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1J Markov Chains

(i) Let (Xn, Yn)n>0 be a simple symmetric random walk in Z2, starting from (0, 0),
and set T = inf{n > 0 : max{|Xn|, |Yn|} = 2}. Determine the quantities E(T ) and
P(XT = 2 and YT = 0).

(ii) Let (Xn)n>0 be a discrete-time Markov chain with state-space I and transition
matrix P . What does it mean to say that a state i ∈ I is recurrent? Prove that i is
recurrent if and only if

∑∞
n=0 p

(n)
ii = ∞, where p(n)

ii denotes the (i, i) entry in Pn.

Show that the simple symmetric random walk in Z2 is recurrent.

2D Principles of Dynamics

(i) Consider N particles moving in 3 dimensions. The Cartesian coordinates of these
particles are xA(t), A = 1, . . . , 3N . Now consider an invertible change of coordinates to
coordinates qa(xA, t), a = 1, . . . , 3N , so that one may express xA as xA(qa, t). Show
that the velocity of the system in Cartesian coordinates ẋA(t) is given by the following
expression:

ẋA(q̇a, qa, t) =
3N∑
b=1

q̇b ∂x
A

∂qb
(qa, t) +

∂xA

∂t
(qa, t) .

Furthermore, show that Lagrange’s equations in the two coordinate systems are
related via

∂L

∂qa
− d

dt

(
∂L

∂q̇a

)
=

3N∑
A=1

∂xA

∂qa

(
∂L

∂xA
− d

dt

∂L

∂ẋA

)
.

(ii) Now consider the case where there are p < 3N constraints applied, f `(xA, t) =
0, ` = 1, . . . , p. By considering the f `, ` = 1, . . . , p, and a set of independent coordinates
qa, a = 1, . . . , 3N − p, as a set of 3N new coordinates, show that the Lagrange equations
of the constrained system, i.e.

∂L

∂xA
− d

dt

(
∂L

∂ẋA

)
+

p∑
`=1

λ` ∂f
`

∂xA
= 0, A = 1, . . . , 3N,

f ` = 0, ` = 1, . . . , p,

(where the λ` are Lagrange multipliers) imply Lagrange’s equations for the unconstrained
coordinates, i.e.

∂L

∂qa
− d

dt

(
∂L

∂q̇a

)
= 0, a = 1, . . . , 3N − p .
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3F Groups, Rings and Fields

(i) Let p be a prime number. Show that a group G of order pn (n > 2) has a nontrivial
normal subgroup, that is, G is not a simple group.

(ii) Let p and q be primes, p > q. Show that a group G of order pq has a normal
Sylow p-subgroup. If G has also a normal Sylow q-subgroup, show that G is cyclic. Give
a necessary and sufficient condition on p and q for the existence of a non-abelian group of
order pq. Justify your answer.

4A Electromagnetism

(i) Using Maxwell’s equations as they apply to magnetostatics, show that the magnetic
field B can be described in terms of a vector potential A on which the condition ∇·A = 0
may be imposed. Hence derive an expression, valid at any point in space, for the vector
potential due to a steady current distribution of density j that is non-zero only within a
finite domain.

(ii) Verify that the vector potential A that you found in Part (i) satisfies ∇ ·A = 0,
and use it to obtain the Biot–Savart law expression for B. What is the corresponding
result for a steady surface current distribution of density s?

In cylindrical polar coordinates (ρ, φ, z) (oriented so that eρ × eφ = ez) a surface
current

s = s(ρ)eφ

flows in the plane z = 0. Given that

s(ρ) =

{
4I

(
1 + a2

ρ2

) 1
2

a 6 ρ 6 3a
0 otherwise

show that the magnetic field at the point r = aez has z-component

Bz = µ0I log 5 .

State, with justification, the full result for B at the point r = aez.

5F Combinatorics

Let G be a graph of order n > 4. Prove that if G has t2(n)+1 edges then it contains
two triangles with a common edge. Here, t2(n) = bn2/4c is the Turán number.

Suppose instead that G has exactly one triangle. Show that G has at most
t2(n− 1) + 2 edges, and that this number can be attained.
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6F Representation Theory

Define the inner product 〈ϕ,ψ〉 of two class functions from the finite group G into
the complex numbers. Prove that characters of the irreducible representations of G form
an orthonormal basis for the space of class functions.

Consider the representation π : Sn → GLn(C) of the symmetric group Sn by
permutation matrices. Show that π splits as a direct sum 1⊕ρ where 1 denotes the trivial
representation. Is the (n− 1)-dimensional representation ρ irreducible?

7F Galois Theory

What does it mean to say that a field is algebraically closed? Show that a field M is
algebraically closed if and only if, for any finite extension L/K and every homomorphism
σ : K ↪→M , there exists a homomorphism L ↪→M whose restriction to K is σ.

Let K be a field of characteristic zero, and M/K an algebraic extension such that
every nonconstant polynomial over K has at least one root in M . Prove that M is
algebraically closed.

8H Differentiable Manifolds

State the Implicit Function Theorem and outline how it produces submanifolds of
Euclidean spaces.

Show that the unitary group U(n) ⊂ GL(n,C) is a smooth manifold and find its
dimension.

Identify the tangent space to U(n) at the identity matrix as a subspace of the space
of n× n complex matrices.

9G Number Fields

Let K = Q(α), where α = 3
√

10, and let OK be the ring of algebraic integers of K.
Show that the field polynomial of r + sα, with r and s rational, is (x− r)3 − 10s3.

Let β = 1
3 (α2 + α+ 1). By verifying that β = 3/(α− 1) and determining the field

polynomial, or otherwise, show that β is in OK .

By computing the traces of θ, αθ, α2θ, show that the elements of OK have the form

θ = 1
3 (l + 1

10mα+ 1
10nα

2)

where l,m, n are integers. By further computing the norm of 1
10α(m + nα), show that θ

can be expressed as 1
3 (u + vα) + wβ with u, v, w integers. Deduce that 1, α, β form an

integral basis for K.
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10H Hilbert Spaces

Let H be a Hilbert space and let T ∈ B(H).

(a) Define what it means for T to be (i) invertible, and (ii) bounded below . Prove
that T is invertible if and only if both T and T ∗ are bounded below.

(b) Define what it means for T to be normal . Prove that T is normal if and only
if ‖Tx‖ = ‖T ∗x‖ for all x ∈ H. Deduce that, if T is normal, then every point of SpT is
an approximate eigenvalue of T .

(c) Let S ∈ B(H) be a self-adjoint operator, and let (xn) be a sequence in H such
that ‖xn‖ = 1 for all n and ‖Sxn‖ → ‖S‖ as n→∞. Show, by direct calculation, that∥∥(S2 − ‖S‖2)xn

∥∥2 → 0 as n→∞,

and deduce that at least one of ±‖S‖ is an approximate eigenvalue of S.

(d) Deduce that, with S as in (c),

r(S) = ‖S‖ = sup{|〈Sx, x〉| : x ∈ H, ‖x‖ = 1} .

11G Riemann Surfaces

Prove that a holomorphic map from P1 to itself is either constant or a rational
function. Prove that a holomorphic map of degree 1 from P1 to itself is a Möbius
transformation.

Show that, for every finite set of distinct points z1, z2, . . . , zN in P1 and any values
w1, w2, . . . , wN ∈ P1, there is a holomorphic function f : P1 → P1 with f(zn) = wn for
n = 1, 2, . . . , N .

12H Logic, Computation and Set Theory

(i) State Zorn’s Lemma. Use Zorn’s Lemma to prove that every real vector space has
a basis.

(ii) State the Bourbaki–Witt Theorem, and use it to prove Zorn’s Lemma, making
clear where in the argument you appeal to the Axiom of Choice.

Conversely, deduce the Bourbaki–Witt Theorem from Zorn’s Lemma.

If X is a non-empty poset in which every chain has an upper bound, must X be
chain-complete?
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13G Probability and Measure

State and prove the first Borel–Cantelli Lemma.

Suppose that (Fn) is a sequence of events in a common probability space such that
P(Fi ∩ Fj) 6 P(Fi).P(Fj) whenever i 6= j and that

∑
n P(Fn) = ∞.

Let 1Fn be the indicator function of Fn and let

Sn =
∑
k6n

1Fk
; µn = E(Sn) .

Use Chebyshev’s inequality to show that

P(Sn <
1
2µn) 6 P(|Sn − µn| > 1

2µn) 6 4
µn
.

Deduce, using the first Borel–Cantelli Lemma, that P(Fn infinitely often ) = 1.

14J Information Theory

A binary Huffman code is used for encoding symbols 1, . . . ,m occurring with
probabilities p1 > . . . > pm > 0 where

∑
16j6m pj = 1. Let s1 be the length of a

shortest codeword and sm of a longest codeword. Determine the maximal and minimal
values of s1 and sm, and find binary trees for which they are attained.

Paper 1
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15I Principles of Statistics

(i) A public health official is seeking a rational policy of vaccination against a relatively
mild ailment which causes absence from work. Surveys suggest that 60% of the population
are already immune, but accurate tests to detect vulnerability in any individual are too
costly for mass screening. A simple skin test has been developed, but is not completely
reliable. A person who is immune to the ailment will have a negligible reaction to the skin
test with probability 0.4, a moderate reaction with probability 0.5 and a strong reaction
with probability 0.1. For a person who is vulnerable to the ailment the corresponding
probabilities are 0.1, 0.4 and 0.5. It is estimated that the money-equivalent of work-
hours lost from failing to vaccinate a vulnerable person is 20, that the unnecessary cost of
vaccinating an immune person is 8, and that there is no cost associated with vaccinating
a vulnerable person or failing to vaccinate an immune person. On the basis of the skin
test, it must be decided whether to vaccinate or not. What is the Bayes decision rule that
the health official should adopt?

(ii) A collection of I students each sit J exams. The ability of the ith student is
represented by θi and the performance of the ith student on the jth exam is measured
by Xij . Assume that, given θ = (θ1, . . . , θI), an appropriate model is that the variables
{Xij , 1 6 i 6 I, 1 6 j 6 J} are independent, and

Xij ∼ N(θi, τ
−1),

for a known positive constant τ . It is reasonable to assume, a priori , that the θi are
independent with

θi ∼ N(µ, ζ−1),

where µ and ζ are population parameters, known from experience with previous cohorts
of students.

Compute the posterior distribution of θ given the observed exam marks vector
X = {Xij , 1 6 i 6 I, 1 6 j 6 J}.

Suppose now that τ is also unknown, but assumed to have a Gamma(α0, β0)
distribution, for known α0, β0. Compute the posterior distribution of τ given θ and X.
Find, up to a normalisation constant, the form of the marginal density of θ given X.
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16J Stochastic Financial Models

(i) In the context of a single-period financial market with d traded assets, what is an
arbitrage? What is an equivalent martingale measure?

A simple single-period financial market contains two assets, S0 (a bond), and S1

(a share). The period can be good, bad, or indifferent, with probabilities 1/3 each. At the
beginning of the period, time 0, both assets are worth 1, i.e.

S0
0 = 1 = S1

0 ,

and at the end of the period, time 1, the share is worth

S1
1 =

{
a if the period was bad,
b if the period was indifferent,
c if the period was good,

where a < b < c. The bond is always worth 1 at the end of the period. Show that there
is no arbitrage in this market if and only if a < 1 < c.

(ii) An agent with C2 strictly increasing strictly concave utility U has wealth w0 at
time 0, and wishes to invest his wealth in shares and bonds so as to maximise his expected
utility of wealth at time 1. Explain how the solution to his optimisation problem generates
an equivalent martingale measure.

Assume now that a = 3/4, b = 1, and c = 3/2. Characterise all equivalent
martingale measures for this problem. Characterise all equivalent martingale measures
which arise as solutions of an agent’s optimisation problem.

Calculate the largest and smallest possible prices for a European call option with
strike 1 and expiry 1, as the pricing measure ranges over all equivalent martingale measures.
Calculate the corresponding bounds when the pricing measure is restricted to the set
arising from expected-utility-maximising agents’ optimisation problems.

17B Dynamical Systems

Consider the one-dimensional map f : R → R, where f(x) = µx2(1 − x) with µ a
real parameter. Find the range of values of µ for which the open interval (0, 1) is mapped
into itself and contains at least one fixed point. Describe the bifurcation at µ = 4 and find
the parameter value for which there is a period-doubling bifurcation. Determine whether
the fixed point is an attractor at this bifurcation point.
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18D Partial Differential Equations

(a) Define characteristic hypersurfaces and state a local existence and uniqueness
theorem for a quasilinear partial differential equation with data on a non-characteristic
hypersurface.

(b) Consider the initial value problem

3ux + uy = −yu, u(x, 0) = f(x),

for a function u : R2 → R with C1 initial data f given for y = 0. Obtain a formula for
the solution by the method of characteristics and deduce that a C1 solution exists for all
(x, y) ∈ R2.

Derive the following (well-posedness) property for solutions u(x, y) and v(x, y)
corresponding to data u(x, 0) = f(x) and v(x, 0) = g(x) respectively:

sup
x
|u(x, y)− v(x, y)| 6 sup

x
|f(x)− g(x)| for all y.

(c) Consider the initial value problem

3ux + uy = u2, u(x, 0) = f(x),

for a function u : R2 → R with C1 initial data f given for y = 0. Obtain a formula for the
solution by the method of characteristics and hence show that if f(x) < 0 for all x, then
the solution exists for all y > 0. Show also that if there exists x0 with f(x0) > 0, then the
solution does not exist for all y > 0.

19D Methods of Mathematical Physics

By considering the integral ∫
C

( t

1− t

)i

dt ,

where C is a large circle centred on the origin, show that

B(1 + i, 1− i) = π cosechπ,

where

B(p, q) =
∫ 1

0

tp−1(1− t)q−1dt, Re(p) > 0, Re(q) > 0 .

By using B(p, q) = Γ(p)Γ(q)
Γ(p+q) , deduce that Γ(i) Γ(−i) = π cosechπ .
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20E Numerical Analysis

(i) The linear algebraic equations Au = b, where A is symmetric and positive-definite,
are solved with the Gauss–Seidel method. Prove that the iteration always converges.

(ii) The Poisson equation ∇2u = f is given in the bounded, simply connected domain
Ω ⊆ R2, with zero Dirichlet boundary conditions on ∂Ω. It is approximated by the five-
point formula

Um−1,n + Um,n−1 + Um+1,n + Um,n+1 − 4Um,n = (∆x)2fm,n,

where Um,n ≈ u(m∆x, n∆x), fm,n = f(m∆x, n∆x), and (m∆x, n∆x) is in the interior
of Ω.

Assume for the sake of simplicity that the intersection of ∂Ω with the grid consists
only of grid points, so that no special arrangements are required near the boundary. Prove
that the method can be written in a vector notation, Au = b with a negative-definite
matrix A.

21C Electrodynamics

A particle of charge q and mass m moves non-relativistically with 4-velocity ua(t)
along a trajectory xa(t). Its electromagnetic field is determined by the Liénard–Wiechert
potential

Aa(x′, t′) =
q

4πε0
ua(t)

ub(t)(x′ − x(t))b

where t′ = t+ |x− x′| and x denotes the spatial part of the 4-vector xa.

Derive a formula for the Poynting vector at very large distances from the particle.
Hence deduce Larmor’s formula for the rate of loss of energy due to electromagnetic
radiation by the particle.

A particle moves in the (x, y) plane in a constant magnetic field B = (0, 0, B).
Initially it has kinetic energy E0; derive a formula for the kinetic energy of this particle
as a function of time.
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22A Statistical Physics

A gas in equilibrium at temperature T and pressure P has quantum stationary
states i with energies Ei(V ) in volume V . What does it mean to say that a change in
volume from V to V + dV is reversible?

Write down an expression for the probability that the gas is in state i. How is the
entropy S defined in terms of these probabilities? Write down an expression for the energy
E of the gas, and establish the relation

dE = TdS − PdV

for reversible changes.

By considering the quantity F = E − TS, derive the Maxwell relation(
∂S

∂V

)
T

=
(
∂P

∂T

)
V

.

A gas obeys the equation of state

PV = RT +
B(T )
V

where R is a constant and B(T ) is a function of T only. The gas is expanded isothermally,
at temperature T , from volume V0 to volume 2V0. Find the work ∆W done on the gas.
Show that the heat ∆Q absorbed by the gas is given by

∆Q = RT log 2 +
T

2V0

dB

dT
.
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23C Applications of Quantum Mechanics

Define the differential cross section
dσ

dΩ
. Show how it may be related to a scattering

amplitude f defined in terms of the behaviour of a wave function ψ satisfying suitable
boundary conditions as r = |r| → ∞.

For a particle scattering off a potential V (r) show how f(θ), where θ is the scattering
angle, may be expanded, for energy E = ~2k2/2m, as

f(θ) =
∞∑

`=0

f`(k)P`(cos θ) ,

and find f`(k) in terms of the phase shift δ`(k). Obtain the optical theorem relating σtotal

and f(0).

Suppose that

e2iδ1 =
E − E0 − 1

2 iΓ
E − E0 + 1

2 iΓ
.

Why for E ≈ E0 may f1(k) be dominant, and what is the expected behaviour of
dσ

dΩ
for

E ≈ E0?

[For large r

eikr cos θ ∼ 1
2ikr

∞∑
`=0

(2`+ 1)
(
(−1)`+1e−ikr + eikr

)
P`(cos θ) .

Legendre polynomials satisfy∫ 1

−1

P`(t)P`′(t)dt =
2

2`+ 1
δ``′ . ]
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24A General Relativity

(i) The worldline xa(λ) of a massive particle moving in a spacetime with metric gab

obeys the geodesic equation

d2xa

dτ2
+

{
b
a

c

}dxb

dτ

dxc

dτ
= 0

where τ is the particle’s proper time and
{

b
a

c

}
are the Christoffel symbols; these are the

equations of motion for the Lagrangian

L1 = −m
√
−gabẋaẋb

where m is the particle’s mass, and ẋa = dxa/dλ. Why is the choice of worldline parameter
λ irrelevant? Among all possible worldlines passing through points A and B, why is xa(λ)
the one that extremizes the proper time elapsed between A and B?

Explain how the equations of motion for a massive particle may be obtained from
the alternative Lagrangian

L2 =
1
2
gabẋ

aẋb .

What can you conclude from the fact that L2 has no explicit dependence on λ? How are
the equations of motion for a massless particle obtained from L2?

(ii) A photon moves in the Schwarzschild metric

ds2 =
(

1− 2M
r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
−

(
1− 2M

r

)
dt2.

Given that the motion is confined to the plane θ = π/2, obtain the radial equation(
dr

dλ

)2

= E2 − h2

r2

(
1− 2M

r

)
,

where E and h are constants, the physical meaning of which should be stated.

Setting u = 1/r, obtain the equation

d2u

dφ2
+ u = 3Mu2.

Using the approximate solution

u =
1
b

sinφ+
M

2b2
(3 + cos 2φ) + . . . ,

obtain the standard formula for the deflection of light passing far from a body of mass
M with impact parameter b. Reinstate factors of G and c to give your result in physical
units.
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25B Fluid Dynamics II

Consider a two-dimensional horizontal vortex sheet of strength U at height h above
a horizontal rigid boundary at y = 0, so that the inviscid fluid velocity is

u =
{

(U, 0) 0 < y < h
(0, 0) y > h.

Examine the temporal linear instabililty of the sheet and determine the relevant dispersion
relationship.

For what wavelengths is the sheet unstable?

Evaluate the temporal growth rate and the wave propagation speed in the limit of
both short and long waves. Comment briefly on the significance of your results.

26E Waves in Fluid and Solid Media

Consider the equation

∂2φ

∂t2
+ α2 ∂

4φ

∂x4
+ β2φ = 0, (∗)

with α and β real constants. Find the dispersion relation for waves of frequency ω and
wavenumber k. Find the phase velocity c(k) and the group velocity cg(k), and sketch the
graphs of these functions.

By multiplying (∗) by ∂φ/∂t, obtain an energy equation in the form

∂E

∂t
+
∂F

∂x
= 0,

where E represents the energy density and F the energy flux.

Now let φ(x, t) = A cos(kx− ωt), where A is a real constant. Evaluate the average
values of E and F over a period of the wave to show that

〈F 〉 = cg〈E〉.

Comment on the physical meaning of this result.
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