659 0.10187

Resort12 0.2525 0.1978 1.277 0.20616

Resort13 0.5508 0.1978 2.785 0.00700

Resort14 0.4590 0.1978 2.321 0.02343

Residual standard error: 0.3425 on 65 degrees of freedom

Multiple R-Squared: 0.962
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2/I/5I Statistical Modelling

You see below three R commands, and the corresponding output (which is slightly
abbreviated). Explain the effects of the commands. How is the deviance defined, and why
do we have d.f.=7 in this case? Interpret the numerical values found in the output.

> n = scan()

3 5 16 12 11 34 37 51 56

> i = scan ()

1 2 3 4 5 6 7 8 9

> summary(glm(n~i,poisson))

deviance = 13.218

d.f. = 7

Coefficients:

Value Std.Error

(intercept) 1.363 0.2210

i 0.3106 0.0382

3/I/5I Statistical Modelling

Consider the model Y = Xβ + ε, where Y is an n-dimensional observation vector,
X is an n× p matrix of rank p, ε is an n-dimensional vector with components ε1, . . . , εn,
and ε1, . . . , εn are independently and normally distributed, each with mean 0 and variance
σ2.

(a) Let β̂ be the least-squares estimator of β. Show that

(XTX)β̂ = XTY

and find the distribution of β̂.

(b) Define Ŷ = Xβ̂. Show that Ŷ has distribution N(Xβ, σ2H), where H is a
matrix that you should define.

[You may quote without proof any results you require about the multivariate normal
distribution.]
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4/I/5I Statistical Modelling

You see below five R commands, and the corresponding output (which is slightly
abbreviated). Without giving any mathematical proofs, explain the purpose of these
commands, and interpret the output.

> Yes = c(12, 27,11,24)

> Total = c(117,170,52,118)

> Sclass = c("a","a","b","b")

> Sclass = factor(Sclass)

> summary(glm(Yes/Total~ Sclass, binomial, weights=Total))

Coefficients:

Estimate Std. Error z value

(Intercept) -1.8499 0.1723 -10.739

Sclassb 0.4999 0.2562 1.951

Residual deviance: 1.9369 on 2 degrees of freedom

Number of Fisher Scoring iterations: 4
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4/II/13I Statistical Modelling

(i) Suppose that Y1, . . . , Yn are independent random variables, and that Yi has
probability density function

f(yi|β, ν) =
(
νyi

µi

)ν

e−yiν/µi
1

Γ(ν)
1
yi

for yi > 0

where
1/µi = βTxi , for 1 6 i 6 n,

and x1, . . . , xn are given p-dimensional vectors, and ν is known.

Show that E(Yi) = µi and that var (Yi) = µ2
i /ν.

(ii) Find the equation for β̂, the maximum likelihood estimator of β, and suggest
an iterative scheme for its solution.

(iii) If p = 2, and xi =
(

1
zi

)
, find the large-sample distribution of β̂2. Write your

answer in terms of a, b, c and ν, where a, b, c are defined by

a =
∑

µ2
i , b =

∑
ziµ

2
i , c =

∑
z2
i µ

2
i .
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1/I/6E Mathematical Biology

Consider a biological system in which concentrations x(t) and y(t) satisfy

dx

dt
= f(y)− x and

dy

dt
= g(x)− y ,

where f and g are positive and monotonically decreasing functions of their arguments, so
that x represses the synthesis of y and vice versa.

(a) Suppose the functions f and g are bounded. Sketch the phase plane and explain
why there is always at least one steady state. Show that if there is a steady state with

∂ ln f
∂ ln y

∂ ln g
∂ lnx

> 1

then the system is multistable.

(b) If f = λ/(1+ym) and g = λ/(1+xn), where λ, m and n are positive constants,
what values of m and n allow the system to display multistability for some value of λ?

Can f= λ/ym and g= λ/xn generate multistability? Explain your answer carefully.

2/I/6E Mathematical Biology

Consider a system with stochastic reaction events

x
λ−→ x+ 1 and x

βx2

−→ x− 2 ,

where λ and β are rate constants.

(a) State or derive the exact differential equation satisfied by the average number
of molecules <x>. Assuming that fluctuations are negligible, approximate the differential
equation to obtain the steady-state value of <x>.

(b) Using this approximation, calculate the elasticity H, the average lifetime τ , and
the average chemical event size <r> (averaged over fluxes).

(c) State the stationary Fluctuation Dissipation Theorem for the normalised
variance η. Hence show that

η =
3

4<x>
.
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2/II/13E Mathematical Biology

Consider the reaction-diffusion system

∂u

∂τ
= βu

(
u2

v
− u

)
+Du

∂2u

∂x2

∂v

∂τ
= βv

(
u2 − v

)
+Dv

∂2v

∂x2

for an activator u and inhibitor v, where βu and βv are degradation rate constants and
Du and Dv are diffusion rate constants.

(a) Find a suitably scaled time t and length s such that

∂u

∂t
=
u2

v
− u+

∂2u

∂s2

1
Q

∂v

∂t
= u2 − v + P

∂2v

∂s2
,

(∗)

and find expressions for P and Q.

(b) Show that the Jacobian matrix for small spatially homogenous deviations from
a nonzero steady state of (∗) is

J =
(

1 −1
2Q −Q

)
and find the values of Q for which the steady state is stable.
[Hint: The eigenvalues of a 2 × 2 real matrix both have positive real parts iff the matrix
has a positive trace and determinant.]

(c) Derive linearised ordinary differential equations for the amplitudes û(t) and v̂(t)
of small spatially inhomogeneous deviations from a steady state of (∗) that are proportional
to cos(s/L), where L is a constant.

(d) Assuming that the system is stable to homogeneous perturbations, derive the
condition for inhomogeneous instability. Interpret this condition in terms of how far
activator and inhibitor molecules diffuse on average before they are degraded.

(e) Calculate the lengthscale Lcrit of disturbances that are expected to be observed
when the condition for inhomogeneous instability is just satisfied. What are the dominant
mechanisms for stabilising disturbances on lengthscales (i) much less than and (ii) much
greater than Lcrit?

Part II 2005



17

3/I/6E Mathematical Biology

Let x be the concentration of a binary master sequence of length L and let y be
the total concentration of all mutant sequences. Master sequences try to self-replicate at
a total rate ax, but each independent digit is only copied correctly with probability q.
Mutant sequences self-replicate at a total rate by, where a > b, and the probability of
mutation back to the master sequence is negligible.

(a) The evolution of x is given by

dx

dt
= aqLx .

Write down the corresponding equation for y and derive a differential equation for the
master-to-mutant ratio z = x/y.

(b) What is the maximum length Lmax for which there is a positive steady-state
value of z? Is the positive steady state stable when it exists?

(c) Obtain a first-order approximation to Lmax assuming that both 1− q � 1 and
s� 1, where the selection coefficient s is defined by b = a(1− s).
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3/II/13E Mathematical Biology

Protein synthesis by RNA can be represented by the stochastic system

x1
λ1−→ x1 + 1 and x1

β1x1−→ x1 − 1

x2
λ2x1−→ x2 + 1 and x2

β2x2−→ x2 − 1
(1)

in which x1 is an environmental variable corresponding to the number of RNA molecules
per cell and x2 is a system variable, with birth rate proportional to x1, corresponding to
the number of protein molecules.

(a) Use the normalized stationary Fluctuation–Dissipation Theorem (FDT) to
calculate the (exact) normalized stationary variances η11 = σ2

1/<x1>
2 and η22 =

σ2
2/<x2>

2 in terms of the averages <x1> and <x2>.

(b) Separate η22 into an intrinsic and an extrinsic term by considering the limits
when x1 does not fluctuate (intrinsic), and when x2 responds deterministically to changes
in x1 (extrinsic). Explain how the extrinsic term represents the magnitude of environmen-
tal fluctuations and time-averaging.

(c) Assume now that the birth rate of x2 is changed from the “constitutive”
mechanism λ2x1 in (1) to a “negative feedback” mechanism λ2x1f(x2), where f is a
monotonically decreasing function of x2. Use the stationary FDT to approximate η22 in
terms of h = |∂ ln f/∂ lnx2|. Apply your answer to the case f(x2) = k/x2.

[Hint: To reduce the algebra introduce the elasticity H22 = ∂ ln(R−2 /R
+
2 )/∂ lnx2, where

R−2 and R+
2 are the death and birth rates of x2 respectively.]

(d) Explain the extrinsic term for the negative feedback system in terms of
environmental fluctuations, time-averaging, and static susceptibility.

(e) Explain why the FDT is exact for the constitutive system but approximate for
the feedback system. When, generally speaking, does the FDT approximation work well?

(f) Consider the following three experimental observations: (i) Large changes in
λ2 have no effect on η22; (ii) When x2 is perturbed by 1% from its stationary average,
perturbations are corrected more rapidly in the feedback system than in the constitutive
system; (iii) The feedback system displays lower values η22 than the constitutive system.

What does (i) imply about the relative importance of the noise terms? Can (ii) be
directly explained by (iii), i.e., does rapid adjustment reduce noise? Justify your answers.
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4/I/6E Mathematical Biology

The output of a linear perceptron is given by y = w · x, where w is a vector
of weights connecting a fluctuating input vector x to an output unit. The weights are
given random initial values and are then updated according to a learning rule that has a
time-constant τ much greater than the fluctuation timescale of the inputs.

(a) Find the behaviour of |w| for each of the following two rules

(i) τ
dw
dt

= yx

(ii) τ
dw
dt

= yx− αy2w|w|2, where α is a positive constant.

(b) Consider a third learning rule

(iii) τ
dw
dt

= yx−w|w|2 .

Show that in a steady state the vector of weights satisfies the eigenvalue equation

Cw = λw ,

where the matrix C and eigenvalue λ should be identified.

(c) Comment briefly on the biological implications of the three rules.
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1/I/7B Dynamical Systems

State Dulac’s Criterion and the Poincaré–Bendixson Theorem regarding the exis-
tence of periodic solutions to the dynamical system ẋ = f(x) in R2. Hence show that

ẋ = y

ẏ = −x+ y(µ− 2x2 − y2)

has no periodic solutions if µ < 0 and at least one periodic solution if µ > 0.

1/II/14B Dynamical Systems

Consider the equations

ẋ = (a− x2)(a2 − y)
ẏ = x− y

as a function of the parameter a. Find the fixed points and plot their location in the (a, x)
plane. Hence, or otherwise, deduce that there are bifurcations at a = 0 and a = 1.

Investigate the bifurcation at a = 1 by making the substitutions u = x−1, v = y−x
and µ = a− 1. Find the equation of the extended centre manifold to second order. Find
the evolution equation on the centre manifold to second order, and determine the stability
of its fixed points.

Show which branches of fixed points in the (a, x) plane are stable and which are
unstable, and state, without calculation, the type of bifurcation at a = 0. Hence sketch
the structure of the (x, y) phase plane very near the origin for |a| � 1 in the cases (i)
a < 0 and (ii) a > 0.

The system is perturbed to ẋ = (a − x2)(a2 − y) + ε, where 0 < ε � 1, with
ẏ = x − y still. Sketch the possible changes to the bifurcation diagram near a = 0 and
a = 1. [Calculation is not required.]
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2/I/7B Dynamical Systems

Define Lyapunov stability and quasi-asymptotic stability of a fixed point x0 of a
dynamical system ẋ = f(x).

By considering a Lyapunov function of the form V = g(x)+y2, show that the origin
is an asymptotically stable fixed point of

ẋ = −y − x3

ẏ = x5 .

[Lyapunov’s Second Theorem may be used without proof, provided you show that its
conditions apply.]

2/II/14B Dynamical Systems

Prove that if a continuous map F of an interval into itself has a periodic orbit of
period three then it also has periodic orbits of least period n for all positive integers n.

Explain briefly why there must be at least two periodic orbits of least period 5.

[You may assume without proof:

(i) If U and V are non-empty closed bounded intervals such that V ⊆ F (U) then there
is a closed bounded interval K ⊆ U such that F (K) = V .

(ii) The Intermediate Value Theorem.]

3/I/7B Dynamical Systems

Define the stable and unstable invariant subspaces of the linearisation of a dynam-
ical system ẋ = f(x) at a saddle point located at the origin in Rn. How, according to the
Stable Manifold Theorem, are the stable and unstable manifolds related to the invariant
subspaces?

Calculate the stable and unstable manifolds, correct to cubic order, for the system

ẋ = x+ x2 + 2xy + 3y2

ẏ = −y + 3x2 .
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4/I/7B Dynamical Systems

Find and classify the fixed points of the system

ẋ = x(1− y)

ẏ = −y + x2 .

Sketch the phase plane.

What is the ω-limit for the point (2,−1)? Which points have (0, 0) as their ω-limit?
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1/I/8A Further Complex Methods

Explain what is meant by the Papperitz symbol

P

 z1 z2 z3
α β γ z
α′ β′ γ′

 .

The hypergeometric function F (a, b; c; z) is defined as the solution of the equation
determined by the Papperitz symbol

P

 0 ∞ 1
0 a 0 z

1− c b c− a− b


that is analytic at z = 0 and satisfies F (a, b; c; 0) = 1.

Show, explaining each step, that

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z).

2/I/8A Further Complex Methods

The Hankel representation of the gamma function is

Γ(z) =
1

2i sin(πz)

∫ (0+)

−∞
tz−1etdt ,

where the path of integration is the Hankel contour.

Use this representation to find the residue of Γ(z) at z = −n, where n is a non-
negative integer.

Is there a pole at z = n, where n is a positive integer? Justify your answer carefully,
working only from the above representation of Γ(z).
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3/I/8A Further Complex Methods

The functions f and g have Laplace transforms f̂ and ĝ, and satisfy f(t) = 0 = g(t)
for t < 0. The convolution h of f and g is defined by

h(u) =
∫ u

0

f(u− v)g(v)dv

and has Laplace transform ĥ. Prove (the convolution theorem) that ĥ(p) = f̂(p)ĝ(p) .

Given that
∫ t

0
(t − s)−1/2s−1/2 ds = π (t > 0), deduce the Laplace transform of

the function f(t), where

f(t) =
{
t−1/2, t > 0
0, t 6 0.

3/II/14A Further Complex Methods

Show that the equation

zw′′ + 2kw′ + zw = 0 ,

where k is constant, has solutions of the form

w(z) =
∫

γ

(t2 + 1)k−1eztdt

provided that the path γ is chosen so that
[
(t2 + 1)kezt

]
γ

= 0 .

(i) In the case Re k > 0, show that there is a choice of γ for which w(0) = iB(k, 1
2 ).

(ii) In the case k = n/2, where n is any integer, show that γ can be a finite contour
and that the corresponding solution satisfies w(0) = 0 if n 6 −1.
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4/I/8A Further Complex Methods

Write down necessary and sufficient conditions on the functions p(z) and q(z) for
the point z = 0 to be (i) an ordinary point and (ii) a regular singular point of the equation

w′′ + p(z)w′ + q(z)w = 0. (∗)

Show that the point z = ∞ is an ordinary point if and only if

p(z) = 2z−1 + z−2P (z−1), q(z) = z−4Q(z−1),

where P and Q are analytic in a neighbourhood of the origin.

Find the most general equation of the form (∗) that has a regular singular point at
z = 0 but no other singular points.

4/II/14A Further Complex Methods

Two representations of the zeta function are

ζ(z) =
Γ(1− z)

2πi

∫ (0+)

−∞

tz−1

e−t − 1
dt and ζ(z) =

∞∑
1

n−z ,

where, in the integral representation, the path is the Hankel contour and the principal
branch of tz−1, for which | arg z| < π, is to be used. State the range of z for which each
representation is valid.

Evaluate the integral ∫
γ

tz−1

e−t − 1
dt,

where γ is a closed path consisting of the straight line z = πi + x, with |x| < 2Nπ, and
the semicircle |z − πi| = 2Nπ, with Im z > π, where N is a positive integer.

Making use of this result and assuming, when necessary, that the integral along the
curved part of γ is negligible when N is large, derive the functional equation

ζ(z) = 2zπz−1 sin(πz/2)Γ(1− z)ζ(1− z)

for z 6= 1.
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1/I/9C Classical Dynamics

A particle of mass m1 is constrained to move on a circle of radius r1, centre
x = y = 0 in a horizontal plane z = 0. A second particle of mass m2 moves on a
circle of radius r2, centre x = y = 0 in a horizontal plane z = c. The two particles are
connected by a spring whose potential energy is

V = 1
2ω

2d2,

where d is the distance between the particles. How many degrees of freedom are there?
Identify suitable generalized coordinates and write down the Lagrangian of the system in
terms of them.

1/II/15C Classical Dynamics

(i) The action for a system with generalized coordinates (qa) is given by

S =
∫ t2

t1

L(qa, q̇b) dt.

Derive Lagrange’s equations from the principle of least action by considering all paths
with fixed endpoints, δqa(t1) = δqa(t2) = 0.

(ii) A pendulum consists of a point mass m at the end of a light rod of length l.
The pivot of the pendulum is attached to a mass M which is free to slide without friction
along a horizontal rail. Choose as generalized coordinates the position x of the pivot and
the angle θ that the pendulum makes with the vertical.

Write down the Lagrangian and derive the equations of motion.

Find the frequency of small oscillations around the stable equilibrium.

Now suppose that a force acts on the pivot causing it to travel with constant
acceleration in the x-direction. Find the equilibrium angle θ of the pendulum.
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2/I/9C Classical Dynamics

A rigid body has principal moments of inertia I1, I2 and I3 and is moving under the
action of no forces with angular velocity components (ω1, ω2, ω3). Its motion is described
by Euler’s equations

I1ω̇1 − (I2 − I3)ω2ω3 = 0
I2ω̇2 − (I3 − I1)ω3ω1 = 0
I3ω̇3 − (I1 − I2)ω1ω2 = 0 .

Are the components of the angular momentum to be evaluated in the body frame or the
space frame?

Now suppose that an asymmetric body is moving with constant angular velocity
(Ω, 0, 0). Show that this motion is stable if and only if I1 is the largest or smallest principal
moment.

3/I/9C Classical Dynamics

Define the Poisson bracket {f, g} between two functions f(qa, pa) and g(qa, pa) on
phase space. If f(qa, pa) has no explicit time dependence, and there is a Hamiltonian H,
show that Hamilton’s equations imply

df

dt
=
{
f,H

}
.

A particle with position vector x and momentum p has angular momentum L = x× p.
Compute {pa, Lb} and {La, Lb}.
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3/II/15C Classical Dynamics

(i) A point mass m with position q and momentum p undergoes one-dimensional
periodic motion. Define the action variable I in terms of q and p. Prove that an orbit of
energy E has period

T = 2π
dI

dE
.

(ii) Such a system has Hamiltonian

H(q, p) =
p2 + q2

µ2 − q2
,

where µ is a positive constant and |q| < µ during the motion. Sketch the orbits in phase
space both for energies E � 1 and E � 1. Show that the action variable I is given in
terms of the energy E by

I =
µ2

2
E√
E + 1

.

Hence show that for E � 1 the period of the orbit is T ≈ 1
2πµ

3/p0, where p0 is the
greatest value of the momentum during the orbit.

4/I/9C Classical Dynamics

Define a canonical transformation for a one-dimensional system with coordinates
(q, p) → (Q,P ). Show that if the transformation is canonical then {Q,P} = 1.

Find the values of constants α and β such that the following transformations are
canonical:

(i) Q = pqβ , P = αq−1 .

(ii) Q = qα cos(βp), P = qα sin(βp).

Part II 2005



29

1/I/10D Cosmology

(a) Around t ≈ 1 s after the big bang (kT ≈ 1 MeV), neutrons and protons are kept
in equilibrium by weak interactions such as

n+ νe ↔ p+ e− . (∗)

Show that, in equilibrium, the neutron-to-proton ratio is given by

nn

np
≈ e−Q/kT ,

where Q = (mn − mp)c2 = 1.29 MeV corresponds to the mass difference between the
neutron and the proton. Explain briefly why we can neglect the difference µn − µp in the
chemical potentials.

(b) The ratio of the weak interaction rate ΓW ∝ T 5 which maintains (∗) to the
Hubble expansion rate H ∝ T 2 is given by

ΓW

H
≈
(

kT

0.8 MeV

)3

. (†)

Explain why the neutron-to-proton ratio effectively “freezes out” once kT < 0.8 MeV,
except for some slow neutron decay. Also explain why almost all neutrons are subsequently
captured in 4He; estimate the value of the relative mass density Y4He = ρ4He/ρB (with
ρB = ρn + ρp) given a final ratio nn/np ≈ 1/8.

(c) Suppose instead that the weak interaction rate were very much weaker than
that described by equation (†). Describe the effect on the relative helium density Y4He.
Briefly discuss the wider implications of this primordial helium-to-hydrogen ratio on stellar
lifetimes and life on earth.
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2/I/10D Cosmology

(a) A spherically symmetric star obeys the pressure-support equation

dP

dr
= −Gmρ

r2
, (∗)

where P (r) is the pressure at a distance r from the centre, ρ(r) is the density, and the
mass m(r) is defined through the relation dm/dr = 4πr2ρ(r). Multiply (∗) by 4πr3 and
integrate over the total volume V of the star to derive the virial theorem

〈P 〉V = − 1
3Egrav ,

where 〈P 〉 is the average pressure and Egrav is the total gravitational potential energy.

(b) Consider a white dwarf supported by electron Fermi degeneracy pressure
P ≈ h2n5/3/me, where me is the electron mass and n is the number density. Assume
a uniform density ρ(r) = mpn(r) ≈ mp〈n〉, so the total mass of the star is given by
M = (4π/3)〈n〉mpR

3 where R is the star radius and mp is the proton mass. Show that
the total energy of the white dwarf can be written in the form

Etotal = Ekin + Egrav =
α

R2
− β

R
,

where α, β are positive constants which you should determine. [You may assume that for
an ideal gas Ekin = 3

2 〈P 〉V .] Use this expression to explain briefly why a white dwarf is
stable.
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2/II/15D Cosmology

(a) Consider a homogeneous and isotropic universe with scale factor a(t) and filled
with mass density ρ(t). Show how the conservation of kinetic energy plus gravitational
potential energy for a test particle on the edge of a spherical region in this universe can
be used to derive the Friedmann equation(

ȧ

a

)2

+
kc2

a2
=

8πG
3

ρ , (∗)

where k is a constant. State clearly any assumptions you have made.

(b) Now suppose that the universe was filled throughout its history with radiation
with equation of state P = ρc2/3. Using the fluid conservation equation and the definition
of the relative density Ω, show that the density of this radiation can be expressed as

ρ =
3H2

0

8πG
Ω0

a4
,

where H0 is the Hubble parameter today and Ω0 is the relative density today (t = t0)
and a0 ≡ a(t0) = 1 is assumed. Show also that kc2 = H2

0 (Ω0 − 1) and hence rewrite the
Friedmann equation (∗) as (

ȧ

a

)2

= H2
0Ω0

(
1
a4
− β

a2

)
, (†)

where β ≡ (Ω0 − 1)/Ω0.

(c) Now consider a closed model with k > 0 (or Ω > 1). Rewrite (†) using the new
time variable τ defined by

dt

dτ
= a .

Hence, or otherwise, solve (†) to find the parametric solution

a(τ) =
1√
β

(sinατ) , t(τ) =
1

α
√
β

(1− cosατ) ,

where α ≡ H0

√
(Ω0 − 1). [Recall that

∫
dx/

√
1− x2 = sin−1 x.]

Using the solution for a(τ), find the value of the new time variable τ = τ0 today
and hence deduce that the age of the universe in this model is

t0 = H−1
0

√
Ω0 − 1

Ω0 − 1
.
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3/I/10D Cosmology

(a) Define and discuss the concept of the cosmological horizon and the Hubble radius
for a homogeneous isotropic universe. Illustrate your discussion with the specific examples
of the Einstein–de Sitter universe (a ∝ t2/3 for t > 0) and a de Sitter universe (a ∝ eHt

with H constant, t > −∞).

(b) Explain the horizon problem for a decelerating universe in which a(t) ∝ tα with
α < 1. How can inflation cure the horizon problem?

(c) Consider a Tolman (radiation-filled) universe (a(t) ∝ t1/2) beginning at tr ∼
10−35s and lasting until today at t0 ≈ 1017s. Estimate the horizon size today dH(t0) and
project this lengthscale backwards in time to show that it had a physical size of about 1
metre at t ≈ tr.

Prior to t ≈ tr, assume an inflationary (de Sitter) epoch with constant Hubble
parameter H given by its value at t ≈ tr for the Tolman universe. How much expansion
during inflation is required for the observable universe today to have begun inside one
Hubble radius?

4/I/10D Cosmology

The linearised equation for the growth of a density fluctuation δk in a homogeneous
and isotropic universe is

d2δk
dt2

+ 2
ȧ

a

dδk
dt

−
(

4πGρm − v2
sk

2

a2

)
δk = 0 , (∗)

where ρm is the non-relativistic matter density, k is the comoving wavenumber and vs is
the sound speed (v2

s ≡ dP/dρ).

(a) Define the Jeans length λJ and discuss its significance for perturbation growth.

(b) Consider an Einstein–de Sitter universe with a(t) = (t/t0)2/3 filled with
pressure-free matter (P = 0). Show that the perturbation equation (∗) can be re-expressed
as

δ̈k +
4
3t
δ̇k −

2
3t2

δk = 0 .

By seeking power law solutions, find the growing and decaying modes of this equation.

(c) Qualitatively describe the evolution of non-relativistic matter perturbations
(k > aH) in the radiation era, a(t) ∝ t1/2, when ρr � ρm. What feature in the power
spectrum is associated with the matter–radiation transition?
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4/II/15D Cosmology

For an ideal gas of bosons, the average occupation number can be expressed as

n̄k =
gk

e(Ek−µ)/kT − 1
, (∗)

where gk has been included to account for the degeneracy of the energy level Ek. In the
approximation in which a discrete set of energies Ek is replaced with a continuous set with
momentum p, the density of one-particle states with momentum in the range p to p+ dp
is g(p)dp. Explain briefly why

g(p) ∝ p2V ,

where V is the volume of the gas. Using this formula with equation (∗), obtain an
expression for the total energy density ε = E/V of an ultra-relativistic gas of bosons
at zero chemical potential as an integral over p. Hence show that

ε ∝ Tα ,

where α is a number you should find. Why does this formula apply to photons?

Prior to a time t ∼ 100, 000 years, the universe was filled with a gas of photons and
non-relativistic free electrons and protons. Subsequently, at around t ∼ 400, 000 years,
the protons and electrons began combining to form neutral hydrogen,

p+ e− ↔ H + γ .

Deduce Saha’s equation for this recombination process stating clearly the steps required:

n2
e

nH
=
(

2πmekT

h2

)3/2

exp(−I/kT ) ,

where I is the ionization energy of hydrogen. [Note that the equilibrium number density of
a non-relativistic species (kT � mc2) is given by n = gs

(
2πmkT

h2

)3/2
exp

[
(µ−mc2)/kT

]
,

while the photon number density is nγ = 16πζ(3)
(

kT
hc

)3
, where ζ(3) ≈ 1.20.... ]

Consider now the fractional ionization Xe = ne/nB, where nB = np + nH = ηnγ is
the baryon number of the universe and η is the baryon-to-photon ratio. Find an expression
for the ratio

(1−Xe)/X2
e

in terms only of kT and constants such as η and I. One might expect neutral hydrogen
to form at a temperature given by kT ≈ I ≈ 13 eV, but instead in our universe it forms
at the much lower temperature kT ≈ 0.3 eV. Briefly explain why.
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1/II/16F Logic and Set Theory

State and prove Zorn’s Lemma. [You may assume Hartogs’ Lemma.] Where in
your argument have you made use of the Axiom of Choice?

Show that R, considered as a rational vector space, has a basis.

Prove that R and R2 are isomorphic as rational vector spaces.

2/II/16F Logic and Set Theory

Give the inductive and the synthetic definitions of ordinal addition, and prove that
they are equivalent. Give an example to show that ordinal addition is not commutative.

Which of the following assertions about ordinals α, β and γ are always true, and
which can be false? Give proofs or counterexamples as appropriate.

(i) α+ (β + γ) = (α+ β) + γ.

(ii) If α and β are limit ordinals then α+ β = β + α.

(iii) If α+ β = ω1 then α = 0 or α = ω1.

(iv) If α+ β = ω1 then β = 0 or β = ω1.

3/II/16F Logic and Set Theory

State the Axiom of Foundation and the Principle of ∈-Induction, and show that
they are equivalent (in the presence of the other axioms of ZF). [You may assume the
existence of transitive closures.]

Explain briefly how the Principle of ∈-Induction implies that every set is a member
of some Vα.

For each natural number n, find the cardinality of Vn. For which ordinals α is the
cardinality of Vα equal to that of the reals?

4/II/16F Logic and Set Theory

State and prove the Completeness Theorem for Propositional Logic. [You do not
need to give definitions of the various terms involved. You may assume that the set of
primitive propositions is countable. You may also assume the Deduction Theorem, provided
that you state it clearly.]

Where in your argument have you used the third axiom, namely (¬¬p) ⇒ p?

State the Compactness Theorem, and deduce it from the Completeness Theorem.
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1/II/17F Graph Theory

Show that an acyclic graph has a vertex of degree at most one. Prove that a tree
(that is, a connected acyclic graph) of order n has size n − 1, and deduce that every
connected graph of order n and size n− 1 is a tree.

Let T be a tree of order t. Show that if G is a graph with δ(G) > t− 1 then T is a
subgraph of G, but that this need not happen if δ(G) > t− 2.

2/II/17F Graph Theory

Brooks’ Theorem states that if G is a connected graph then χ(G) 6 ∆(G) unless
G is complete or is an odd cycle. Prove the theorem for 3-connected graphs G.

Let G be a graph, and let d1 + d2 = ∆(G)− 1. By considering a partition V1, V2 of
V (G) that minimizes the quantity d2e(G[V1]) + d1e(G[V2]), show that there is a partition
with ∆(G[Vi]) 6 di, i = 1, 2.

By taking d1 = 3, show that if a graph G contains no K4 then χ(G) 6 3
4∆(G) + 3

2 .

3/II/17F Graph Theory

Let X and Y be disjoint sets of n > 6 vertices each. Let G be a bipartite
graph formed by adding edges between X and Y randomly and independently with
probability p = 1/100. Let e(U, V ) be the number of edges of G between the subsets
U ⊂ X and V ⊂ Y . Let k = dn1/2e. Consider three events A, B and C, as follows.

A : there exist U ⊂ X, V ⊂ Y with |U | = |V | = k and e(U, V ) = 0
B : there exist x ∈ X, W ⊂ Y with |W | = n− k and e({x},W ) = 0
C : there exist Z ⊂ X, y ∈ Y with |Z| = n− k and e(Z, {y}) = 0 .

Show that Pr(A) 6 n2k(1 − p)k2
and Pr(B ∪ C) 6 2nk+1(1 − p)n−k. Hence show that

Pr(A∪B ∪ C) < 3n2k(1− p)n/2 and so show that, almost surely, none of A, B or C occur.
Deduce that, almost surely, G has a matching from X to Y .

4/II/17F Graph Theory

Write an essay on extremal graph theory. Your essay should include the proof of
at least one extremal theorem. You should state the Erdős–Stone theorem, as well as
describing its proof and showing how it can be applied.
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1/II/18G Galois Theory

Let L/K be a field extension. State what it means for an element x ∈ L to be
algebraic over K. Show that x is algebraic over K if and only if the field K(x) is finite
dimensional as a vector space over K.

State what it means for a field extension L/K to be algebraic. Show that, if M/L
is algebraic and L/K is algebraic, then M/K is algebraic.

2/II/18G Galois Theory

Let K be a field of characteristic 0 containing all roots of unity.

(i) Let L be the splitting field of the polynomial Xn − a where a ∈ K. Show that
the Galois group of L/K is cyclic.

(ii) Suppose that M/K is a cyclic extension of degree m over K. Let g be a
generator of the Galois group and ζ ∈ K a primitive m-th root of 1. By considering the
resolvent

R(w) =
m−1∑
i=0

gi(w)
ζi

of elements w ∈ M , show that M is the splitting field of a polynomial Xm − a for some
a ∈ K.

3/II/18G Galois Theory

Find the Galois group of the polynomial

x4 + x+ 1

over F2 and F3. Hence or otherwise determine the Galois group over Q.

[Standard general results from Galois theory may be assumed.]

4/II/18G Galois Theory

(i) Let K be the splitting field of the polynomial

x4 − 4x2 − 1

over Q. Show that [K : Q] = 8, and hence show that the Galois group of K/Q is the
dihedral group of order 8.

(ii) Let L be the splitting field of the polynomial

x4 − 4x2 + 1

over Q. Show that [L : Q] = 4. Show that the Galois group of L/Q is C2 × C2.
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1/II/19G Representation Theory

Let the finite group G act on finite sets X and Y , and denote by C[X], C[Y ] the
associated permutation representations on the spaces of complex functions on X and Y .
Call their characters χX and χY .

(i) Show that the inner product 〈χX |χY 〉 is the number of orbits for the diagonal
action of G on X × Y .

(ii) Assume that |X| > 1, and let S ⊂ C[X] be the subspace of those functions
whose values sum to zero. By considering ‖χX‖2, show that S is irreducible if and only
if the G-action on X is doubly transitive: this means that for any two pairs (x1, x2) and
(x′1, x

′
2) of points in X with x1 6= x2 and x′1 6= x′2, there exists some g ∈ G with gx1 = x′1

and gx2 = x′2.

(iii) Let now G = Sn acting on the set X = {1, 2, . . . , n}. Call Y the set of 2-
element subsets of X, with the natural action of Sn. If n > 4, show that C[Y ] decomposes
under Sn into three irreducible representations, one of which is the trivial representation
and another of which is S. What happens when n = 3?

[Hint: Consider 〈1|χY 〉, 〈χX |χY 〉 and ‖χY ‖2.]

2/II/19G Representation Theory

Let G be a finite group and {χi} the set of its irreducible characters. Also choose
representatives gj for the conjugacy classes, and denote by Z(gj) their centralisers.

(i) State the orthogonality and completeness relations for the χk.

(ii) Using Part (i), or otherwise, show that

∑
i
χi(gj) · χi(gk) = δjk · |Z(gj)| .

(iii) Let A be the matrix with Aij = χi(gj). Prove that

|detA|2 =
∏

j
|Z(gj)|.

(iv) Show that detA is either real or purely imaginary, explaining when each
situation occurs.

[Hint for (iv): Consider the effect of complex conjugation on the rows of the matrix A.]
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3/II/19G Representation Theory

Let G be the group with 21 elements generated by a and b, subject to the relations
a7 = b3 = 1 and ba = a2b.

(i) Find the conjugacy classes of G.

(ii) Find three non-isomorphic one-dimensional representations of G.

(iii) For a subgroup H of a finite group K, write down (without proof) the formula
for the character of the K-representation induced from a representation of H.

(iv) By applying Part (iii) to the case when H is the subgroup 〈a〉 of K = G, find
the remaining irreducible characters of G.

4/II/19G Representation Theory

(i) State and prove the Weyl integration formula for SU(2).

(ii) Determine the characters of the symmetric powers of the standard 2-dimensional
representation of SU(2) and prove that they are irreducible.

[Any general theorems from the course may be used.]
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1/II/20G Number Fields

Let K = Q(
√

2,
√
p) where p is a prime with p ≡ 3 (mod 4). By computing the

relative traces TrK/k(θ) where k runs through the three quadratic subfields of K, show
that the algebraic integers θ in K have the form

θ = 1
2 (a+ b

√
p) + 1

2 (c+ d
√
p)
√

2 ,

where a, b, c, d are rational integers. By further computing the relative norm NK/k(θ)
where k = Q(

√
2), show that 4 divides

a2 + pb2 − 2
(
c2 + pd2

)
and 2

(
ab− 2cd

)
.

Deduce that a and b are even and c ≡ d (mod 2). Hence verify that an integral basis for
K is

1,
√

2,
√
p, 1

2

(
1 +

√
p
)√

2.

2/II/20G Number Fields

Show that ε = (3 +
√

7)/(3 −
√

7) is a unit in k = Q(
√

7). Show further that 2 is
the square of the principal ideal in k generated by 3 +

√
7.

Assuming that the Minkowski constant for k is 1
2 , deduce that k has class number 1.

Assuming further that ε is the fundamental unit in k, show that the complete
solution in integers x, y of the equation x2 − 7y2 = 2 is given by

x+
√

7y = ±εn(3 +
√

7) (n = 0,±1,±2, . . .).

Calculate the particular solution in positive integers x, y when n = 1.

4/II/20G Number Fields

State Dedekind’s theorem on the factorisation of rational primes into prime ideals.

A rational prime is said to ramify totally in a field with degree n if it is the n-th
power of a prime ideal in the field. Show that, in the quadratic field Q(

√
d) with d a square-

free integer, a rational prime ramifies totally if and only if it divides the discriminant of
the field.

Verify that the same holds in the cyclotomic field Q(ζ), where ζ = e2πi/q with q an
odd prime, and also in the cubic field Q( 3

√
2).

[The cases d ≡ 2, 3 (mod 4) and d ≡ 1 (mod 4) for the quadratic field should be carefully
distinguished. It can be assumed that Q(ζ) has a basis 1, ζ, . . . , ζq−2 and discriminant
(−1)(q−1)/2qq−1, and that Q( 3

√
2) has a basis 1, 3

√
2, ( 3

√
2)2 and discriminant −108.]
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1/II/21H Algebraic Topology

(i) Show that if E → T is a covering map for the torus T = S1 × S1, then E is
homeomorphic to one of the following: the plane R2, the cylinder R × S1, or the
torus T .

(ii) Show that any continuous map from a sphere Sn (n > 2) to the torus T is homotopic
to a constant map.

[General theorems from the course may be used without proof, provided that they are clearly
stated.]

2/II/21H Algebraic Topology

State the Van Kampen Theorem. Use this theorem and the fact that π1S
1 = Z to

compute the fundamental groups of the torus T = S1 × S1, the punctured torus T \ {p},
for some point p ∈ T , and the connected sum T # T of two copies of T .

3/II/20H Algebraic Topology

Let X be a space that is triangulable as a simplicial complex with no n-simplices.
Show that any continuous map from X to Sn is homotopic to a constant map.

[General theorems from the course may be used without proof, provided they are clearly
stated.]

4/II/21H Algebraic Topology

Let X be a simplicial complex. Suppose X = B∪C for subcomplexes B and C, and
let A = B ∩ C. Show that the inclusion of A in B induces an isomorphism H∗A→ H∗B
if and only if the inclusion of C in X induces an isomorphism H∗C → H∗X.
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1/II/22F Linear Analysis

Let K be a compact Hausdorff space, and let C(K) denote the Banach space of
continuous, complex-valued functions on K, with the supremum norm. Define what it
means for a set S ⊂ C(K) to be totally bounded, uniformly bounded, and equicontinuous.

Show that S is totally bounded if and only if it is both uniformly bounded and
equicontinuous.

Give, with justification, an example of a Banach space X and a subset S ⊂ X such
that S is bounded but not totally bounded.

2/II/22F Linear Analysis

Let X and Y be Banach spaces. Define what it means for a linear operator
T : X → Y to be compact. For a linear operator T : X → X, define the spectrum,
point spectrum, and resolvent set of T .

Now let H be a complex Hilbert space. Define what it means for a linear operator
T : H → H to be self-adjoint. Suppose e1, e2, . . . is an orthonormal basis for H. Define a
linear operator T : H → H by setting Tei = 1

i ei. Is T compact? Is T self-adjoint? Justify
your answers. Describe, with proof, the spectrum, point spectrum, and resolvent set of T .

3/II/21F Linear Analysis

Let X be a normed vector space. Define the dual X∗ of X. Define the normed
vector spaces ls = ls(C) for all 1 6 s 6 ∞. [You are not required to prove that the norms
you have given are indeed norms.]

Now let 1 < p, q <∞ be such that p−1 + q−1 = 1. Show that (lq)∗ is isometrically
isomorphic to lp as a normed vector space. [You may assume any standard inequalities.]

Show by a similar argument that (l1)∗ is isomorphic to l∞. Does your argument
also show that (l∞)∗ is isomorphic to l1? If not, where does it fail?
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4/II/22F Linear Analysis

Let X and Y be normed vector spaces. Show that a linear map T : X → Y is
continuous if and only if it is bounded.

Now let X, Y , Z be Banach spaces. We say that a map F : X × Y → Z is bilinear
if

F (αx+ βy, z) = αF (x, z) + βF (y, z), for all scalars α, β and x, y ∈ X, z ∈ Y

F (x, αy + βz) = αF (x, y) + βF (x, z), for all scalars α, β and x ∈ X, y, z ∈ Y .

Suppose that F is bilinear and is continuous in each variable separately. Show that there
exists a constant M > 0 such that

||F (x, y)|| 6 M ||x|| ||y||

for all x ∈ X, y ∈ Y .

[Hint: For each fixed x ∈ X, consider the map y 7→ F (x, y) from Y to Z.]
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1/II/23H Riemann Surfaces

Let Λ be a lattice in C generated by 1 and τ , where τ is a fixed complex number
with Imτ > 0. The Weierstrass ℘-function is defined as a Λ-periodic meromorphic function
such that

(1) the only poles of ℘ are at points of Λ, and

(2) there exist positive constants ε and M such that for all |z| < ε, we have

|℘(z)− 1/z2| < M |z|.

Show that ℘ is uniquely determined by the above properties and that ℘(−z) = ℘(z).
By considering the valency of ℘ at z = 1/2, show that ℘′′(1/2) 6= 0.

Show that ℘ satisfies the differential equation

℘′′(z) = 6℘2(z) +A,

for some complex constant A.

[Standard theorems about doubly-periodic meromorphic functions may be used without proof
provided they are accurately stated, but any properties of the ℘-function that you use must
be deduced from first principles.]

2/II/23H Riemann Surfaces

Define the terms function element and complete analytic function.

Let (f,D) be a function element such that f(z)n = p(z), for some integer n > 2,
where p(z) is a complex polynomial with no multiple roots. Let F be the complete
analytic function containing (f,D). Show that every function element (f̃ , D̃) in F satisfies
f̃(z)n = p(z).

Describe how the non-singular complex algebraic curve

C = {(z, w) ∈ C2 | wn − p(z) = 0}

can be made into a Riemann surface such that the first and second projections C2 → C
define, by restriction, holomorphic maps f1, f2 : C → C.

Explain briefly the relation between C and the Riemann surface S(F ) for the
complete analytic function F given earlier.

[You do not need to prove the Inverse Function Theorem, provided that you state it
accurately.]
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3/II/22H Riemann Surfaces

Explain what is meant by a meromorphic differential on a compact connected
Riemann surface S. Show that if f is a meromorphic function on S then df defines a
meromorphic differential on S. Show also that if η and ω are two meromorphic differentials
on S which are not identically zero then η = hω for some meromorphic function h. Show
that zeros and poles of a meromorphic differential are well-defined and explain, without
proof, how to obtain the genus of S by counting zeros and poles of ω.

Let V0 ⊂ C2 be the affine curve with equation u2 = v2 + 1 and let V ⊂ P2 be the
corresponding projective curve. Show that V is non-singular with two points at infinity,
and that dv extends to a meromorphic differential on V .

[You may assume without proof that that the map

(u, v) =
(
t2 + 1
t2 − 1

,
2t

t2 − 1

)
, t ∈ C \ {−1, 1},

is onto V0 \ {(1, 0)} and extends to a biholomorphic map from P1 onto V .]

4/II/23H Riemann Surfaces

Define what is meant by the degree of a non-constant holomorphic map between
compact connected Riemann surfaces, and state the Riemann–Hurwitz formula.

Let EΛ = C/Λ be an elliptic curve defined by some lattice Λ. Show that the map

ψ : z + Λ ∈ EΛ → −z + Λ ∈ EΛ

is biholomorphic, and that there are four points in EΛ fixed by ψ.

Let S = EΛ/ ∼ be the quotient surface (the topological surface obtained by
identifying z + Λ and ψ(z + Λ), for each z) and let π : EΛ → S be the corresponding
projection map. Denote by E0

Λ ⊂ EΛ the complement of the four points fixed by ψ, and
let S0 = π(E0

Λ). Describe briefly a family of charts making S0 into a Riemann surface, so
that π : E0

Λ → S0 is a holomorphic map.

Now assume that the complex structure of S0 extends to S, so that S is a Riemann
surface, and that the map π is in fact holomorphic on all of EΛ. Calculate the genus of S.
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1/II/24H Differential Geometry

Let f : X → Y be a smooth map between manifolds without boundary.

(i) Define what is meant by a critical point, critical value and regular value of f .

(ii) Show that if y is a regular value of f and dimX >dimY , then the set f−1(y)
is a submanifold of X with dimf−1(y) =dimX−dimY .

[You may assume the inverse function theorem.]

(iii) Let SL(n,R) be the group of all n×n real matrices with determinant 1. Prove
that SL(n,R) is a submanifold of the set of all n×n real matrices. Find the tangent space
to SL(n,R) at the identity matrix.

2/II/24H Differential Geometry

State the isoperimetric inequality in the plane.

Let S ⊂ R3 be a surface. Let p ∈ S and let Sr(p) be a geodesic circle of centre
p and radius r (r small). Let L be the length of Sr(p) and A be the area of the region
bounded by Sr(p). Prove that

4πA− L2 = π2r4K(p) + ε(r),

where K(p) is the Gaussian curvature of S at p and

lim
r→0

ε(r)
r4

= 0.

When K(p) > 0 and r is small, compare this briefly with the isoperimetric inequality in
the plane.

3/II/23H Differential Geometry

(i) Define geodesic curvature and state the Gauss–Bonnet theorem.

(ii) Let α : I → R3 be a closed regular curve parametrized by arc-length, and
assume that α has non-zero curvature everywhere. Let n : I → S2 ⊂ R3 be the curve
given by the normal vector n(s) to α(s). Let s̄ be the arc-length of the curve n on S2.
Show that the geodesic curvature kg of n is given by

kg = − d

ds
tan−1(τ/k)

ds

ds̄
,

where k and τ are the curvature and torsion of α.

(iii) Suppose now that n(s) is a simple curve (i.e. it has no self-intersections). Show
that n(I) divides S2 into two regions of equal area.
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4/II/24H Differential Geometry

(i) Define what is meant by an isothermal parametrization. Let φ : U → R3 be an
isothermal parametrization. Prove that

φuu + φvv = 2λ2 H,

where H is the mean curvature vector and λ2 = 〈φu, φu〉.

Define what it means for φ to be minimal, and deduce that φ is minimal if and only
if ∆φ = 0.

[You may assume that the mean curvature H can be written as

H =
eG− 2fF + gE

2(EG− F 2)
. ]

(ii) Write φ(u, v) = (x(u, v), y(u, v), z(u, v)). Consider the complex valued functions

ϕ1 = xu − ixv, ϕ2 = yu − iyv, ϕ3 = zu − izv.

Show that φ is isothermal if and only if ϕ2
1 + ϕ2

2 + ϕ2
3 ≡ 0.

Suppose now that φ is isothermal. Prove that φ is minimal if and only if ϕ1, ϕ2

and ϕ3 are holomorphic functions.

(iii) Consider the immersion φ : R2 → R3 given by

φ(u, v) = (u− u3/3 + uv2, −v + v3/3− u2v, u2 − v2).

Find ϕ1, ϕ2 and ϕ3. Show that φ is an isothermal parametrization of a minimal surface.
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1/II/25J Probability and Measure

Let (Ω,F ,P) be a probability space. For G ⊆ F , what is meant by saying that G
is a π-system? State the ‘uniqueness of extension’ theorem for measures on σ(G) having
given values on G.

For G,H ⊆ F , we call G, H independent if

P(G ∩H) = P(G)P(H) for all G ∈ G, H ∈ H.

If G and H are independent π-systems, show that σ(G) and σ(H) are independent.

Let Y1, Y2, . . . , Ym, Z1, Z2, . . . , Zn be independent random variables on (Ω,F ,P).
Show that the σ-fields σ(Y ) = σ(Y1, Y2, . . . , Ym) and σ(Z) = σ(Z1, Z2, . . . , Zn) are
independent.

2/II/25J Probability and Measure

Let R be a family of random variables on the common probability space (Ω,F ,P).
What is meant by saying that R is uniformly integrable? Explain the use of uniform
integrability in the study of convergence in probability and in L1. [Clear definitions should
be given of any terms used, but proofs may be omitted.]

Let R1 and R2 be uniformly integrable families of random variables on (Ω,F ,P).
Show that the family R given by

R = {X + Y : X ∈ R1, Y ∈ R2}

is uniformly integrable.
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3/II/24J Probability and Measure

Let (Ω,F , µ) be a measure space. For a measurable function f : Ω → R, and
p ∈ [1,∞), let ||f ||p = [µ(|f |p)]1/p. Let Lp be the space of all such f with ||f ||p < ∞.
Explain what is meant by each of the following statements:

(a) A sequence of functions (fn : n > 1) is Cauchy in Lp.

(b) Lp is complete.

Show that Lp is complete for p ∈ [1,∞).

Take Ω = (1,∞), F the Borel σ-field of Ω, and µ the Lebesgue measure on (Ω,F).
For p = 1, 2, determine which if any of the following sequences of functions are Cauchy in
Lp:

(i) fn(x) = x−11(1,n)(x),

(ii) gn(x) = x−21(1,n)(x),

where 1A denotes the indicator function of the set A.

4/II/25J Probability and Measure

Let f : R2 → R be Borel-measurable. State Fubini’s theorem for the double integral∫
y∈R

∫
x∈R

f(x, y) dx dy .

Let 0 < a < b. Show that the function

f(x, y) =
{
e−xy if x ∈ (0,∞), y ∈ [a, b]
0 otherwise

is measurable and integrable on R2.

Evaluate
∞∫
0

e−ax − e−bx

x
dx

by Fubini’s theorem or otherwise.
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1/II/26I Applied Probability

A cell has been placed in a biological solution at time t = 0. After an exponential
time of rate µ, it is divided, producing k cells with probability pk, k = 0, 1, . . ., with
the mean value ρ =

∑∞
k=1 kpk (k = 0 means that the cell dies). The same mechanism is

applied to each of the living cells, independently.

(a) Let Mt be the number of living cells in the solution by time t > 0. Prove that
EMt = exp

[
tµ(ρ−1)

]
. [You may use without proof, if you wish, the fact that, if a positive

function a(t) satisfies a(t + s) = a(t)a(s) for t, s > 0 and is differentiable at zero, then
a(t) = eαt, t > 0, for some α.]

Let φt(s) = E sMt be the probability generating function of Mt. Prove that it
satisfies the following differential equation

d
dt
φt(s) = µ

(
−φt(s) +

∞∑
k=0

pk

[
φt(s)

]k)
, with φ0(s) = s.

(b) Now consider the case where each cell is divided in two cells (p2 = 1). Let
Nt = Mt − 1 be the number of cells produced in the solution by time t.

Calculate the distribution of Nt. Is (Nt) an inhomogeneous Poisson process? If so,
what is its rate λ(t)? Justify your answer.

2/II/26I Applied Probability

What does it mean to say that (Xt) is a renewal process?

Let (Xt) be a renewal process with holding times S1, S2, . . . and let s > 0. For
n > 1, set Tn = SXs+n. Show that

P(Tn > t) > P(Sn > t), t > 0,

for all n, with equality if n > 2.

Consider now the case where S1, S2, . . . are exponential random variables. Show
that

P(T1 > t) > P(S1 > t), t > 0,

and that, as s→∞,
P(T1 > t) → P(S1 + S2 > t), t > 0 .
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3/II/25I Applied Probability

Consider an M/G/r/0 loss system with arrival rate λ and service-time distribution
F . Thus, arrivals form a Poisson process of rate λ, service times are independent with
common distribution F , there are r servers and there is no space for waiting. Use Little’s
Lemma to obtain a relation between the long-run average occupancy L and the stationary
probability π that the system is full.

Cafe–Bar Duo has 23 serving tables. Each table can be occupied either by one
person or two. Customers arrive either singly or in a pair; if a table is empty they are
seated and served immediately, otherwise, they leave. The times between arrivals are
independent exponential random variables of mean 20/3. Each arrival is twice as likely to
be a single person as a pair. A single customer stays for an exponential time of mean 20,
whereas a pair stays for an exponential time of mean 30; all these times are independent
of each other and of the process of arrivals. The value of orders taken at each table is a
constant multiple 2/5 of the time that it is occupied.

Express the long-run rate of revenue of the cafe as a function of the probability π
that an arriving customer or pair of customers finds the cafe full.

By imagining a cafe with infinitely many tables, show that π 6 P(N > 23) where
N is a Poisson random variable of parameter 7/2. Deduce that π is very small. [Credit
will be given for any useful numerical estimate, an upper bound of 10−3 being sufficient
for full credit.]
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4/II/26I Applied Probability

A particle performs a continuous-time nearest neighbour random walk on a regular
triangular lattice inside an angle π/3, starting from the corner. See the diagram below.
The jump rates are 1/3 from the corner and 1/6 in each of the six directions if the particle
is inside the angle. However, if the particle is on the edge of the angle, the rate is 1/3
along the edge away from the corner and 1/6 to each of three other neighbouring sites in
the angle. See the diagram below, where a typical trajectory is also shown.

1/3

1/6
1/6

1/6

1/3
1/61/6

1/6

1/3 1/3

1/61/6

1/6 1/6

1/6 1/6

The particle position at time t > 0 is determined by its vertical level Vt and its
horizontal position Gt. For k > 0, if Vt = k then Gt = 0, . . . , k. Here 1, . . . , k − 1 are
positions inside, and 0 and k positions on the edge of the angle, at vertical level k.

Let JV
1 , JV

2 , ... be the times of subsequent jumps of process (Vt) and consider the
embedded discrete-time Markov chains

Y in
n =

(
Ĝin

n , V̂n

)
and Y out

n =
(
Ĝout

n , V̂n

)
where V̂n is the vertical level immediately after time JV

n , Ĝin
n is the horizontal position

immediately after time JV
n , and Ĝout

n is the horizontal position immediately before time
JV

n+1.
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(a) Assume that (V̂n) is a Markov chain with transition probabilities

P
(
V̂n = k + 1

∣∣V̂n−1 = k) =
k + 2

2(k + 1)
, P

(
V̂n = k − 1

∣∣V̂n−1 = k) =
k

2(k + 1)
,

and that (Vt) is a continuous-time Markov chain with rates

qkk−1 =
k

3(k + 1)
, qkk = −2

3
, qkk+1 =

k + 2
3(k + 1)

.

[You will be asked to justify these assumptions in part (b) of the question.] Determine
whether the chains (V̂n) and (Vt) are transient, positive recurrent or null recurrent.

(b) Now assume that, conditional on V̂n = k and previously passed vertical levels,
the horizontal positions Ĝin

n and Ĝout
n are uniformly distributed on {0, . . . , k}. In other

words, for all attainable values k, kn−1, . . ., k1 and for all i = 0, . . . , k,

P
(
Ĝin

n = i
∣∣V̂n = k, V̂n−1 = kn−1, . . . , V̂1 = k1, V̂0 = 0

)
= P

(
Ĝout

n = i
∣∣V̂n = k, V̂n−1 = kn−1, . . . , V̂1 = k1, V̂0 = 0

)
=

1
k + 1

.
(∗)

Deduce that (V̂n) and (Vt) are indeed Markov chains with transition probabilities and
rates as in (a).

(c) Finally, prove property (∗).
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1/II/27I Principles of Statistics

State Wilks’ Theorem on the asymptotic distribution of likelihood-ratio test statis-
tics.

Suppose that X1, . . . , Xn are independent with common N(µ, σ2) distribution,
where the parameters µ and σ are both unknown. Find the likelihood-ratio test statistic
for testing H0 : µ = 0 against H1 : µ unrestricted, and state its (approximate) distribution.

What is the form of the t-test of H0 against H1? Explain why for large n the
likelihood-ratio test and the t-test are nearly the same.

2/II/27I Principles of Statistics

(i) Suppose thatX is a multivariate normal vector with mean µ ∈ Rd and covariance
matrix σ2I, where µ and σ2 are both unknown, and I denotes the d× d identity matrix.
Suppose that Θ0 ⊂ Θ1 are linear subspaces of Rd of dimensions d0 and d1, where
d0 < d1 < d. Let Pi denote orthogonal projection onto Θi (i = 0, 1). Carefully derive the
joint distribution of (|X − P1X|2, |P1X − P0X|2) under the hypothesis H0 : µ ∈ Θ0. How
could you use this to make a test of H0 against H1 : µ ∈ Θ1?

(ii) Suppose that I students take J exams, and that the mark Xij of student i in
exam j is modelled as

Xij = m+ αi + βj + εij

where
∑

i αi = 0 =
∑

j βj , the εij are independent N(0, σ2), and the parameters m, α, β
and σ are unknown. Construct a test of H0 : βj = 0 for all j against H1 :

∑
j βj = 0.

3/II/26I Principles of Statistics

In the context of decision theory, explain the meaning of the following italicized
terms: loss function, decision rule, the risk of a decision rule, a Bayes rule with respect
to prior π, and an admissible rule. Explain how a Bayes rule with respect to a prior π can
be constructed.

Suppose that X1, . . . , Xn are independent with common N(0, v) distribution, where
v > 0 is supposed to have a prior density f0. In a decision-theoretic approach to
estimating v, we take a quadratic loss: L(v, a) = (v − a)2. Write X = (X1, . . . , Xn)
and |X| = (X2

1 + . . .+X2
n)1/2.

By considering decision rules (estimators) of the form v̂(X) = α|X|2, prove that if
α 6= 1/(n+ 2) then the estimator v̂(X) = α|X|2 is not Bayes, for any choice of prior f0.

By considering decision rules of the form v̂(X) = α|X|2 + β, prove that if α 6= 1/n
then the estimator v̂(X) = α|X|2 is not Bayes, for any choice of prior f0.

[You may use without proof the fact that, if Z has a N(0, 1) distribution, then EZ4 = 3.]
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4/II/27I Principles of Statistics

A group of n hospitals is to be ‘appraised’; the ‘performance’ θi of hospital i has
a N(0, 1/τ) prior distribution, different hospitals being independent. The ‘performance’
cannot be measured directly, so an expensive firm of management consultants has been
hired to arrive at each hospital’s Standardised Index of Quality [SIQ], this being a number
Xi for hospital i related to θi by the commercially-sensitive formula

Xi = θi + εi,

where the εi are independent with common N(0, 1/τε) distribution.

(i) Assume that τ and τε are known. What is the posterior distribution of θ given
X? Suppose that hospital j was the hospital with the lowest SIQ, with a value Xj = x;
conditional on X, what is the distribution of θj?

(ii) Now, instead of assuming τ and τε known, suppose that τ has a Gamma prior
with parameters (α, β), density

f(t) = (βt)α−1βe−βt/Γ(α)

for known α and β, and that τε = κτ , where κ is a known constant. Find the posterior
distribution of (θ, τ) given X. Comment briefly on the form of the distribution.
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1/II/28J Stochastic Financial Models

Let X ≡ (X0, X1, . . . , XJ)T be a zero-mean Gaussian vector, with covariance
matrix V = (vjk). In a simple single-period economy with J agents, agent i will receive
Xi at time 1 (i = 1, . . . , J). If Y is a contingent claim to be paid at time 1, define agent
i’s reservation bid price for Y , assuming his preferences are given by E[Ui(Xi + Z)] for
any contingent claim Z.

Assuming that Ui(x) ≡ − exp(−γix) for each i, where γi > 0, show that agent i’s
reservation bid price for λ units of X0 is

pi(λ) = −1
2
γi(λ2v00 + 2λv0i).

As λ → 0, find the limit of agent i’s per-unit reservation bid price for X0, and
comment on the expression you obtain.

The agents bargain, and reach an equilibrium. Assuming that the contingent claim
X0 is in zero net supply, show that the equilibrium price of X0 will be

p = −Γv0•,

where Γ−1 =
∑J

i=1 γ
−1
i and v0• =

∑J
i=1 v0i . Show that at that price agent i will choose

to buy
θi = (Γv0• − γiv0i)/(γiv00)

units of X0.

By computing the improvement in agent i’s expected utility, show that the value
to agent i of access to this market is equal to a fixed payment of

(γiv0i − Γv0•)2

2γiv00
.
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2/II/28J Stochastic Financial Models

(i) At the beginning of year n, an investor makes decisions about his investment
and consumption for the coming year. He first takes out an amount cn from his current
wealth wn, and sets this aside for consumption. He splits his remaining wealth between
a bank account (unit wealth invested at the start of the year will have grown to a sure
amount r > 1 by the end of the year), and the stock market. Unit wealth invested in the
stock market will have become the random amount Xn+1 > 0 by the end of the year.

The investor’s objective is to invest and consume so as to maximise the expected
value of

∑N
n=1 U(cn), where U is strictly increasing and strictly convex. Consider the

dynamic programming equation (Bellman equation) for his problem,

Vn(w) = sup
c,θ

{
U(c) + En

[
Vn+1(θ(w − c)Xn+1 + (1− θ)(w − c)r)

] }
(0 6 n < N),

VN (w) = U(w).

Explain all undefined notation, and explain briefly why the equation holds.

(ii) Supposing that the Xi are independent and identically distributed, and that
U(x) = x1−R/(1 − R), where R > 0 is different from 1, find as explicitly as you can the
form of the agent’s optimal policy.

(iii) Return to the general problem of (i). Assuming that the sample space Ω is
finite, and that all suprema are attained, show that

En[V ′
n+1(w

∗
n+1)(Xn+1 − r) ] = 0,
rEn[V ′

n+1(w
∗
n+1) ] = U ′(c∗n),

rEn[V ′
n+1(w

∗
n+1) ] = V ′

n(w∗n),

where (c∗n, w
∗
n)06n6N denotes the optimal consumption and wealth process for the prob-

lem. Explain the significance of each of these equalities.
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3/II/27J Stochastic Financial Models

Suppose that over two periods a stock price moves on a binomial tree:

15

30

12

45

36

16

10

(a) Find an arbitrage opportunity when the riskless rate equals 1/10. Give precise
details of when and how much you buy, borrow and sell.

(b) From here on, assume instead that the riskless rate equals 1/4. Determine the
equivalent martingale measure. [No proof is required.]

(c) Determine the time-zero price of an American put with strike 15 and expiry 2.
Assume you sell it at this price. Which hedge do you put on at time zero? Consider
the scenario of two bad periods. How does your hedge work?

(d) The buyer of the American put turns out to be an unsophisticated investor who
fails to use his early exercise right when he should. Assume the first period was
bad. How much profit can you make out of this? You should detail your exact
strategy.
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4/II/28J Stochastic Financial Models

(a) In the context of the Black–Scholes formula, let S0 be spot price, K be strike price,
T be time to maturity, and assume constant interest rate r, volatility σ and absence
of dividends. Write down explicitly the prices of a European call and put,

EC (S0,K, σ, r, T ) and EP (S0,K, σ, r, T ) .

Use Φ for the normal distribution function. [No proof is required.]

(b) From here on assume r = 0. Keeping T, σ fixed, we shorten the notation to
EC (S0,K) and similarly for EP. Show that put-call symmetry holds:

EC (S0,K) = EP (K,S0) .

Check homogeneity: for every real α > 0

EC (αS0, αK) = αEC (S0,K) .

(c) Show that the price of a down-and-out European call with strike K < S0 and
barrier B 6 K is given by

EC (S0,K)− S0

B
EC

(
B2

S0
,K

)
.

(d)

(i) Specialize the last expression to B = K and simplify.

(ii) Answer a popular interview question in investment banks: What is the fair value
of a down-and-out call given that S0 = 100, B = K = 80, σ = 20%, r = 0, T = 1?
Identify the corresponding hedge. [It may be helpful to compute Delta first.]

(iii) Does this hedge work beyond the Black–Scholes model? When does it fail?

Part II 2005



59

2/II/29I Optimization and Control

Explain what is meant by a time-homogeneous discrete time Markov decision
problem.

What is the positive programming case?

A discrete time Markov decision problem has state space {0, 1, . . . , N}. In state
i, i 6= 0, N , two actions are possible. We may either stop and obtain a terminal reward
r(i) > 0, or may continue, in which case the subsequent state is equally likely to be
i − 1 or i + 1. In states 0 and N stopping is automatic (with terminal rewards r(0) and
r(N) respectively). Starting in state i, denote by Vn(i) and V (i) the maximal expected
terminal reward that can be obtained over the first n steps and over the infinite horizon,
respectively. Prove that limn→∞ Vn = V .

Prove that V is the smallest concave function such that V (i) > r(i) for all i.

Describe an optimal policy.

Suppose r(0), . . . , r(N) are distinct numbers. Show that the optimal policy is
unique, or give a counter-example.

3/II/28I Optimization and Control

Consider the problem

minimize E

[
x(T )2 +

∫ T

0

u(t)2 dt

]

where for 0 6 t 6 T ,
ẋ(t) = y(t) and ẏ(t) = u(t) + ε(t) ,

u(t) is the control variable, and ε(t) is Gaussian white noise. Show that the problem can
be rewritten as one of controlling the scalar variable z(t), where

z(t) = x(t) + (T − t)y(t) .

By guessing the form of the optimal value function and ensuring it satisfies an appropriate
optimality equation, show that the optimal control is

u(t) = − (T − t)z(t)
1 + 1

3 (T − t)3
.

Is this certainty equivalence control?
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4/II/29I Optimization and Control

A continuous-time control problem is defined in terms of state variable x(t) ∈ Rn

and control u(t) ∈ Rm, 0 6 t 6 T . We desire to minimize
∫ T

0
c(x, t) dt+K(x(T )), where T

is fixed and x(T ) is unconstrained. Given x(0) and ẋ = a(x, u), describe further boundary
conditions that can be used in conjunction with Pontryagin’s maximum principle to find
x, u and the adjoint variables λ1, . . . , λn.

Company 1 wishes to steal customers from Company 2 and maximize the profit it
obtains over an interval [0, T ]. Denoting by xi(t) the number of customers of Company i,
and by u(t) the advertising effort of Company 1, this leads to a problem

minimize
∫ T

0

[
x2(t) + 3u(t)

]
dt ,

where ẋ1 = ux2, ẋ2 = −ux2, and u(t) is constrained to the interval [0, 1]. Assuming
x2(0) > 3/T , use Pontryagin’s maximum principle to show that the optimal advertising
policy is bang-bang, and that there is just one change in advertising effort, at a time t∗,
where

3 et∗ = x2(0)(T − t∗) .
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1/II/29C Partial Differential Equations

Consider the equation

x2
∂u

∂x1
− x1

∂u

∂x2
+ a

∂u

∂x3
= u, (∗)

where a ∈ R, to be solved for u = u(x1, x2, x3). State clearly what it means for a
hypersurface

Sφ =
{
(x1, x2, x3) : φ(x1, x2, x3) = 0

}
,

defined by a C1 function φ, to be non-characteristic for (∗). Does the non-characteristic
condition hold when φ(x1, x2, x3) = x3?

Solve (∗) for a > 0 with initial condition u(x1, x2, 0) = f(x1, x2) where f ∈ C1(R2).
For the case f(x1, x2) = x2

1 + x2
2 discuss the limiting behaviour as a→ 0+.

2/II/30C Partial Differential Equations

Define a fundamental solution of a linear partial differential operator P . Prove that
the function

G(x) = 1
2e

−|x|

defines a distribution which is a fundamental solution of the operator P given by

P u = −d
2u

dx2
+ u .

Hence find a solution u0 to the equation

−d
2u0

dx2
+ u0 = V (x) ,

where V (x) = 0 for |x| > 1 and V (x) = 1 for |x| 6 1.

Consider the functional

I[u] =
∫

R

{
1
2

[(du
dx

)2

+ u2
]
− V u

}
dx .

Show that I[u0 + φ] > I[u0] for all Schwartz functions φ that are not identically zero.
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3/II/29C Partial Differential Equations

Write down a formula for the solution u = u(t, x) of the n-dimensional heat equation

wt(t, x)−∆w = 0, w(0, x) = g(x),

for g : Rn → C a given Schwartz function; here wt = ∂tw and ∆ is taken in the variables
x ∈ Rn. Show that

w(t, x) 6

∫
|g(x)| dx

(4πt)n/2
.

Consider the equation
ut −∆u = eitf(x) , (∗)

where f : Rn → C is a given Schwartz function. Show that (∗) has a solution of the form

u(t, x) = eitv(x) ,

where v is a Schwartz function.

Prove that the solution u(t, x) of the initial value problem for (∗) with initial data
u(0, x) = g(x) satisfies

lim
t→+∞

∣∣u(t, x)− eitv(x)
∣∣ = 0 .

4/II/30C Partial Differential Equations

Write down the solution of the three-dimensional wave equation

utt −∆u = 0 , u(0, x) = 0 , ut(0, x) = g(x) ,

for a Schwartz function g. Here ∆ is taken in the variables x ∈ R3 and ut = ∂u/∂t
etc. State the “strong” form of Huygens principle for this solution. Using the method of
descent, obtain the solution of the corresponding problem in two dimensions. State the
“weak” form of Huygens principle for this solution.

Let u ∈ C2([0, T ]× R3) be a solution of

utt −∆u+ |x|2u = 0 , u(0, x) = 0 , ut(0, x) = 0 . (∗)

Show that
∂te+ ∇ · p = 0 , (∗∗)

where
e = 1

2

(
ut

2 + |∇u|2 + |x|2u2
)
, and p = −ut∇u .

Hence deduce, by integration of (∗∗) over the region

K =
{
(t, x) : 0 6 t 6 t0 − a 6 t0, |x− x0| 6 t0 − t

}
or otherwise, that (∗) satisfies the weak Huygens principle.
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1/II/30A Asymptotic Methods

Explain what is meant by an asymptotic power series about x = a for a real function
f(x) of a real variable. Show that a convergent power series is also asymptotic.

Show further that an asymptotic power series is unique (assuming that it exists).

Let the function f(t) be defined for t > 0 by

f(t) =
1

π1/2

∫ ∞

0

e−x

x1/2(1 + 2xt)
dx .

By suitably expanding the denominator of the integrand, or otherwise, show that,
as t→ 0+,

f(t) ∼
∞∑

k=0

(−1)k1.3 . . . (2k − 1)tk

and that the error, when the series is stopped after n terms, does not exceed the absolute
value of the (n+ 1)th term of the series.

3/II/30A Asymptotic Methods

Explain, without proof, how to obtain an asymptotic expansion, as x→∞, of

I(x) =
∫ ∞

0

e−xtf(t)dt ,

if it is known that f(t) possesses an asymptotic power series as t→ 0.

Indicate the modification required to obtain an asymptotic expansion, under
suitable conditions, of ∫ ∞

−∞
e−xt2f(t) dt .

Find an asymptotic expansion as z →∞ of the function defined by

I(z) =
∫ ∞

−∞

e−t2

(z − t)
dt (Im(z) < 0)

and its analytic continuation to Im(z) > 0. Where are the Stokes lines, that is, the critical
lines separating the Stokes regions?
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4/II/31A Asymptotic Methods

Consider the differential equation

d2w

dx2
= q(x)w ,

where q(x) > 0 in an interval (a,∞). Given a solution w(x) and a further smooth function
ξ(x), define

W (x) = [ξ′(x)]1/2w(x) .

Show that, when ξ is regarded as the independent variable, the function W (ξ) obeys
the differential equation

d2W

dξ2
=

{
ẋ2q(x) + ẋ1/2 d

2

dξ2
[ẋ−1/2]

}
W, (∗)

where ẋ denotes dx/dξ.

Taking the choice

ξ(x) =
∫
q1/2(x)dx ,

show that equation (∗) becomes

d2W

dξ2
= (1 + φ)W ,

where

φ = − 1
q3/4

d2

dx2

( 1
q1/4

)
.

In the case that φ is negligible, deduce the Liouville–Green approximate solutions

w± = q−1/4 exp
(
±
∫
q1/2dx

)
.

Consider the Whittaker equation

d2w

dx2
=

[
1
4

+
s(s− 1)
x2

]
w ,

where s is a real constant. Show that the Liouville–Green approximation suggests the
existence of solutions wA,B(x) with asymptotic behaviour of the form

wA ∼ exp(x/2)

(
1 +

∞∑
n=1

anx
−n

)
, wB ∼ exp(−x/2)

(
1 +

∞∑
n=1

bnx
−n

)
as x→∞.

Given that these asymptotic series may be differentiated term-by-term, show that

an =
(−1)n

n!
(s− n)(s− n+ 1) . . . (s+ n− 1) .
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1/II/31D Integrable Systems

Let φ(t) satisfy the linear singular integral equation

(t2 + t− 1)φ(t)− t2 − t− 1
πi

∮
L

φ(τ)dτ
τ − t

− 1
πi

∫
L

(
τ +

1
τ

)
φ(τ)dτ = t− 1, t ∈ L,

where
∮

denotes the principal value integral and L denotes a counterclockwise smooth
closed contour, enclosing the origin but not the points ±1.

(a) Formulate the associated Riemann–Hilbert problem.

(b) For this Riemann–Hilbert problem, find the index, the homogeneous canonical
solution and the solvability condition.

(c) Find φ(t).

2/II/31C Integrable Systems

Suppose q(x, t) satisfies the mKdV equation

qt + qxxx + 6q2qx = 0 ,

where qt = ∂q/∂t etc.

(a) Find the 1-soliton solution.

[You may use, without proof, the indefinite integral
∫

dx

x
√

1− x2
= −arcsechx . ]

(b) Express the self-similar solution of the mKdV equation in terms of a solution,
denoted by v(z), of the Painlevé II equation.

(c) Using the Ansatz
dv

dz
+ iv2 − i

6
z = 0 ,

find a particular solution of the mKdV equation in terms of a solution of the Airy equation

d2Ψ
dz2

+
z

6
Ψ = 0 .
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3/II/31A Integrable Systems

Let Q(x, t) be an off-diagonal 2× 2 matrix. The matrix NLS equation

iQt −Qxxσ3 + 2Q3σ3 = 0, σ3 = diag(1,−1),

admits the Lax pair

µx + ik[σ3, µ] = Qµ,

µt + 2ik2[σ3, µ] = (2kQ− iQ2σ3 − iQxσ3)µ,

where k ∈ C, µ(x, t, k) is a 2× 2 matrix and [σ3, µ] denotes the matrix commutator.

Let S(k) be a 2 × 2 matrix-valued function decaying as |k| → ∞. Let µ(x, t, k)
satisfy the 2× 2-matrix Riemann–Hilbert problem

µ+(x, t, k) = µ−(x, t, k)e−i(kx+2k2t)σ3S(k)ei(kx+2k2t)σ3 , k ∈ R,

µ = diag(1, 1) + O
(

1
k

)
, k →∞.

(a) Find expressions for Q(x, t), A(x, t) and B(x, t), in terms of the coefficients in the
large k expansion of µ, so that µ solves

µx + ik[σ3, µ]−Qµ = 0,

and
µt + 2ik2[σ3, µ]− (kA+B)µ = 0.

(b) Use the result of (a) to establish that

A = 2Q, B = −i(Q2 +Qx)σ3.

(c) Show that the above results provide a linearization of the matrix NLS equation.
What is the disadvantage of this approach in comparison with the inverse scattering
method?
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1/II/32D Principles of Quantum Mechanics

A one-dimensional harmonic oscillator has Hamiltonian

H =
1

2m
p̂2 +

1
2
mω2x̂2 = ~ω

(
a†a +

1
2

)
,

where

a =
(mω

2~

)1/2(
x̂+

i

mω
p̂
)
, a† =

(mω
2~

)1/2(
x̂− i

mω
p̂
)

obey [a, a†] = 1.

Assuming the existence of a normalised state |0〉 with a|0〉 = 0, verify that

|n〉 =
1√
n!
a†n|0〉 , n = 0, 1, 2, . . .

are eigenstates of H with energies En, to be determined, and that these states all have
unit norm.

The Hamiltonian is now modified by a term

λV = λ~ω( ar + a† r )

where r is a positive integer. Use perturbation theory to find the change in the lowest
energy level to order λ2 for any r. [You may quote any standard formula you need.]

Compute by perturbation theory, again to order λ2, the change in the first excited
energy level when r = 1. Show that in this special case, r = 1, the exact change in all
energy levels as a result of the perturbation is −λ2~ω.
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2/II/32D Principles of Quantum Mechanics

The components of σ = (σ1, σ2, σ3) are 2×2 hermitian matrices obeying

[σi, σj ] = 2iεijkσk and (n·σ)2 = 1 (∗)

for any unit vector n. Show that these properties imply

(a·σ) (b·σ) = a·b + i(a×b)·σ

for any constant vectors a and b. Assuming that θ is real, explain why the matrix
U = exp(−in·σ θ/2) is unitary, and show that

U = cos(θ/2) − in·σ sin(θ/2) .

Hence deduce that
Um·σU−1 = m·σ cos θ + (n×m)·σ sin θ

where m is any unit vector orthogonal to n.

Write down an equation relating the matrices σ and the angular momentum
operator S for a particle of spin one half, and explain briefly the significance of the
conditions (∗). Show that if |χ〉 is a state with spin ‘up’ measured along the direction
(0, 0, 1) then, for a certain choice of n, U |χ〉 is a state with spin ‘up’ measured along the
direction (sin θ, 0, cos θ).

3/II/32D Principles of Quantum Mechanics

The angular momentum operators J(1) and J(2) refer to independent systems, each
with total angular momentum one. The combination of these systems has a basis of states
which are of product form |m1;m2〉 = |1m1〉|1m2〉 where m1 and m2 are the eigenvalues
of J (1)

3 and J
(2)
3 respectively. Let |J M〉 denote the alternative basis states which are

simultaneous eigenstates of J2 and J3, where J = J(1) + J(2) is the combined angular
momentum. What are the possible values of J and M? Find expressions for all states
with J = 1 in terms of product states. How do these states behave when the constituent
systems are interchanged?

Two spin-one particles A and B have no mutual interaction but they each move in
a potential V (r) which is independent of spin. The single-particle energy levels Ei and the
corresponding wavefunctions ψi(r) (i = 1, 2, . . .) are the same for either A or B. Given
that E1 < E2 < . . . , explain how to construct the two-particle states of lowest energy and
combined total spin J = 1 for the cases that (i) A and B are identical, and (ii) A and B
are not identical.

[You may assume ~ = 1 and use the result J±|j m〉 =
√

(j ∓m)(j ±m+ 1) |j m±1〉.]
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4/II/32D Principles of Quantum Mechanics

The Hamiltonian for a quantum system in the Schrödinger picture is

H0 + λV (t) ,

where H0 is independent of time and the parameter λ is small. Define the interaction
picture corresponding to this Hamiltonian and derive a time evolution equation for
interaction picture states.

Let |a〉 and |b〉 be eigenstates ofH0 with distinct eigenvalues Ea and Eb respectively.
Show that if the system is initially in state |a〉 then the probability of measuring it to be
in state |b〉 after a time t is

λ2

~2

∣∣∣∣ ∫ t

0

dt′〈b|V (t′)|a〉ei(Eb−Ea)t′/~
∣∣∣∣2 + O(λ3) .

Deduce that if V (t) = e−µt/~W , where W is a time-independent operator and µ is a
positive constant, then the probability for such a transition to have occurred after a very
long time is approximately

λ2

µ2 + (Eb − Ea)2
|〈b|W |a〉|2 .
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1/II/33B Applications of Quantum Mechanics

A beam of particles is incident on a central potential V (r) (r = |x|) that vanishes
for r > R. Define the differential cross-section dσ/dΩ.

Given that each incoming particle has momentum ~k, explain the relevance of
solutions to the time-independent Schrödinger equation with the asymptotic form

ψ (x) ∼ eik·x + f(x̂)
eikr

r
(∗)

as r → ∞, where k = |k| and x̂ = x/r. Write down a formula that determines dσ/dΩ in
this case.

Write down the time-independent Schrödinger equation for a particle of mass m

and energy E =
~2k2

2m
in a central potential V (r), and show that it allows a solution of

the form

ψ (x) = eik·x − m

2π~2

∫
d3x′

eik|x−x′|

|x− x′|
V (r′)ψ (x′) .

Show that this is consistent with (∗) and deduce an expression for f(x̂). Obtain the Born
approximation for f(x̂), and show that f(x̂) = F (kx̂− k), where

F (q) = − m

2π~2

∫
d3x e−iq·x V (r) .

Under what conditions is the Born approximation valid?

Obtain a formula for f(x̂) in terms of the scattering angle θ in the case that

V (r) = K
e−µr

r
,

for constants K and µ. Hence show that f(x̂) is independent of ~ in the limit µ → 0,
when expressed in terms of θ and the energy E.

[You may assume that (∇2 + k2)
(
eikr

r

)
= −4πδ3(x).]
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2/II/33B Applications of Quantum Mechanics

Describe briefly the variational approach to the determination of an approximate
ground state energy E0 of a Hamiltonian H.

Let |ψ1〉 and |ψ2〉 be two states, and consider the trial state

|ψ〉 = a1|ψ1〉+ a2|ψ2〉

for real constants a1 and a2. Given that

〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = 1 , 〈ψ2|ψ1〉 = 〈ψ1|ψ2〉 = s ,

〈ψ1|H|ψ1〉 = 〈ψ2|H|ψ2〉 = E , 〈ψ2|H|ψ1〉 = 〈ψ1|H|ψ2〉 = ε ,
(∗)

and that ε < sE , obtain an upper bound on E0 in terms of E , ε and s.

The normalized ground-state wavefunction of the Hamiltonian

H1 =
p2

2m
−Kδ(x) , K > 0,

is
ψ1(x) =

√
λ e−λ|x| , λ =

mK

~2
.

Verify that the ground state energy of H1 is

EB ≡ 〈ψ1|H|ψ1〉 = −1
2
Kλ .

Now consider the Hamiltonian

H =
p2

2m
−Kδ(x)−Kδ(x−R) ,

and let E0(R) be its ground-state energy as a function of R. Assuming that

ψ2(x) =
√
λ e−λ|x−R| ,

use (∗) to compute s, E and ε for ψ1 and ψ2 as given. Hence show that

E0(R) 6 EB

[
1 + 2

e−λR
(
1 + e−λR

)
1 + (1 + λR) e−λR

]
.

Why should you expect this inequality to become an approximate equality for sufficiently
large R? Describe briefly how this is relevant to molecular binding.
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3/II/33B Applications of Quantum Mechanics

Let {l} be the set of lattice vectors of some lattice. Define the reciprocal lattice.
What is meant by a Bravais lattice?

Let i, j, k be mutually orthogonal unit vectors. A crystal has identical atoms at
positions given by the vectors

a
[
n1i + n2j + n3k

]
, a

[
(n1 + 1

2 )i + (n2 + 1
2 )j + n3k

]
,

a
[
(n1 + 1

2 )i + j + (n3 + 1
2 )k
]
, a

[
n1i + (n2 + 1

2 )j + (n3 + 1
2 )k
]
,

where (n1, n2, n3) are arbitrary integers and a is a constant. Show that these vectors
define a Bravais lattice with basis vectors

a1 = a 1
2 (j + k) , a2 = a 1

2 (i + k) , a3 = a 1
2 (i + j) .

Verify that a basis for the reciprocal lattice is

b1 =
2π
a

(j + k− i) , b2 =
2π
a

(i + k− j) , b3 =
2π
a

(i + j− k) .

In Bragg scattering, an incoming plane wave of wave-vector k is scattered to an
outgoing wave of wave-vector k′. Explain why k′ = k+g for some reciprocal lattice vector
g. Given that θ is the scattering angle, show that

sin
1
2
θ =

|g|
2 |k|

.

For the above lattice, explain why you would expect scattering through angles θ1 and θ2
such that

sin 1
2θ1

sin 1
2θ2

=
√

3
2
.
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4/II/33B Applications of Quantum Mechanics

A semiconductor has a valence energy band with energies E 6 0 and density of
states gv(E), and a conduction energy band with energies E > Eg and density of states
gc(E). Assume that gv(E) ∼ Av(−E)

1
2 as E → 0, and that gc(E) ∼ Ac(E − Eg)

1
2

as E → Eg. At zero temperature all states in the valence band are occupied and
the conduction band is empty. Let p be the number of holes in the valence band and
n the number of electrons in the conduction band at temperature T . Under suitable
approximations derive the result

pn = NvNce
−Eg/kT

where
Nv = 1

2

√
πAv(kT )

3
2 , Nc = 1

2

√
πAc(kT )

3
2 .

Briefly describe how a semiconductor may conduct electricity but with a conductivity that
is strongly temperature dependent.

Describe how doping of the semiconductor leads to p 6= n. A pn junction is formed
between an n-type semiconductor, with Nd donor atoms, and a p-type semiconductor,
with Na acceptor atoms. Show that there is a potential difference Vnp = ∆E/|e| across
the junction, where e is the electron charge, and

∆E = Eg − kT ln
NvNc

NdNa
.

Two semiconductors, one p-type and one n-type, are joined to make a closed circuit
with two pn junctions. Explain why a current will flow around the circuit if the junctions
are at different temperatures.

[The Fermi–Dirac distribution function at temperature T and chemical potential µ is
g(E)

e(E−µ)/kT + 1
, where g(E) is the number of states with energy E.

Note that
∫ ∞

0

x
1
2 e−x dx = 1

2

√
π.]
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2/II/34D Statistical Physics

Write down the first law of thermodynamics in differential form applied to an
infinitesimal reversible change.

Explain what is meant by an adiabatic change.

Starting with the first law in differential form, derive the Maxwell relation(
∂S

∂V

)
T

=
(
∂P

∂T

)
V

.

Hence show that (
∂E

∂V

)
T

= T

(
∂P

∂T

)
V

− P .

For radiation in thermal equilibrium at temperature T in volume V , it is given that
E = V e(T ) and P = e(T )/3. Hence deduce Stefan’s Law,

E = aV T 4 ,

where a is a constant.

The radiation is allowed to expand adiabatically. Show that V T 3 is constant during
the expansion.
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3/II/34D Statistical Physics

A free spinless particle moving in two dimensions is confined to a square box of
side L. By imposing periodic boundary conditions show that the number of states in the
energy range ε→ ε+ dε is g(ε)dε, where

g(ε) =
mL2

2π~2
.

If, instead, the particle is an electron with magnetic moment µ moving in a constant
external magnetic field H, show that

g(ε) =


mL2

2π~2
, −µH < ε < µH

mL2

π~2
, µH < ε .

Let there be N electrons in the box. Explain briefly how to construct the ground state of
the system. Let ε be the Fermi energy. Show that when ε > µH

N =
mL2

π~2
ε .

Show also that the magnetic moment M of the system in its ground state is given by

M =
µ2mL2

π~2
H ,

and that the ground state energy is

1
2
π~2

mL2
N2 − 1

2
MH .
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4/II/34D Statistical Physics

Write down an expression for the partition function of a classical particle of mass
m moving in three dimensions in a potential U(x) and in equilibrium with a heat bath at
temperature T .

A system of N non-interacting classical particles is placed in the potential

U(x) =
(x2 + y2 + z2)n

V 2n/3
,

where n is a positive integer. The gas is in equilibrium at temperature T . Using a suitable
rescaling of variables, show that the free energy F is given by

F

N
= −kT

(
log V +

3
2
n+ 1
n

log kT + log In

)
,

where

In =
(

2mπ
h2

)3/2 ∫ ∞

0

4πu2e−u2n

du .

Regarding V as an external parameter, find the thermodynamic force P , conjugate to V ,
exerted by this system. Find the equation of state and compare with that of an ideal gas
confined in a volume V .

Derive expressions for the entropy S, the internal energy E and the total heat
capacity CV at constant V .

Show that for all n the total heat capacity at constant P is given by

CP = CV +Nk .

[Note that
∫ ∞

0

u2e−u2/2 du =
√
π

2
. ]
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1/II/34B Electrodynamics

In a frame F the electromagnetic fields (E,B) are encoded into the Maxwell field
4-tensor F ab and its dual ∗F ab, where

F ab =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


and

∗F ab =


0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

 .

[Here the signature is ( + − − − ) and units are chosen so that c = 1.] Obtain two
independent Lorentz scalars of the electromagnetic field in terms of E and B.

Suppose that E ·B > 0 in the frame F . Given that there exists a frame F ′ in which
E′ ×B′ = 0, show that

E′ =
[
(E ·B)

(
K +

√
1 +K2

)]1/2

, B′ =
[

E ·B
K +

√
1 +K2

]1/2

,

where (E′, B′) are the magnitudes of (E′,B′), and

K =
1
2
(
|E|2 − |B|2

)
/
(
E ·B

)
.

[Hint: there is no need to consider the Lorentz transformations for E′ and B′.]
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3/II/35B Electrodynamics

A non-relativistic particle of rest massm and charge q is moving slowly with velocity
v(t). The power dP/dΩ radiated per unit solid angle in the direction of a unit vector n is

dP

dΩ
=

µ0

16π2
|n× qv̇|2 .

Obtain Larmor’s formula

P =
µ0 q

2

6π
|v̇|2 .

The particle has energy E and, starting from afar, makes a head-on collision with a fixed
central force described by a potential V (r), where V (r) > E for r < r0 and V (r) < E for
r > r0. Let W be the total energy radiated by the particle. Given that W � E , show that

W ≈ µ0 q
2

3πm2

√
m

2

∫ ∞

r0

(
dV

dr

)2
dr√

V (r0)− V (r)
.
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4/II/35B Electrodynamics

In Ginzburg–Landau theory, superconductivity is due to “supercarriers” of mass
ms and charge qs, which are described by a macroscopic wavefunction ψ with “Mexican
hat” potential

V = α(T )|ψ|2 +
1
2
β|ψ|4 .

Here, β > 0 is constant and α(T ) is a function of temperature T such that α(T ) > 0 for
T > Tc but α(T ) < 0 for T < Tc, where Tc is a critical temperature. In the presence of a
magnetic field B = ∇×A, the total energy of the superconducting system is

E[ψ,ψ∗,A] =
∫
d3x

[
1

2µ0
Ak,j

(
Ak,j −Aj,k

)
+

~2

2ms

∣∣∣ψ,k + i
qs
~
Akψ

∣∣∣2 + V

]
.

Use this to derive the equations

− ~2

2ms

(
∇− i

qs
~

A
)2
ψ +

(
α+ β|ψ|2

)
ψ = 0 (∗)

and
∇×B ≡ ∇

(
∇ ·A

)
−∇2A = µ0 j , (†)

where

j = − iqs~
2ms

(
ψ∗∇ψ − ψ∇ψ∗

)
− q2s
ms

|ψ|2A

=
qs

2ms
[ψ∗ (−i~∇− qsA)ψ + ψ (i~∇− qsA)ψ∗] .

Suppose that we write the wavefunction as

ψ =
√
ns e

iθ ,

where ns is the (real positive) supercarrier density and θ is a real phase function. Given
that (

∇− iqs
~

A
)
ψ = 0 ,

show that ns is constant and that ~∇θ = qsA. Given also that T < Tc, deduce that (∗)
allows such solutions for a certain choice of ns, which should be determined. Verify that
your results imply j = 0. Show also that B = 0 and hence that (†) is solved.

Let S be a surface within the superconductor with closed boundary C. Show that
the magnetic flux through S is

Φ ≡
∫
S
B · dS =

~
qs

[
θ
]
C .

Discuss, briefly, flux quantization.
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1/II/35C General Relativity

Suppose (x(τ), t(τ)) is a timelike geodesic of the metric

ds2 =
dx2

1 + x2
− (1 + x2) dt2 ,

where τ is proper time along the world line. Show that dt/dτ = E/(1 + x2), where E > 1
is a constant whose physical significance should be stated. Setting a2 = E2− 1, show that

dτ =
dx√
a2 − x2

, dt =
E dx

(1 + x2)
√
a2 − x2

. (∗)

Deduce that x is a periodic function of proper time τ with period 2π. Sketch dx/dτ as a
function of x and superpose on this a sketch of dx/dt as a function of x. Given the identity∫ a

−a

E dx

(1 + x2)
√
a2 − x2

= π ,

deduce that x is also a periodic function of t with period 2π.

Next consider the family of metrics

ds2 =
[1 + f(x)]2 dx2

1 + x2
− (1 + x2) dt2 ,

where f is an odd function of x, f(−x) = −f(x), and |f(x)| < 1 for all x. Derive
expressions analogous to (∗) above. Deduce that x is a periodic function of τ and also
that x is a periodic function of t. What are the periods?

2/II/35C General Relativity

State without proof the properties of local inertial coordinates xa centred on an
arbitrary spacetime event p. Explain their physical significance.

Obtain an expression for ∂aΓb
c
d at p in inertial coordinates. Use it to derive the

formula
Rabcd = 1

2

(
∂b∂cgad + ∂a∂dgbc − ∂b∂dgac − ∂a∂cgbd

)
for the components of the Riemann tensor at p in local inertial coordinates. Hence deduce
that at any point in any chart Rabcd = Rcdab.

Consider the metric

ds2 =
ηab dx

a dxb

(1 + L−2ηabxaxb)2
,

where ηab = diag(1, 1, 1,−1) is the Minkowski metric tensor and L is a constant. Compute
the Ricci scalar R = Rab

ab at the origin xa = 0.
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4/II/36C General Relativity

State clearly, but do not prove, Birkhoff’s Theorem about spherically symmetric
spacetimes. Let (r, θ, φ) be standard spherical polar coordinates and define F (r) =
1− 2M/r, where M is a constant. Consider the metric

ds2 =
dr2

F (r)
+ r2(dθ2 + sin2 θ dφ2)− F (r) dt2.

Explain carefully why this is appropriate for the region outside a spherically symmetric
star that is collapsing to form a black hole.

By considering radially infalling timelike geodesics xa = (r(τ), 0, 0, t(τ)), where τ
is proper time along the curve, show that a freely falling observer will reach the event
horizon after a finite proper time. Show also that a distant observer would see the horizon
crossing only after an infinite time.
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1/II/36E Fluid Dynamics II

Consider a unidirectional flow with dynamic viscosity µ along a straight rigid-walled
channel of uniform cross-sectional shape D driven by a uniform applied pressure gradient
G. Write down the differential equation and boundary conditions governing the velocity
w along the channel.

Consider the situation when the boundary includes a sharp corner of angle 2α.
Explain why one might expect that, sufficiently close to the corner, the solution should be
of the form

w = (G/µ)r2f(θ) ,

where r and θ are polar co-ordinates with origin at the vertex and θ = ±α describing the
two planes emanating from the corner. Determine f(θ).

If D is the sector bounded by the lines θ = ±α and the circular arc r = a, show
that the flow is given by

w = (G/µ)r2f(θ) +
∞∑

n=0

Anr
λn cosλnθ,

where λn and An are to be determined.

[Note that
∫

cos(ax) cos(bx) dx = {a sin(ax) cos(bx)− b sin(bx) cos(ax)}/(a2 − b2).]

Considering the values of λ0 and λ1, comment briefly on the cases: (i) 2α < 1
2π;

(ii) 1
2π < 2α < 3

2π; and (iii) 3
2π < 2α < 2π.

2/II/36E Fluid Dynamics II

A volume V of very viscous fluid of density ρ and dynamic viscosity µ is released
at the origin on a rigid horizontal boundary at time t = 0. Using lubrication theory,
determine the velocity profile in the gravity current once it has spread sufficiently that
the axisymmetric thickness h(r, t) of the current is much less than the radius R(t) of the
front.

Derive the differential equation

∂h

∂t
=
β

r

∂

∂r

(
rh3 ∂h

∂r

)
,

where β is to be determined.

Write down the other equations that are needed to determine the appropriate
similarity solution for this problem.

Determine the similarity solution and calculate R(t).
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3/II/36E Fluid Dynamics II

Write down the Navier–Stokes equations for an incompressible fluid.

Explain the concepts of the Euler and Prandtl limits applied to the Navier–Stokes
equations near a rigid boundary.

A steady two-dimensional flow given by (U, 0) far upstream flows past a semi-infinite
flat plate, held at y = 0, x > 0. Derive the boundary layer equation

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3

for the stream-function ψ(x, y) near the plate, explaining any approximations made.

Show that the appropriate solution must be of the form

ψ(x, y) = (νUx)1/2f(η),

and determine the dimensionless variable η.

Derive the equation and boundary conditions satisfied by f(η). [You need not solve
them.]

Suppose now that the plate has a finite length L in the direction of the flow. Show
that the force F on the plate (per unit width perpendicular to the flow) is given by

F =
4ρU2L

(UL/ν)1/2

f ′′(0)
[f ′(∞)]2

.

4/II/37E Fluid Dynamics II

Consider flow of an incompressible fluid of uniform density ρ and dynamic viscosity
µ. Show that the rate of viscous dissipation per unit volume is given by

Φ = 2µeijeij ,

where eij is the strain rate.

Determine expressions for eij and Φ when the flow is irrotational with velocity
potential φ. Hence determine the rate of viscous dissipation, averaged over a wave
period 2π/ω, for an irrotational two-dimensional surface wave of wavenumber k and small
amplitude a� k−1 in a fluid of very small viscosity µ� ρω/k2 and great depth H � 1/k.

[You may use without derivation that in deep water a linearised wave with surface
displacement η = a cos (kx− wt) has velocity potential φ = −(ωa/k)e−kz sin (kx− ωt).]

Calculate the depth-integrated time-averaged kinetic energy per wavelength. As-
suming that the average potential energy is equal to the average kinetic energy, show that
the total wave energy decreases to leading order like e−γt, where

γ = 4µk2/ρ .
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1/II/37E Waves

An elastic solid with density ρ has Lamé moduli λ and µ. Write down equations
satisfied by the dilational and shear potentials φ and ψ.

For a two-dimensional disturbance give expressions for the displacement field
u = (ux, uy, 0) in terms of φ(x, y; t) and ψ = (0, 0, ψ(x, y; t)).

Suppose the solid occupies the region y < 0 and that the surface y = 0 is free of
traction. Find a combination of solutions for φ and ψ that represent a propagating surface
wave (a Rayleigh wave) near y = 0. Show that the wave is non-dispersive and obtain an
equation for the speed c. [You may assume without proof that this equation has a unique
positive root.]

2/II/37E Waves

Show that, in the standard notation for a one-dimensional flow of a perfect gas at
constant entropy, the quantity u+2(c− c0)/(γ−1) remains constant along characteristics
dx/dt = u+ c.

A perfect gas is initially at rest and occupies a tube in x > 0. A piston is pushed
into the gas so that its position at time t is x(t) = 1

2ft
2, where f > 0 is a constant. Find

the time and position at which a shock first forms in the gas.

3/II/37E Waves

The real function φ(x, t) satisfies the equation

∂φ

∂t
+ U

∂φ

∂x
=
∂3φ

∂x3
,

where U > 0 is a constant. Find the dispersion relation for waves of wavenumber k and
deduce whether wave crests move faster or slower than a wave packet.

Suppose that φ(x, 0) is given by a Fourier transform as

φ(x, 0) =
∫ ∞

−∞
A(k)eikxdk.

Use the method of stationary phase to find φ(V t, t) as t→∞ for fixed V > U .

[You may use the result that
∫∞
−∞ e−aξ2

dξ = (π/a)1/2 if Re(a) > 0.]

What can be said if V < U? [Detailed calculation is not required in this case.]
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4/II/38E Waves

Starting from the equations of conservation of mass and momentum for an inviscid
compressible fluid, show that for small perturbations about a state of rest and uniform
density the velocity is irrotational and the velocity potential satisfies the wave equation.
Identify the sound speed c0.

Define the acoustic energy density and acoustic energy flux, and derive the equation
for conservation of acoustic energy.

Show that in any (not necessarily harmonic) acoustic plane wave of wavenumber
k the kinetic and potential energy densities are equal and that the acoustic energy is
transported with velocity c0k̂.

Calculate the kinetic and potential energy densities for a spherically symmetric
outgoing wave. Are they equal?
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1/II/38A Numerical Analysis

Let
µ

4
un+1

m−1 + un+1
m − µ

4
un+1

m+1 = −µ
4
un

m−1 + un
m +

µ

4
un

m+1,

where n is a positive integer and m ranges over all integers, be a finite-difference method
for the advection equation

∂u

∂t
=
∂u

∂x
, −∞ < x <∞, t > 0.

Here µ = ∆t
∆x is the Courant number.

(a) Show that the local error of the method is O((∆x)3).

(b) Determine the range of µ > 0 for which the method is stable.

2/II/38A Numerical Analysis

Define a Krylov subspace Kn(A, v).

Let dn be the dimension of Kn(A, v). Prove that the sequence {dm}m=1,2,...

increases monotonically. Show that, moreover, there exists an integer k with the following
property: dm = m for m = 1, 2, . . . , k, while dm = k for m > k. Assuming that A has a
full set of eigenvectors, show that k is equal to the number of eigenvectors of A required
to represent the vector v.

3/II/38A Numerical Analysis

Consider the Runge–Kutta method

k1 = f(yn),
k2 = f(yn + (1− a)hk1 + ahk2),

yn+1 = yn +
h

2
(k1 + k2)

for the solution of the scalar ordinary differential equation y′ = f(y). Here a is a real
parameter.

(a) Determine the order of the method.

(b) Find the range of values of a for which the method is A-stable.
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4/II/39A Numerical Analysis

An n×n skew-symmetric matrix A is converted into an upper-Hessenberg form B,
say, by Householder reflections.

(a) Describe each step of the procedure and observe that B is tridiagonal. Your
algorithm should take advantage of the special form of A to reduce the number of
computations.

(b) Compare the cost (counting only products and looking only at the leading
term) of converting a skew-symmetric and a symmetric matrix to an upper-Hessenberg
form using Householder reflections.
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