
MATHEMATICAL TRIPOS Part II Alternative A

Thursday 5 June 2003 1.30 to 4.30

PAPER 3

Before you begin read these instructions carefully.

Each question is divided into Part (i) and Part (ii), which may or may not be
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number and desk number.
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1J Markov Chains

(i) Consider the continuous-time Markov chain (Xt)t>0 with state-space {1, 2, 3, 4}
and Q-matrix

Q =


−2 0 0 2

1 −3 2 0
0 2 −2 0
1 5 2 −8

 .

Set

Yt =
{
Xt if Xt ∈ {1, 2, 3}
2 if Xt = 4

and

Zt =
{
Xt if Xt ∈ {1, 2, 3}
1 if Xt = 4.

Determine which, if any, of the processes (Yt)t>0 and (Zt)t>0 are Markov chains.

(ii) Find an invariant distribution for the chain (Xt)t>0 given in Part (i). Suppose
X0 = 1. Find, for all t > 0, the probability that Xt = 1.

2B Principles of Dynamics

(i) An axisymmetric bowling ball of mass M has the shape of a sphere of radius a.
However, it is biased so that the centre of mass is located a distance a/2 away from the
centre, along the symmetry axis.

The three principal moments of inertia about the centre of mass are (A,A,C). The
ball starts out in a stable equilibrium at rest on a perfectly frictionless flat surface with
the symmetry axis vertical. The symmetry axis is then tilted through θ0, the ball is spun
about this axis with an angular velocity n, and the ball is released.

Explain why the centre of mass of the ball moves only in the vertical direction
during the subsequent motion. Write down the Lagrangian for the ball in terms of the
usual Euler angles θ, φ and ψ.

(ii) Show that there are three independent constants of the motion. Eliminate two of
the angles from the Lagrangian and find the effective Lagrangian for the coordinate θ.

Find the maximum and minimum values of θ in the motion of the ball when the
quantity C2n2

AMga is (a) very small and (b) very large.
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3G Functional Analysis

(i) Let p be a point of the compact interval I = [a, b] ⊂ R and let δp : C(I) → R be
defined by δp(f) = f(p). Show that

δp : (C(I), || · ||∞) → R

is a continuous, linear map but that

δp : (C(I), || · ||1) → R

is not continuous.

(ii) Consider the space C(n)(I) of n-times continuously differentiable functions on the
interval I. Write

||f ||(n)
∞ =

n∑
k=0

||f (k)||∞ and ||f ||(n)
1 =

n∑
r=0

||f (k)||1

for f ∈ C(n)(I). Show that (C(n)(I), || · ||(n)
∞ ) is a complete normed space. Is the space

(C(n)(I), || · ||(n)
1 ) also complete?

Let f : I → I be an n-times continuously differentiable map and define

µf : C(n)(I) → C(n)(I) by g 7→ g ◦ f .

Show that µf is a continuous linear map when C(n)(I) is equipped with the norm || · ||(n)
∞ .

4F Groups, Rings and Fields

(i) Let K be the splitting field of the polynomial f = X3− 2 over the rationals. Find
the Galois group G of K/Q and describe its action on the roots of f .

(ii) Let K be the splitting field of the polynomial X4 + aX2 + b (where a, b ∈ Q) over
the rationals. Assuming that the polynomial is irreducible, prove that the Galois group G
of the extension K/Q is either C4, or C2 × C2, or the dihedral group D8.
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5A Electromagnetism

(i) Given the electric field (in cartesian components)

E(r, t) =
(
0, x/t2, 0

)
,

use the Maxwell equation

∇×E = −∂B
∂t

(1)

to find B subject to the boundary condition that |B| → 0 as t→∞.

Let S be the planar rectangular surface in the xy-plane with corners at

(0, 0, 0) , (L, 0, 0) , (L, a, 0) , (0, a, 0)

where a is a constant and L = L(t) is some function of time. The magnetic flux through
S is given by the surface integral

Φ =
∫

S

B · dS.

Compute Φ as a function of t.

Let C be the closed rectangular curve that bounds the surface S, taken anticlockwise
in the xy-plane, and let v be its velocity (which depends, in this case, on the segment of
C being considered). Compute the line integral∮

C
(E + v ×B) · dr.

Hence verify that ∮
C

(E + v ×B) · dr = −dΦ
dt

. (2)

(ii) A surface S is bounded by a time-dependent closed curve C(t) such that in time
δt it sweeps out a volume δV . By considering the volume integral∫

δV

∇ ·B dτ ,

and using the divergence theorem, show that the Maxwell equation ∇·B = 0 implies that

dΦ
dt

=
∫

S

∂B
∂t

· dS−
∮
C
(v ×B) · dr

where Φ is the magnetic flux through S as given in Part (i). Hence show, using (1) and
Stokes’ theorem, that (2) is a consequence of Maxwell’s equations.
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6D Dynamics of Differential Equations

(i) Define the Poincaré index of a curve C for a vector field f(x), x ∈ R2. Explain
why the index is uniquely given by the sum of the indices for small curves around each
fixed point within C. Write down the indices for a saddle point and for a focus (spiral) or
node, and show that the index of a periodic solution of ẋ = f(x) has index unity.

A particular system has a periodic orbit containing five fixed points, and two further
periodic orbits. Sketch the possible arrangements of these orbits, assuming there are no
degeneracies.

(ii) A dynamical system in R2 depending on a parameter µ has a homoclinic orbit
when µ = µ0. Explain how to determine the stability of this orbit, and sketch the different
behaviours for µ < µ0 and µ > µ0 in the case that the orbit is stable.

Now consider the system

ẋ = y , ẏ = x− x2 + y(α+ βx)

where α, β are constants. Show that the origin is a saddle point, and that if there is an
orbit homoclinic to the origin then α, β are related by∮

y2(α+ βx)dt = 0

where the integral is taken round the orbit. Evaluate this integral for small α, β by
approximating y by its form when α = β = 0. Hence give conditions on (small) α, β that
lead to a stable homoclinic orbit at the origin. [Note that ydt = dx.]

7H Geometry of Surfaces

(i) Suppose that C is a curve in the Euclidean (ξ, η)-plane and that C is parameterized
by its arc length σ. Suppose that S in Euclidean R3 is the surface of revolution obtained
by rotating C about the ξ-axis. Take σ, θ as coordinates on S, where θ is the angle of
rotation.

Show that the Riemannian metric on S induced from the Euclidean metric on R3

is
ds2 = dσ2 + η(σ)2dθ2.

(ii) For the surface S described in Part (i), let eσ = ∂/∂σ and eθ = ∂/∂θ. Show that,
along any geodesic γ on S, the quantity g(γ̇, eθ) is constant. Here g is the metric tensor
on S.

[You may wish to compute [X, eθ] = Xeθ−eθX for any vector field X = Aeσ +Beθ, where
A,B are functions of σ, θ. Then use symmetry to compute Dγ̇(g(γ̇, eθ)), which is the rate
of change of g(γ̇, eθ) along γ.]
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8H Logic, Computation and Set Theory

(i) What does it mean for a function from Nk to N to be recursive? Write down
a function that is not recursive. You should include a proof that your example is not
recursive.

(ii) What does it mean for a subset of Nk to be recursive, and what does it mean for
it to be recursively enumerable? Give, with proof, an example of a set that is recursively
enumerable but not recursive. Prove that a set is recursive if and only if both it and
its complement are recursively enumerable. If a set is recursively enumerable, must its
complement be recursively enumerable?

[You may assume the existence of any universal recursive functions or universal register
machine programs that you wish.]

9G Number Theory

(i) Let x > 2 be a real number and let P (x) =
∏
p6x

(
1− 1

p

)−1

, where the product is

taken over all primes p 6 x. Prove that P (x) > log x.

(ii) Define the continued fraction of any positive irrational real number x. Illustrate
your definition by computing the continued fraction of 1 +

√
3.

Suppose that a, b, c are positive integers with b = ac and that x has the periodic
continued fraction [b, a, b, a, . . .]. Prove that x = 1

2 (b+
√
b2 + 4c).
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10I Algorithms and Networks

(i) Consider the problem

minimize f(x)
subject to h(x) = b, x ∈ X,

where f : Rn → R, h : Rn → Rm, X ⊆ Rn and b ∈ Rm. State and prove the Lagrangian
sufficiency theorem.

In each of the following cases, where n = 2, m = 1 and X = {(x, y) : x, y > 0},
determine whether the Lagrangian sufficiency theorem can be applied to solve the problem:

(a) f(x, y) = −x, h(x, y) = x2 + y2, b = 1;

(b) f(x, y) = e−xy, h(x) = x, b = 0.

(ii) Consider the problem in Rn

minimize 1
2x

TQx+ cTx

subject to Ax = b

where Q is a positive-definite symmetric n × n matrix, A is an m × n matrix, c ∈ Rn

and b ∈ Rm. Explain how to reduce this problem to the solution of simultaneous linear
equations.

Consider now the problem

minimize 1
2x

TQx+ cTx

subject to Ax > b .

Describe the active set method for its solution.

Consider the problem

minimize (x− a)2 + (y − b)2 + xy

subject to 0 6 x 6 1 and 0 6 y 6 1

where a, b ∈ R. Draw a diagram partitioning the (a, b)-plane into regions according to
which constraints are active at the minimum.
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11J Stochastic Financial Models

(i) What does it mean to say that the process (Wt)t>0 is a Brownian motion? What
does it mean to say that the process (Mt)t>0 is a martingale?

Suppose that (Wt)t>0 is a Brownian motion and the process (Xt)t>0 is given in
terms of W as

Xt = x0 + σWt + µt

for constants σ, µ. For what values of θ is the process

Mt = exp(θXt − λt)

a martingale? (Here, λ is a positive constant.)

(ii) In a standard Black–Scholes model, the price at time t of a share is represented
as St = exp(Xt). You hold a perpetual American put option on this share, with strike K;
you may exercise at any stopping time τ , and upon exercise you receive max{0,K − Sτ}.
Let 0 < a < logK. Suppose you plan to use the exercise policy: ‘Exercise as soon as the
price falls to ea or lower.’ Calculate what the option would be worth if you were to follow
this policy. (Assume that the riskless rate of interest is constant and equal to r > 0.) For
what choice of a is this value maximised?

12I Principles of Statistics

(i) Let X1, . . . , Xn be independent, identically distributed random variables, with the
exponential density f(x; θ) = θe−θx, x > 0.

Obtain the maximum likelihood estimator θ̂ of θ. What is the asymptotic
distribution of

√
n(θ̂ − θ)?

What is the minimum variance unbiased estimator of θ? Justify your answer
carefully.

(ii) Explain briefly what is meant by the profile log-likelihood for a scalar parameter of
interest γ, in the presence of a nuisance parameter ξ. Describe how you would test a null
hypothesis of the form H0 : γ = γ0 using the profile log-likelihood ratio statistic.

In a reliability study, lifetimes T1, . . . , Tn are independent and exponentially
distributed, with means of the form E(Ti) = exp(β + ξzi) where β, ξ are unknown and
z1, . . . , zn are known constants. Inference is required for the mean lifetime, exp(β + ξz0),
for covariate value z0.

Find, as explicitly as possible, the profile log-likelihood for γ ≡ β + ξz0, with
nuisance parameter ξ.

Show that, under H0 : γ = γ0, the profile log-likelihood ratio statistic has a
distribution which does not depend on the value of ξ. How might the parametric bootstrap
be used to obtain a test of H0 of exact size α?

[Hint: if Y is exponentially distributed with mean 1, then µY is exponentially distributed
with mean µ.]
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13C Foundations of Quantum Mechanics

(i) What are the commutation relations satisfied by the components of an angular
momentum vector J? State the possible eigenvalues of the component J3 when J2 has
eigenvalue j(j + 1)~2.

Describe how the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are used to construct the components of the angular momentum vector S for a spin 1

2
system. Show that they obey the required commutation relations.

Show that S1, S2 and S3 each have eigenvalues ± 1
2~. Verify that S2 has eigenvalue

3
4~2.

(ii) Let J and |jm〉 denote the standard operators and state vectors of angular
momentum theory. Assume units where ~ = 1. Consider the operator

U(θ) = e−iθJ2 .

Show that
U(θ)J1U(θ)−1 = cos θJ1 − sin θJ3

U(θ)J3U(θ)−1 = sin θJ1 + cos θJ3 .

Show that the state vectors U
(

π
2

)
|jm〉 are eigenvectors of J1. Suppose that J1 is

measured for a system in the state |jm〉; show that the probability that the result is m′

equals
|〈jm′|ei π

2 J2 |jm〉|2 .

Consider the case j = m = 1
2 . Evaluate the probability that the measurement of

J1 will result in m′ = − 1
2 .
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14A Statistical Physics and Cosmology

(i) The pressure P (r) and mass density ρ(r), at distance r from the centre of a
spherically-symmetric star, obey the pressure-support equation

P ′ = −Gmρ
r2

where m′ = 4πr2ρ(r), and the prime indicates differentiation with respect to r. Let V
be the total volume of the star, and 〈P 〉 its average pressure. Use the pressure-support
equation to derive the “virial theorem”

〈P 〉V = −1
3
Egrav

where Egrav is the total gravitational potential energy [Hint: multiply by 4πr3]. If a star
is assumed to be a self-gravitating ball of a non-relativistic ideal gas then it can be shown
that

〈P 〉V =
2
3
Ekin

where Ekin is the total kinetic energy. Use this result to show that the total energy
U = Egrav + Ekin is negative. When nuclear reactions have converted the hydrogen in a
star’s core to helium the core contracts until the helium is converted to heavier elements,
thereby increasing the total energy U of the star. Explain briefly why this converts the
star into a “Red Giant”.
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(ii) Write down the first law of thermodynamics for the change in energy E of a system
at temperature T , pressure P and chemical potential µ as a result of small changes in the
entropy S, volume V and particle number N . Use this to show that

P = −
(
∂E

∂V

)
N,S

.

The microcanonical ensemble is the set of all accessible microstates of a system at fixed
E, V,N . Define the canonical and grand-canonical ensembles. Why are the properties of
a macroscopic system independent of the choice of thermodynamic ensemble?

The Gibbs “grand potential” G(T, V, µ) can be defined as

G = E − TS − µN.

Use the first law to find expressions for S, P,N as partial derivatives of G. A system
with variable particle number n has non-degenerate energy eigenstates labeled by r(n), for
each n, with energy eigenvalues E(n)

r . If the system is in equilibrium at temperature T
and chemical potential µ then the probability p(r(n)) that it will be found in a particular
n-particle state r(n) is given by the Gibbs probability distribution

p(r(n)) = Z−1 e(µn−E(n)
r )/kT

where k is Boltzmann’s constant. Deduce an expression for the normalization factor Z as
a function of µ and β = 1/kT , and hence find expressions for the partial derivatives

∂ logZ
∂µ

,
∂ logZ
∂β

in terms of N,E, µ, β.

Why does Z also depend on the volume V ? Given that a change in V at fixed N,S
leaves unchanged the Gibbs probability distribution, deduce that(

∂ logZ
∂V

)
µ,β

= βP.

Use your results to show that
G = −kT log (Z/Z0)

for some constant Z0.
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15C Symmetries and Groups in Physics

(i) Given that the character of an SU(2) transformation in the (2l + 1)-dimensional
irreducible representation dl is given by

χl(θ) =
sin(l + 1

2 )θ
sin θ

2

,

show how the direct product representation dl1 ⊗ dl2 decomposes into irreducible SU(2)
representations.

(ii) Find the decomposition of the direct product representation 3 ⊗ 3 of SU(3) into
irreducible SU(3) representations.

Mesons consist of one quark and one antiquark. The scalar Meson Octet consists
of the following particles: K± (Y = ±1, I3 = ± 1

2 ), K0 (Y = 1, I3 = − 1
2 ), K

0
(Y = −1,

I3 = 1
2 ), π± (Y = 0, I3 = ±1), π0 (Y = 0, I3 = 0) and η (Y = 0, I3 = 0).

Use the direct product representation 3⊗ 3 of SU(3) to identify the quark-type of
the particles in the scalar Meson Octet. Deduce the quark-type of the SU(3) singlet state
η′ contained in 3⊗ 3.
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16E Transport Processes

(i) When a solid crystal grows into a supercooled infinite melt, latent heat must be
removed from the interface by diffusion into the melt. Write down the equation and
boundary conditions satisfied by the temperature θ(x, t) in the melt, where x is position
and t time, in terms of the following material properties: solid density ρs, specific heat
capacity Cp, coefficient of latent heat per unit mass L, thermal conductivity k, melting
temperature θm. You may assume that the densities of the melt and the solid are the
same and that temperature in the melt far from the interface is θm −∆θ, where ∆θ is a
positive constant.

A spherical crystal of radius a(t) grows into such a melt with a(0) = 0. Use
dimensional analysis to show that a(t) is proportional to t1/2.

(ii) Show that the above problem should have a similarity solution of the form

θ = θm −∆θ(1− F (ξ)),

where ξ = r(κt)−1/2, r is the radial coordinate in spherical polars and κ = k/ρsCp is the
thermal diffusivity. Recalling that, for spherically symmetric θ,∇2θ = 1

r2 (r2θr)r, write
down the equation and boundary conditions to be satisfied by F (ξ). Hence show that the
radius of the crystal is given by a(t) = λ(κt)1/2, where λ satisfies the equation∫ ∞

λ

e−
1
4 u2

u2
du =

2
Sλ3

e−
1
4 λ2

and S = L/Cp∆θ.

Integrate the left hand side of this equation by parts, to give

√
π

2
λe

1
4 λ2

erfc
(

1
2
λ

)
= 1− 2

Sλ2
.

Hence show that a solution with λ small must have λ ≈ (2/S)
1
2 , which is self-consistent if

S is large.
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17B Mathematical Methods

(i) Explain what is meant by the assertion: “the series
∑∞

0 bnx
n is asymptotic to f(x)

as x→0”.

Consider the integral

I(λ) =
∫ A

0

e−λxg(x)dx,

where A > 0, λ is real and g has the asymptotic expansion

g(x) ∼ a0x
α + a1x

α+1 + a2x
α+2 + . . .

as x→+ 0 , with α > −1. State Watson’s lemma describing the asymptotic behaviour of
I(λ) as λ→∞, and determine an expression for the general term in the asymptotic series.

(ii) Let

h(t) = π−1/2

∫ ∞

0

e−x

x1/2(1 + 2xt)
dx

for t > 0. Show that

h(t) ∼
∑∞

k=0
(−1)k1.3. · · · .(2k − 1)tk

as t→+ 0 .

Suggest, for the case that t is smaller than unity, the point at which this asymptotic
series should be truncated so as to produce optimal numerical accuracy.
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18B Nonlinear Waves and Integrable Systems

(i) Write down a Lax pair for the equation

iqt + qxx = 0.

Discuss briefly, without giving mathematical details, how this pair can be used to solve
the Cauchy problem on the infinite line for this equation. Discuss how this approach can
be used to solve the analogous problem for the nonlinear Schrödinger equation.

(ii) Let q(ζ, η), q̃(ζ, η) satisfy the equations

q̃ζ = qζ + 2λ sin
q̃ + q

2

q̃η = −qη +
2
λ

sin
q̃ − q

2
,

where λ is a constant.

(a) Show that the above equations are compatible provided that q, q̃ both satisfy
the Sine–Gordon equation

qζη = sin q .

(b) Use the above result together with the fact that∫
dx

sinx
= ln

(
tan

x

2

)
+ constant ,

to show that the one-soliton solution of the Sine–Gordon equation is given by

tan
q

4
= c exp

(
λζ +

η

λ

)
,

where c is a constant.
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19E Numerical Analysis

(i) The diffusion equation

∂u

∂t
=

∂

∂x

(
a(x)

∂u

∂x

)
, 0 6 x 6 1, t > 0,

with the initial condition u(x, 0) = φ(x), 0 6 x 6 1 and zero boundary conditions at x = 0
and x = 1, is solved by the finite-difference method

un+1
m = un

m + µ[am− 1
2
un

m−1 − (am− 1
2

+ am+ 1
2
)un

m + am+ 1
2
un

m+1],
m = 1, 2, . . . , N,

where µ = ∆t/(∆x)2, ∆x = 1
N+1 and un

m ≈ u(m∆x, n∆t), aα = a(α∆x).

Assuming sufficient smoothness of the function a, and that µ remains constant as
∆x > 0 and ∆t > 0 become small, prove that the exact solution satisfies the numerical
scheme with error O((∆x)3).

(ii) For the problem defined in Part (i), assume that there exist 0 < a− < a+ <∞ such
that a− 6 a(x) 6 a+, 0 6 x 6 1. Prove that the method is stable for 0 < µ 6 1/(2a+).

[Hint: You may use without proof the Gerschgorin theorem: All the eigenvalues of the
matrix A = (ak,l)k,l=1,...,M are contained in

⋃m
k=1 Sk, where

Sk =
{
z ∈ C : |z − ak,k| 6

m∑
l=1
l 6=k

|ak,l|
}
, k = 1, 2, . . . ,m . ]
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