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1I Markov Chains

(i) Let J be a proper subset of the finite state space I of an irreducible Markov chain
(Xn), whose transition matrix P is partitioned as

P =
( J Jc

J A B
Jc C D

)
.

If only visits to states in J are recorded, we see a J-valued Markov chain (X̃n); show that
its transition matrix is

P̃ = A+B
∑
n>0

DnC = A+B(I −D)−1C .

(ii) Local MP Phil Anderer spends his time in London in the Commons (C), in his flat
(F ), in the bar (B) or with his girlfriend (G). Each hour, he moves from one to another
according to the transition matrix P , though his wife (who knows nothing of his girlfriend)
believes that his movements are governed by transition matrix PW :

P =


C F B G

C 1/3 1/3 1/3 0
F 0 1/3 1/3 1/3
B 1/3 0 1/3 1/3
G 1/3 1/3 0 1/3

 PW =


C F B

C 1/3 1/3 1/3
F 1/3 1/3 1/3
B 1/3 1/3 1/3


The public only sees Phil when he is in J = {C,F,B}; calculate the transition matrix P̃
which they believe controls his movements.

Each time the public Phil moves to a new location, he phones his wife; write down
the transition matrix which governs the sequence of locations from which the public Phil
phones, and calculate its invariant distribution.

Phil’s wife notes down the location of each of his calls, and is getting suspicious
– he is not at his flat often enough. Confronted, Phil swears his fidelity and resolves to
dump his troublesome transition matrix, choosing instead

P ∗ =


C F B G

C 1/4 1/4 1/2 0
F 1/2 1/4 1/4 0
B 0 3/8 1/8 1/2
G 2/10 1/10 1/10 6/10


Will this deal with his wife’s suspicions? Explain your answer.
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2B Principles of Dynamics

(i) Consider a light rigid circular wire of radius a and centre O. The wire lies in
a vertical plane, which rotates about the vertical axis through O. At time t the plane
containing the wire makes an angle φ(t) with a fixed vertical plane. A bead of mass m is
threaded onto the wire. The bead slides without friction along the wire, and its location
is denoted by A. The angle between the line OA and the downward vertical is θ(t).

Show that the Lagrangian of the system is

ma2

2
θ̇2 +

ma2

2
φ̇2 sin2 θ +mga cos θ .

Calculate two independent constants of the motion, and explain their physical significance.

(ii) A dynamical system has Hamiltonian H(q, p, λ), where λ is a parameter. Consider
an ensemble of identical systems chosen so that the number density of systems, f(q, p, t),
in the phase space element dq dp is either zero or one. Prove Liouville’s Theorem, namely
that the total area of phase space occupied by the ensemble is time-independent.

Now consider a single system undergoing periodic motion q(t), p(t). Give a heuristic
argument based on Liouville’s Theorem to show that the area enclosed by the orbit,

I =
∮
p dq ,

is approximately conserved as the parameter λ is slowly varied (i.e. that I is an adiabatic
invariant).

Consider H(q, p, λ) = 1
2p

2 + λq2n, with n a positive integer. Show that as λ is
slowly varied the energy of the system, E, varies as

E ∝ λ1/(n+1) .
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3F Functional Analysis

(i) Prove Riesz’s Lemma, that if V is a normed space and A is a vector subspace of
V such that for some 0 6 k < 1 we have d(x,A) 6 k for all x ∈ V with ||x|| = 1, then A
is dense in V . [Here d(x,A) denotes the distance from x to A.]

Deduce that any normed space whose unit ball is compact is finite-dimensional.
[You may assume that every finite-dimensional normed space is complete.]

Give an example of a sequence f1, f2, . . . in an infinite-dimensional normed space
such that ||fn|| 6 1 for all n, but f1, f2, . . . has no convergent subsequence.

(ii) Let V be a vector space, and let ||.||1 and ||.||2 be two norms on V . What does it
mean to say that ||.||1 and ||.||2 are equivalent?

Show that on a finite-dimensional vector space all norms are equivalent. Deduce
that every finite-dimensional normed space is complete.

Exhibit two norms on the vector space l1 that are not equivalent.

In addition, exhibit two norms on the vector space l∞ that are not equivalent.

4G Groups, Rings and Fields

(i) State Gauss’ Lemma on polynomial irreducibility. State and prove Eisenstein’s
criterion.

(ii) Which of the following polynomials are irreducible over Q? Justify your answers.

(a) x7 − 3x3 + 18x+ 12

(b) x4 − 4x3 + 11x2 − 3x− 5

(c) 1 + x+ x2 + . . .+ xp−1 with p prime

[Hint: consider substituting y = x− 1.]

(d) xn + px+ p2 with p prime.

[Hint: show any factor has degree at least two, and consider powers of p dividing
coefficients.]
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5C Electromagnetism

(i) Write down the general solution of Poisson’s equation. Derive from Maxwell’s
equations the Biot-Savart law for the magnetic field of a steady localised current distribu-
tion.

(ii) A plane rectangular loop with sides of length a and b lies in the plane z = 0 and
is centred on the origin. Show that when r = |r| � a, b, the vector potential A(r) is given
approximately by

A(r) =
µ0

4π
m ∧ r
r3

,

where m = Iabẑ is the magnetic moment of the loop.

Hence show that the magnetic field B(r) at a great distance from an arbitrary small
plane loop of area A, situated in the xy-plane near the origin and carrying a current I, is
given by

B(r) =
µ0IA

4πr5
(
3xz, 3yz, 2r2 − 3x2 − 3y2

)
.

6B Nonlinear Dynamical Systems

(i) A linear system in R2 takes the form ẋ = Ax. Explain (without detailed calculation
but by giving examples) how to classify the dynamics of the system in terms of the
determinant and the trace of A. Show your classification graphically, and describe the
dynamics that occurs on the boundaries of the different regions on your diagram.

(ii) A nonlinear system in R2 has the form ẋ = f(x), f(0) = 0. The Jacobian
(linearization) A of f at the origin is non-hyperbolic, with one eigenvalue of A in the
left-hand half-plane. Define the centre manifold for this system, and explain (stating
carefully any results you use) how the dynamics near the origin may be reduced to a
one-dimensional system on the centre manifold.

A dynamical system of this type has the form

ẋ = ax3 + bxy + cx5 + dx3y + exy2 + fx7 + gx5y

ẏ = −y + x2 − x4

Find the coefficients for the expansion of the centre manifold correct up to and
including terms of order x6, and write down in terms of these coefficients the equation for
the dynamics on the centre manifold up to order x7. Using this reduced equation, give a
complete set of conditions on the coefficients a, b, c, . . . that guarantee that the origin is
stable.
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7G Geometry of Surfaces

(i) What is a geodesic on a surface M with Riemannian metric, and what are geodesic
polar co-ordinates centred at a point P on M? State, without proof, formulae for the
Riemannian metric and the Gaussian curvature in terms of geodesic polar co-ordinates.

(ii) Show that a surface with constant Gaussian curvature 0 is locally isometric to the
Euclidean plane.

8F Graph Theory

(i) State a result of Euler, relating the number of vertices, edges and faces of a plane
graph. Show that if G is a plane graph then χ(G) ≤ 5.

(ii) Define the chromatic polynomial pG(t) of a graph G. Show that

pG(t) = tn − a1t
n−1 + a2t

n−2 + . . .+ (−1)nan

where a1, . . . , an are non-negative integers. Explain, with proof, how the chromatic
polynomial is related to the number of vertices, edges and triangles in G. Show that
if Cn is a cycle of length n ≥ 3, then

pCn(t) = (t− 1)n + (−1)n(t− 1).

9H Coding and Cryptography

(i) Describe how a stream cypher operates. What is a one-time pad?

A one-time pad is used to send the message x1x2x3x4x5x6y7 which is encoded as
0101011. By mistake, it is reused to send the message y0x1x2x3x4x5x6 which is encoded
as 0100010. Show that x1x2x3x4x5x6 is one of two possible messages, and find the two
possibilities.

(ii) Describe the RSA system associated with a public key e, a private key d and the
product N of two large primes.

Give a simple example of how the system is vulnerable to a homomorphism attack.
Explain how a signature system prevents such an attack. [You are not asked to give an
explicit signature system.]

Explain how to factorise N when e, d and N are known.
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10J Algorithms and Networks

(i) Define the minimum path and the maximum tension problems for a network with
span intervals specified for each arc. State without proof the connection between the two
problems, and describe the Max Tension Min Path algorithm of solving them.

(ii) Find the minimum path between nodes S and S′ in the network below. The span
intervals are displayed alongside the arcs.

[0,∞) [−∞, 2]

[−1, 11]

[−5, 5] [−1, 2]

[0, 2]

[−6, 2] [−3, 3]

[−2, 3] [0, 4]

[−6, 0]

(−∞,∞)

[−1, 6]

[−1, 3]

[−1, 9]

[−2, 0]

S

S
′

1 2

3

4 5

6 7
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11J Principles of Statistics

(i) In the context of a decision-theoretic approach to statistics, what is a loss function?
a decision rule? the risk function of a decision rule? the Bayes risk of a decision rule? the
Bayes rule with respect to a given prior distribution?

Show how the Bayes rule with respect to a given prior distribution is computed.

(ii) A sample of n people is to be tested for the presence of a certain condition. A
single real-valued observation is made on each one; this observation comes from density
f0 if the condition is absent, and from density f1 if the condition is present. Suppose
θi = 0 if the ith person does not have the condition, θi = 1 otherwise, and suppose that
the prior distribution for the θi is that they are independent with common distribution
P (θi = 1) = p ∈ (0, 1), where p is known. If Xi denotes the observation made on the ith

person, what is the posterior distribution of the θi?

Now suppose that the loss function is defined by

L0(θ, a) ≡
n∑

j=1

(αaj(1− θj) + β(1− aj)θj)

for action a ∈ [0, 1]n, where α, β are positive constants. If πj denotes the posterior
probability that θj = 1 given the data, prove that the Bayes rule for this prior and this
loss function is to take aj = 1 if πj exceeds the threshold value α/(α+ β), and otherwise
to take aj = 0.

In an attempt to control the proportion of false positives, it is proposed to use a
different loss function, namely,

L1(θ, a) ≡ L0(θ, a) + γI{
∑

aj>0}

(
1−

∑
θjaj∑
aj

)
,

where γ > 0. Prove that the Bayes rule is once again a threshold rule, that is, we take
action aj = 1 if and only if πj > λ, and determine λ as fully as you can.

12I Computational Statistics and Statistical Modelling

(i) Suppose we have independent observations Y1, . . . , Yn, and we assume that for
i = 1, . . . , n, Yi is Poisson with mean µi, and log(µi) = βTxi, where x1, . . . , xn are given
covariate vectors each of dimension p, where β is an unknown vector of dimension p,
and p < n. Assuming that {x1, . . . , xn} span Rp, find the equation for β̂, the maximum
likelihood estimator of β, and write down the large-sample distribution of β̂.

(ii) A long-term agricultural experiment had 90 grassland plots, each 25m × 25m,
differing in biomass, soil pH, and species richness (the count of species in the whole plot).
While it was well-known that species richness declines with increasing biomass, it was not
known how this relationship depends on soil pH, which for the given study has possible
values “low”, “medium” or “high”, each taken 30 times. Explain the commands input, and
interpret the resulting output in the (slightly edited) R output below, in which “species”
represents the species count.

(The first and last 2 lines of the data are reproduced here as an aid. You may
assume that the factor pH has been correctly set up.)
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> species

pH Biomass Species

1 high 0.46929722 30

2 high 1.73087043 39

.......................

.......................

89 low 4.36454121 7

90 low 4.87050789 3

> summary(glm(Species ~Biomass, family = poisson))

Call:

glm(formula = Species ~ Biomass, family = poisson)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.184094 0.039159 81.31 < 2e-16

Biomass -0.064441 0.009838 -6.55 5.74e-11

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 452.35 on 89 degrees of freedom

Residual deviance: 407.67 on 88 degrees of freedom

Number of Fisher Scoring iterations: 4

> summary(glm(Species ~pH*Biomass, family = poisson))

Call:

glm(formula = Species ~ pH * Biomass, family = poisson)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.76812 0.06153 61.240 < 2e-16

pHlow -0.81557 0.10284 -7.931 2.18e-15

Question continues on next page.
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pHmid -0.33146 0.09217 -3.596 0.000323

Biomass -0.10713 0.01249 -8.577 < 2e-16

pHlow:Biomass -0.15503 0.04003 -3.873 0.000108

pHmid:Biomass -0.03189 0.02308 -1.382 0.166954

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 452.346 on 89 degrees of freedom

Residual deviance: 83.201 on 84 degrees of freedom

Number of Fisher Scoring iterations: 4

Paper 2
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13E Foundations of Quantum Mechanics

(i) The creation and annihilation operators for a harmonic oscillator of angular
frequency ω satisfy the commutation relation [a, a†] = 1. Write down an expression for
the Hamiltonian H in terms of a and a†.

There exists a unique ground state |0〉 of H such that a|0〉 = 0. Explain how the
space of eigenstates |n〉, n = 0, 1, 2, . . . of H is formed, and deduce the eigenenergies for
these states. Show that

a|n〉 =
√
n|n− 1〉 , a†|n〉 =

√
n+ 1|n+ 1〉 .

(ii) Write down the number operator N of the harmonic oscillator in terms of a and
a†. Show that

N |n〉 = n|n〉 .

The operator Kr is defined to be

Kr =
a†rar

r!
, r = 0, 1, 2, . . . .

Show that Kr commutes with N . Show also that

Kr|n〉 =

{ n!
(n−r)! r! |n〉 r ≤ n ,

0 r > n .

By considering the action of Kr on the state |n〉 show that

∞∑
r=0

(−1)rKr = |0〉〈0| .
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14E Quantum Physics

(i) A simple model of a crystal consists of an infinite linear array of sites equally
spaced with separation b. The probability amplitude for an electron to be at the n-th site
is cn, n = 0,±1,±2, . . .. The Schrödinger equation for the {cn} is

Ecn = E0cn −A(cn−1 + cn+1) ,

where A is real and positive. Show that the allowed energies E of the electron must lie in
a band |E−E0| ≤ 2A, and that the dispersion relation for E written in terms of a certain
parameter k is given by

E = E0 − 2A cos kb .

What is the physical interpretation of E0, A and k?

(ii) Explain briefly the idea of group velocity and show that it is given by

v =
1
~
dE(k)
dk

,

for an electron of momentum ~k and energy E(k).

An electron of charge q confined to one dimension moves in a periodic potential
under the influence of an electric field E . Show that the equation of motion for the electron
is

v̇ =
qE
~2

d2E

dk2
,

where v(t) is the group velocity of the electron at time t. Explain why

m∗ = ~2

(
d2E

dk2

)−1

can be interpreted as an effective mass.

Show briefly how the absence from a band of an electron of charge q and effective
mass m∗ < 0 can be interpreted as the presence of a ‘hole’ carrier of charge −q and
effective mass −m∗.

In the model of Part (i) show that

(a) for k2 � 12/b2 an electron behaves like a free particle of mass ~2/(2Ab2);

(b) for (π/b− k)2 � 12/b2 a hole behaves like a free particle of mass ~2/(2Ab2).

Paper 2
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15C General Relativity

(i) State and prove Birkhoff’s theorem.

(ii) Derive the Schwarzschild metric and discuss its relevance to the problem of
gravitational collapse and the formation of black holes.

[Hint: You may assume that the metric takes the form

ds2 = −eν(r,t) dt2 + eλ(r,t) dr2 + r2(dθ2 + sin2 θ dφ2),

and that the non-vanishing components of the Einstein tensor are given by

Gtt =
e2ν+λ

r2
(−1 + eλ + rλ′), Grt = e(ν+λ)/2 λ̇

r
, Grr =

eλ

r2
(1− e−λ + rν′),

Gθθ = 1
4r

2e−λ
[
2ν′′ + (ν′)2 +

2
r
(ν′ − λ′)− ν′λ′

]
− 1

4r
2e−ν

[
2λ̈+ (λ̇)2 − λ̇ν̇

]
,

Gtr = Grt and Gφφ = sin2 θ Gθθ.]

16A Theoretical Geophysics

(i) Sketch the rays in a small region near the relevant boundary produced by reflection
and refraction of a P -wave incident (a) from the mantle on the core-mantle boundary, (b)
from the outer core on the inner-core boundary, and (c) from the mantle on the Earth’s
surface. [In each case, the region should be sufficiently small that the boundary appears to
be planar.]

Describe the ray paths denoted by SS, PcP , SKS and PKIKP .

Sketch the travel-time (T −∆) curves for P and PcP paths from a surface source.

(ii) From the surface of a flat Earth, an explosive source emits P -waves downwards into
a stratified sequence of homogeneous horizontal elastic layers of thicknesses h1, h2, h3, . . .
and P -wave speeds α1 < α2 < α3 < . . .. A line of seismometers on the surface records
the travel times of the various arrivals as a function of the distance x from the source.
Calculate the travel times, Td(x) and Tr(x), of the direct wave and the wave that reflects
exactly once at the bottom of layer 1.

Show that the travel time for the head wave that refracts in layer n is given by

Tn =
x

αn
+

n−1∑
i=1

2hi

αi

(
1− α2

i

α2
n

)1/2

.

Sketch the travel-time curves for Tr, Td and T2 on a single diagram and show that T2 is
tangent to Tr.

Explain how the αi and hi can be constructed from the travel times of first arrivals
provided that each head wave is the first arrival for some range of x.
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17A Mathematical Methods

(i) Consider the integral equation

φ(x) = −λ
∫ b

a

K(x, t)φ(t)dt+ g(x), (†)

for φ in the interval a ≤ x ≤ b, where λ is a real parameter and g(x) is given. Describe
the method of successive approximations for solving (†).

Suppose that
|K(x, t)| ≤M, ∀x, t ∈ [a, b].

By using the Cauchy-Schwarz inequality, or otherwise, show that the successive-approx-
imation series for φ(x) converges absolutely provided

|λ| < 1
M(b− a)

.

(ii) The real function ψ(x) satisfies the differential equation

−ψ′′(x) + λψ(x) = h(x), 0 < x < 1, (?)

where h(x) is a given smooth function on [0, 1], subject to the boundary conditions

ψ′(0) = ψ(0), ψ(1) = 0.

By integrating (?), or otherwise, show that ψ(x) obeys

ψ(0) =
1
2

∫ 1

0

(1− t)h(t) dt− 1
2
λ

∫ 1

0

(1− t)ψ(t) dt.

Hence, or otherwise, deduce that ψ(x) obeys an equation of the form (†), with

K(x, t) =

{
1
2 (1− x)(1 + t), 0 ≤ t ≤ x ≤ 1,
1
2 (1 + x)(1− t), 0 ≤ x ≤ t ≤ 1,

and g(x) =
∫ 1

0

K(x, t)h(t) dt.

Deduce that the series solution for ψ(x) converges provided |λ| < 2 .
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18B Nonlinear Waves

(i) Let u(x, t) satisfy the Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
,

where ν is a positive constant. Consider solutions of the form u = u(X), where X = x−Ut
and U is a constant, such that

u→ u2,
∂u

∂X
→ 0 as X → −∞; u→ u1,

∂u

∂X
→ 0 as X →∞ ,

with u2 > u1.

Show that U satisfies the so-called shock condition

U =
1
2
(u2 + u1).

By using the factorisation
1
2
u2 − Uu+A =

1
2
(u− u1)(u− u2),

where A is the constant of integration, express u in terms of X, u1, u2 and ν.

(ii) According to shallow-water theory, river waves are characterised by the PDEs

∂v

∂t
+ v

∂v

∂x
+ g cosα

∂h

∂x
= g sinα− Cf

v2

h
,

∂h

∂t
+ v

∂h

∂x
+ h

∂v

∂x
= 0,

where h(x, t) denotes the depth of the river, v(x, t) denotes the mean velocity, α is the
constant angle of inclination, and Cf is the constant friction coefficient.

Find the characteristic velocities and the characteristic form of the equations. Find
the Riemann variables and show that if Cf = 0 then the Riemann variables vary linearly
with t on the characteristics.

19D Numerical Analysis

(i) The five-point equations, which are obtained when the Poisson equation ∇2u = f
(with Dirichlet boundary conditions) is discretized in a square, are

−um−1,n − um,n−1 − um+1,n − um,n+1 + 4um,n = fm,n, m, n = 1, 2, . . . ,M,

where u0,n, uM+1,n, um,0, um,M+1 = 0 for all m,n = 1, 2, . . . ,M .

Formulate the Gauss–Seidel method for the above linear system and prove its
convergence. In the proof you should carefully state any theorems you use. [You may
use Part (ii) of this question.]

(ii) By arranging the two-dimensional arrays {um,n}m,n=1,...,M and {bm,n}m,n=1,...,M

into the column vectors u ∈ RM2
and b ∈ RM2

respectively, the linear system described
in Part (i) takes the matrix form Au = b. Prove that, regardless of the ordering of the
points on the grid, the matrix A is symmetric and positive definite.
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