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1D Principles of Dynamics

(i) The trajectory x(t) of a non-relativistic particle of mass m and charge q moving
in an electromagnetic field obeys the Lorentz equation

mẍ = q(E +
ẋ
c
∧B) .

Show that this equation follows from the Lagrangian

L =
1
2
mẋ2 − q

(
φ− ẋ ·A

c

)
where φ(x, t) is the electromagnetic scalar potential and A(x, t) the vector potential, so
that

E = −1
c
Ȧ−∇φ and B = ∇ ∧A .

(ii) Let E = 0. Consider a particle moving in a constant magnetic field which points
in the z direction. Show that the particle moves in a helix about an axis pointing in the
z direction. Evaluate the radius of the helix.

2G Functional Analysis

(i) Define the dual of a normed vector space (E, || · ||). Show that the dual is always
a complete normed space.

Prove that the vector space `1, consisting of those real sequences (xn)∞n=1 for which
the norm

||(xn)||1 =
∞∑

n=1

|xn|

is finite, has the vector space `∞ of all bounded sequences as its dual.

(ii) State the Stone–Weierstrass approximation theorem.

Let K be a compact subset of Rn. Show that every f ∈ CR(K) can be uniformly
approximated by a sequence of polynomials in n variables.

Let f be a continuous function on [0, 1]× [0, 1]. Deduce that∫ 1

0

(∫ 1

0

f(x, y) dx
)
dy =

∫ 1

0

(∫ 1

0

f(x, y) dy
)
dx .
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3F Groups, Rings and Fields

(i) In each of the following two cases, determine a highest common factor in Z[i]:

(a) 3 + 4i, 4− 3i;

(b) 3 + 4i, 1 + 2i.

(ii) State and prove the Eisenstein criterion for irreducibility of polynomials with
integer coefficients. Show that, if p is prime, the polynomial

1 + x+ · · ·+ xp−1

is irreducible over Z.

4D Dynamics of Differential Equations

(i) What is a Liapunov function?

Consider the second order ODE

ẋ = y , ẏ = −y − sin3 x .

By finding a suitable Liapunov function of the form V (x, y) = f(x) + g(y), where f and
g are to be determined, show that the origin is asymptotically stable. Using your form
of V , find the greatest value of y0 such that a trajectory through (0, y0) is guaranteed to
tend to the origin as t→∞.

[Any theorems you use need not be proved but should be clearly stated.]

(ii) Explain the use of the stroboscopic method for investigating the dynamics of
equations of the form ẍ+x = εf(x, ẋ, t), when |ε| � 1. In particular, for x = R cos(t+ θ),
ẋ = −R sin(t+ θ) derive the equations, correct to order ε,

Ṙ = −ε〈f sin(t+ θ)〉 , Rθ̇ = −ε〈f cos(t+ θ)〉, (∗)

where the brackets denote an average over the period of the unperturbed oscillator.

Find the form of the right hand sides of these equations explicitly when f =
Γx2 cos t−3qx, where Γ > 0, q 6= 0. Show that apart from the origin there is another fixed
point of (∗), and determine its stability. Sketch the trajectories in (R, θ) space in the case
q > 0. What do you deduce about the dynamics of the full equation?

[You may assume that 〈cos2 t〉 = 1
2 , 〈cos4 t〉 = 3

8 , 〈cos2 t sin2 t〉 = 1
8 .]
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5F Combinatorics

Prove Ramsey’s theorem in its usual infinite form, namely, that if N(r) is finitely
coloured then there is an infinite subset M ⊂ N such that M (r) is monochromatic.

Now let the graph N(2) be coloured with an infinite number of colours in such a
way that there is no infinite M ⊂ N with M (2) monochromatic. By considering a suitable
2-colouring of the set N(4) of 4-sets, show that there is an infinite M ⊂ N with the property
that any two edges of M (2) of the form ad, bc with a < b < c < d have different colours.

By considering two further 2-colourings of N(4), show that there is an infiniteM ⊂ N
such that any two non-incident edges of M (2) have different colours.

6F Representation Theory

Let Vn be the space of homogeneous polynomials of degree n in two variables z1
and z2. Define a left action of G = SU2 on the space of polynomials by setting

(gP )z = P (zg) ,

where P ∈ C [z1, z2], g =
(
a b
c d

)
, z = (z1, z2) and zg = (az1+cz2, bz1+dz2).

Show that

(a) the representations Vn are irreducible,

(b) the representations Vn exhaust the irreducible representations of SU2, and

(c) the irreducible representations of SO3 are given by Wn = V2n(n > 0).

7H Differentiable Manifolds

Let M and N be smooth manifolds. If π : M ×N →M is the projection onto the
first factor and π∗ is the map in cohomology induced by the pull-back map on differential
forms, show that π∗(Hk(M)) is a direct summand of Hk(M ×N) for each k > 0.

Taking Hk(M) to be zero for k < 0 and k > dimM , show that for n > 1 and all k

Hk(M × Sn) ∼= Hk(M)⊕Hk−n(M).

[You might like to use induction in n.]
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8G Algebraic Topology

Define the fundamental group of a topological space and explain briefly why a
continuous map gives rise to a homomorphism between fundamental groups.

Let X be a subspace of the Euclidean space R3 which contains all of the points
(x, y, 0) with (x, y) 6= (0, 0), and which does not contain any of the points (0, 0, z). Show
that X has an infinite fundamental group.

9G Number Fields

By Dedekind’s theorem, or otherwise, factorise 2, 3, 5 and 7 into prime ideals in the
field K = Q(

√
−34). Show that the ideal equations

[ω] = [5, ω][7, ω] , [ω + 3] = [2, ω + 3][5, ω + 3]2

hold in K, where ω = 1 +
√
−34. Hence, prove that the ideal class group of K is cyclic of

order 4.

[It may be assumed that the Minkowski constant for K is 2/π.]

10H Algebraic Curves

(a) For which polynomials f(x) of degree d > 0 does the equation y2 = f(x) define a
smooth affine curve?

(b) Now let C be the completion of the curve defined in (a) to a projective curve. For
which polynomials f(x) of degree d > 0 is C a smooth projective curve?

(c) Suppose that C, defined in (b), is a smooth projective curve. Consider a map
p : C → P1, given by p(x, y) = x. Find the degree and the ramification points of p.

11H Logic, Computation and Set Theory

State the Axiom of Replacement.

Show that for any set x there is a transitive set y that contains x, indicating where
in your argument you have used the Axiom of Replacement. No form of recursion theorem
may be assumed without proof.

Which of the following are true and which are false? Give proofs or counterexamples
as appropriate. You may assume standard properties of ordinals.

(a) If x is a transitive set then x is an ordinal.

(b) If each member of a set x is an ordinal then x is an ordinal.

(c) If x is a transitive set and each member of x is an ordinal then x is an ordinal.
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12G Probability and Measure

Let H be a Hilbert space and let V be a closed subspace of H. Let x ∈ H. Show
that there is a unique decomposition x = u+ v such that v ∈ V and u ∈ V ⊥.

Now suppose (Ω,F ,P) is a probability space and let X ∈ L2(Ω,F ,P). Suppose G
is a sub-σ-algebra of F . Define E(X|G) using a decomposition of the above type. Show
that E(E(X|G).1A) = E(X.1A) for each set A ∈ G.

Let G1 ⊆ G2 be two sub-σ-algebras of F . Show that

(a) E(E(X|G1)|G2) = E(X|G1);

(b) E(E(X|G2)|G1) = E(X|G1).

No general theorems about projections on Hilbert spaces may be quoted without proof.

13I Applied Probability

Let Sk be the sum of k independent exponential random variables of rate kµ.
Compute the moment generating function of Sk.

Consider, for each fixed k and for 0 < λ < µ, an M/G/1 queue with arrival rate
λ and with service times distributed as Sk. Assume that the queue is empty at time 0
and write Tk for the earliest time at which a customer departs leaving the queue empty.
Show that, as k →∞, Tk converges in distribution to a random variable T whose moment
generating function MT (θ) satisfies

log
(

1− θ

λ

)
+ logMT (θ) =

(
θ − λ

µ

)
(1−MT (θ)).

Hence obtain the mean value of T .

For what service-time distribution would the empty-to-empty time correspond
exactly to T?

14J Information Theory

Let X be a binary linear code of length n, rank k and distance d. Let x =
(x1, . . . , xn) ∈ X be a codeword with exactly d non-zero digits.

(a) Prove that n > d+ k − 1 (the Singleton bound).

(b) Prove that truncating X on the non-zero digits of x produces a code X ′ of length
n − d, rank k − 1 and distance d′ for some d′ > dd

2e. Here dae is the integer satisfying
a 6 dae < a+ 1, a ∈ R.

[Hint: Assume the opposite. Then, given y ∈ X and its truncation y′ ∈ X ′, consider the
coordinates where x and y have 1 in common (i.e. xj = yj = 1) and where they differ
(e.g. xj = 1 and yj = 0).]

(c) Deduce that n > d+
∑

16`6k−1d
d
2` e (an improved Singleton bound).
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15J Optimization and Control

The owner of a put option may exercise it on any one of the days 1, . . . , h, or not at
all. If he exercises it on day t, when the share price is xt, his profit will be p−xt. Suppose
the share price obeys xt+1 = xt + εt, where ε1, ε2, . . . are i.i.d. random variables for which
E|εt| < ∞. Let Fs(x) be the maximal expected profit the owner can obtain when there
are s further days to go and the share price is x. Show that

(a) Fs(x) is non-decreasing in s,

(b) Fs(x) + x is non-decreasing in x, and

(c) Fs(x) is continuous in x.

Deduce that there exists a non-decreasing sequence, a1, . . . , ah, such that expected
profit is maximized by exercising the option the first day that xt 6 at.

Now suppose that the option never expires, so effectively h = ∞. Show by examples
that there may or may not exist an optimal policy of the form ‘exercise the option the
first day that xt 6 a.’

16I Principles of Statistics

(i) Outline briefly the Bayesian approach to hypothesis testing based on Bayes factors.

(ii) Let Y1, Y2 be independent random variables, both uniformly distributed on
(θ − 1

2 , θ + 1
2 ). Find a minimal sufficient statistic for θ. Let Y(1) = min{Y1, Y2},

Y(2) = max{Y1, Y2}. Show that R = Y(2) − Y(1) is ancilliary and explain why the
Conditionality Principle would lead to inference about θ being drawn from the conditional
distribution of 1

2{Y(1) + Y(2)} given R. Find the form of this conditional distribution.

17D Partial Differential Equations

(a) If f is a radial function on Rn (i.e. f(x) = φ(r) with r = |x| for x ∈ Rn) , and
n > 2, then show that f is harmonic on Rn − {0} if and only if

φ(r) = a+ br2−n

for a, b ∈ R.

(b) State the mean value theorem for harmonic functions and prove it for n > 2.

(c) Generalise the statement and the proof of the mean value theorem to the case
of a subharmonic function, i.e. a C2 function such that ∆u 6 0.
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18D Methods of Mathematical Physics

Let ŷ(p) be the Laplace transform of y(t), where y(t) satisfies

y′(t) = y(π − t)

and
y(0) = 1 ; y(π) = k ; y(t) = 0 for t < 0 and for t > π .

Show that
pŷ(p) + ke−πp − 1 = e−πpŷ(−p)

and hence deduce that

ŷ(p) =
(k + p)− (1 + pk)e−πp

1 + p2
.

Use the inversion formula for Laplace transforms to find y(t) for t > π and deduce
that a solution of the above boundary value problem exists only if k = −1 . Hence find
y(t) for 0 6 t 6 π .

19E Numerical Analysis

(i) Explain briefly what is meant by the convergence of a numerical method for
ordinary differential equations.

(ii) Suppose the sufficiently-smooth function f : R × Rd → Rd obeys the Lipschitz
condition: there exists λ > 0 such that

||f(t,x)− f(t,y)|| 6 λ||x− y||, x,y ∈ Rd, t > 0 .

Prove from first principles, without using the Dahlquist equivalence theorem, that the
trapezoidal rule

yn+1 = yn +
1
2
h[f(tn,yn) + f(tn+1,yn+1)]

for the solution of the ordinary differential equation

y′ = f(t,y), t > 0, y(0) = y0,

converges.
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20C Electrodynamics

A plane electromagnetic wave of frequency ω and wavevector k has an electromag-
netic potential given by

Aa = Aεaei(k·x−ωt)

where A is the amplitude of the wave and εa is the polarization vector. Explain carefully
why there are two independent polarization states for such a wave, and why |k|2 = ω2.

A wave travels in the positive z-direction with polarization vector εa = (0, 1, i, 0).
It is incident at z = 0 on a plane surface which conducts perfectly in the x-direction, but
not at all in the y-direction. Find an expression for the electromagnetic potential of the
radiation that is reflected from this surface.

21C Foundations of Quantum Mechanics

(i) Define the Heisenberg picture of quantum mechanics in relation to the Schrödinger
picture. Explain how the two pictures provide equivalent descriptions of observable results.

Derive the equation of motion for an operator in the Heisenberg picture.

(ii) For a particle moving in one dimension, the Hamiltonian is

Ĥ =
p̂2

2m
+ V (x̂),

where x̂ and p̂ are the position and momentum operators, and the state vector is |Ψ〉.
Eigenstates of x̂ and p̂ satisfy

〈x|p〉 =
(

1
2π~

)1/2

eipx/~, 〈x|x′〉 = δ(x− x′), 〈p|p′〉 = δ(p− p′) .

Use standard methods in the Dirac formalism to show that

〈x|p̂|x′〉 = −i~ ∂

∂x
δ(x− x′)

〈p|x̂|p′〉 = i~
∂

∂p
δ(p− p′) .

Calculate 〈x|Ĥ|x′〉 and express 〈x|p̂|Ψ〉, 〈x|Ĥ|Ψ〉 in terms of the position space wave
function Ψ(x).

Compute the momentum space Hamiltonian for the harmonic oscillator with
potential V (x̂) = 1

2mω
2x̂2.
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22C Applications of Quantum Mechanics

The Hamiltonian H0 for a single electron atom has energy eigenstates |ψn〉 with
energy eigenvalues En. There is an interaction with an electromagnetic wave of the form

H1 = −e r · ε cos(k · r− ωt) , ω = |k|c ,

where ε is the polarisation vector. At t = 0 the atom is in the state |ψ0〉. Find a formula
for the probability amplitude, to first order in e, to find the atom in the state |ψ1〉 at time
t. If the atom has a size a and |k|a � 1 what are the selection rules which are relevant?
For t large, under what circumstances will the transition rate be approximately constant?

[You may use the result ∫ ∞

−∞

sin2 λt

λ2
dλ = π|t| . ]
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23A General Relativity

(i) What is a “stationary” metric? What distinguishes a stationary metric from a
“static” metric?

A Killing vector field Ka of a metric gab satisfies

Ka;b +Kb;a = 0.

Show that this is equivalent to

gab,cK
c + gacK

c
,b + gcbK

c
,a = 0.

Hence show that a constant vector field Ka with one non-zero component, K4 say, is a
Killing vector field if gab is independent of x4.

(ii) Given that Ka is a Killing vector field, show that Kau
a is constant along the

geodesic worldline of a massive particle with 4-velocity ua. Hence find the energy ε of a
particle of unit mass moving in a static spacetime with metric

ds2 = hijdx
idxj − e2Udt2,

where hij and U are functions only of the space coordinates xi. By considering a particle
with speed small compared with that of light, and given that U � 1, show that hij = δij
to lowest order in the Newtonian approximation, and that U is the Newtonian potential.

A metric admits an antisymmetric tensor Yab satisfying

Yab;c + Yac;b = 0.

Given a geodesic xa(λ), let sa = Yab ẋ
b. Show that sa is parallelly propagated along the

geodesic, and that it is orthogonal to the tangent vector of the geodesic. Hence show that
the scalar

φ = sasa

is constant along the geodesic.
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24B Fluid Dynamics II

A plate is drawn vertically out of a bath and the resultant liquid drains off the
plate as a thin film. Using lubrication theory, show that the governing equation for the
thickness of the film, h(x, t) is

∂h

∂t
+

(
gh2

ν

)
∂h

∂x
= 0, (∗)

where t is time and x is the distance down the plate measured from the top.

Verify that

h(x, t) = F (x− gh2

ν
t)

satisfies (∗) and identify the function F (x). Using this relationship or otherwise, determine
an explicit expression for the thickness of the film assuming that it was initially of uniform
thickness h0.

25E Waves in Fluid and Solid Media

Starting from the equations for the one-dimensional unsteady flow of a perfect gas
of uniform entropy, derive the Riemann invariants

u± 2
γ − 1

c = constant

on characteristics
C± :

dx

dt
= u± c.

A piston moves smoothly down a long tube, with position x = X(t). Gas occupies
the tube ahead of the piston, x > X(t). Initially the gas and the piston are at rest, and
the speed of sound in the gas is c0. For t > 0, show that the C+ characteristics are straight
lines, provided that a shock-wave has not formed. Hence find a parametric representation
of the solution for the velocity u(x, t) of the gas.
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