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Candidates must not attempt more than FOUR questions. If you submit answers
to more than four questions, your lowest scoring attempt(s) will be rejected.
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for a substantially complete answer.
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letter affixed to each question. (For example, 19C, 21C should be in one bundle
and 12L, 14L in another bundle.)

Attach a completed cover sheet to each bundle.

Complete a master cover sheet listing all questions attempted.

It is essential that every cover sheet bear the candidate’s examination
number and desk number.
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1M Markov Chains

Write an essay on the long-time behaviour of discrete-time Markov chains on a
finite state space. Your essay should include discussion of the convergence of probabilities
as well as almost-sure behaviour. You should also explain what happens when the chain
is not irreducible.

2F Principles of Dynamics

Explain how the orientation of a rigid body can be specified by means of the three
Eulerian angles, θ, φ and ψ.

An axisymmetric top of mass M has principal moments of inertia A, A and C, and
is spinning with angular speed n about its axis of symmetry. Its centre of mass lies a
distance h from the fixed point of support. Initially the axis of symmetry points vertically
upwards. It then suffers a small disturbance. For what values of the spin is the initial
configuration stable?

If the spin is such that the initial configuration is unstable, what is the lowest
angle reached by the symmetry axis in the nutation of the top? Find the maximum and
minimum values of the precessional angular velocity φ̇.

3K Functional Analysis

Define the distribution function Φf of a non-negative measurable function f on the
interval I = [0, 1]. Show that Φf is a decreasing non-negative function on [0,∞] which is
continuous on the right.

Define the Lebesgue integral
∫

I
f dm. Show that

∫
I
f dm = 0 if and only if f = 0

almost everywhere.

Suppose that f is a non-negative Riemann integrable function on [0, 1]. Show that
there are an increasing sequence (gn) and a decreasing sequence (hn) of non-negative step
functions with gn 6 f 6 hn such that

∫ 1

0
(hn(x)− gn(x)) dx→ 0.

Show that the functions g = limn gn and h = limn hn are equal almost everywhere,
that f is measurable and that the Lebesgue integral

∫
I
f dm is equal to the Riemann

integral
∫ 1

0
f(x) dx.

Suppose that j is a Riemann integrable function on [0, 1] and that j(x) > 0 for all
x. Show that

∫ 1

0
j(x) dx > 0.
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4H Groups, Rings and Fields

Let F be a finite field. Show that there is a unique prime p for which F contains
the field Fp of p elements. Prove that F contains pn elements, for some n ∈ N. Show that
xpn

= x for all x ∈ F , and hence find a polynomial f ∈ Fp[X] such that F is the splitting
field of f . Show that, up to isomorphism, F is the unique field Fpn of size pn.

[Standard results about splitting fields may be assumed.]

Prove that the mapping sending x to xp is an automorphism of Fpn . Deduce that
the Galois group Gal (Fpn/Fp) is cyclic of order n. For which m is Fpm a subfield of Fpn?

5D Electromagnetism

State the four integral relationships between the electric field E and the magnetic
field B and explain their physical significance. Derive Maxwell’s equations from these
relationships and show that E and B can be described by a scalar potential φ and a vector
potential A which satisfy the inhomogeneous wave equations

∇2φ− ε0µ0
∂2φ

∂t2
= − ρ

ε0
,

∇2A− ε0µ0
∂2A
∂t2

= −µ0j.

If the current j satisfies Ohm’s law and the charge density ρ = 0, show that plane
waves of the form

A = A(z, t)eiωtx̂,

where x̂ is a unit vector in the x-direction of cartesian axes (x, y, z), are damped. Find an
approximate expression for A(z, t) when ω � σ/ε0, where σ is the electrical conductivity.
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6F Dynamics of Differential Equations

Define the terms homoclinic orbit, heteroclinic orbit and heteroclinic loop. In the
case of a dynamical system that possesses a homoclinic orbit, explain, without detailed
calculation, how to calculate its stability.

A second order dynamical system depends on two parameters µ1 and µ2. When
µ1 = µ2 = 0 there is a heteroclinic loop between the points P1, P2 as in the diagram.

When µ1, µ2 are small there are trajectories that pass close to the fixed points P1, P2:

By adapting the method used above for trajectories near homoclinic orbits, show that the
distances yn, yn+1 to the stable manifold at P1 on successive returns are related to zn,
zn+1, the corresponding distances near P2, by coupled equations of the form

zn = (yn)γ1 + µ1,

yn+1 = (zn)γ2 + µ2,

}

where any arbitrary constants have been removed by rescaling, and γ1, γ2 depend on
conditions near P1, P2. Show from these equations that there is a stable heteroclinic orbit
(µ1 = µ2 = 0) if γ1γ2 > 1. Show also that in the marginal situation γ1 = 2, γ2 = 1

2 there
can be a stable fixed point for small positive y, z if µ2 < 0, µ2

2 < µ1. Explain carefully
the form of the orbit of the original dynamical system represented by the solution of the
above map when µ2

2 = µ1.

7K Geometry of Surfaces

Write an essay on the Euler number of topological surfaces. Your essay should
include a definition of subdivision, some examples of surfaces and their Euler numbers,
and a discussion of the statement and significance of the Gauss–Bonnet theorem.
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5

8J Logic, Computation and Set Theory

Let P be a set of primitive propositions. Let L(P ) denote the set of all compound
propositions over P , and let S be a subset of L(P ). Consider the relation �S on L(P )
defined by

s �S t if and only if S ∪ {s} ` t.

Prove that �S is reflexive and transitive. Deduce that if we define ≈S by (s ≈S t if
and only if s �S t and t �S s), then ≈S is an equivalence relation and the quotient
BS = L(P )/ ≈S is partially ordered by the relation 6S induced by 4S (that is, [s] 6S [t]
if and only if s 4S t, where square brackets denote equivalence classes).

Assuming the result that BS is a Boolean algebra with lattice operations induced
by the logical operations on L(P ) (that is, [s] ∧ [t] = [s ∧ t], etc.), show that there is a
bijection between the following two sets:
(a) The set of lattice homomorphisms BS → {0, 1}.
(b) The set of models of the propositional theory S.

Deduce that the completeness theorem for propositional logic is equivalent to the
assertion that, for any Boolean algebra B with more than one element, there exists a
homomorphism B → {0, 1}.

[You may assume the result that the completeness theorem implies the compactness
theorem.]

9H Graph Theory

Write an essay on connectivity in graphs.

Your essay should include proofs of at least two major theorems, along with a
discussion of one or two significant corollaries.

10J Number Theory

Write an essay on quadratic reciprocity. Your essay should include (i) a proof of the
law of quadratic reciprocity for the Legendre symbol, (ii) a proof of the law of quadratic
reciprocity for the Jacobi symbol, and (iii) a comment on why this latter law is useful in
primality testing.

11M Algorithms and Networks

Write an essay on Strong Lagrangian problems. You should give an account of dual-
ity and how it relates to the Strong Lagrangian property. In particular, establish carefully
the relationship between the Strong Lagrangian property and supporting hyperplanes.

Also, give an example of a class of problems that are Strong Lagrangian. [You
should explain carefully why your example has the Strong Lagrangian property.]
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12L Stochastic Financial Models

Write an essay on the Black–Scholes formula for the price of a European call option
on a stock. Your account should include a derivation of the formula and a careful analysis
of its dependence on the parameters of the model.

13M Principles of Statistics

(a) Let X1, . . . , Xn be independent, identically distributed random variables from
a one-parameter distribution with density function

f(x; θ) = h(x)g(θ) exp{θt(x)} , x ∈ R.

Explain in detail how you would test

H0 : θ = θ0 against H1 : θ 6= θ0 .

What is the general form of a conjugate prior density for θ in a Bayesian analysis of this
distribution?

(b) Let Y1, Y2 be independent Poisson random variables, with means (1− ψ)λ and
ψλ respectively, with λ known.

Explain why the Conditionality Principle leads to inference about ψ being drawn
from the conditional distribution of Y2, given Y1+Y2. What is this conditional distribution?

(c) Suppose Y1, Y2 have distributions as in (b), but that λ is now unknown.

Explain in detail how you would test H0 : ψ = ψ0 against H1 : ψ 6= ψ0, and describe
the optimality properties of your test.

[Any general results you use should be stated clearly, but need not be proved.]

14L Computational Statistics and Statistical Modelling

Assume that the n-dimensional observation vector Y may be written as Y = Xβ+ε,
where X is a given n×p matrix of rank p, β is an unknown vector, with βT = (β1, . . . , βp),
and

ε ∼ Nn(0, σ2I) (∗)

where σ2 is unknown. Find β̂, the least-squares estimator of β, and describe (without
proof) how you would test

H0 : βν = 0

for a given ν.

Indicate briefly two plots that you could use as a check of the assumption (∗).
Continued opposite
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Sulphur dioxide is one of the major air pollutants. A data-set presented by Sokal
and Rohlf (1981) was collected on 41 US cities in 1969-71, corresponding to the following
variables:

Y = sulphur dioxide content of air in micrograms per cubic metre

X1 = average annual temperature in degrees Fahrenheit

X2 = number of manufacturing enterprises employing 20 or more workers

X3 = population size (1970 census) in thousands

X4 = average annual wind speed in miles per hour

X5 = average annual precipitation in inches

X6 = average annual of days with precipitation per year.

Interpret the R output that follows below, quoting any standard theorems that you
need to use.

> next.lm lm(log(Y) ∼ X1 + X2 + X3 + X4 + X5 + X6)

> summary(next.lm)

Call: lm(formula = log(Y) ∼ X1 + X2 + X3 + X4 + X5 + X6)

Residuals:
Min 1Q Median 3Q Max

-0.79548 -0.25538 -0.01968 0.28328 0.98029

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***
X1 -0.0599017 0.0190138 -3.150 0.00339 **
X2 0.0012639 0.0004820 2.622 0.01298 *
X3 -0.0007077 0.0004632 -1.528 0.13580
X4 -0.1697171 0.0555563 -3.055 0.00436 **
X5 0.0173723 0.0111036 1.565 0.12695
X6 0.0004347 0.0049591 0.088 0.93066

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

Residual standard error: 0.448 on 34 degrees of freedom

Multiple R-Squared: 0.6541

F-statistic: 10.72 on 6 and 34 degrees of freedom, p-value: 1.126e-06
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15E Foundations of Quantum Mechanics

Discuss the consequences of indistinguishability for a quantum mechanical state
consisting of two identical, non-interacting particles when the particles have (a) spin zero,
(b) spin 1/2.

The stationary Schrödinger equation for one particle in the potential

− 2e2

4πε0r

has normalized, spherically symmetric, real wave functions ψn(r) and energy eigenvalues
En with E0 < E1 < E2 < · · · . What are the consequences of the Pauli exclusion principle
for the ground state of the helium atom? Assuming that wavefunctions which are not
spherically symmetric can be ignored, what are the states of the first excited energy level
of the helium atom?
[You may assume here that the electrons are non-interacting. ]

Show that, taking into account the interaction between the two electrons, the
estimate for the energy of the ground state of the helium atom is

2E0 +
e2

4πε0

∫
d3r1 d

3r2

|r1 − r2|
ψ2

0(r1)ψ2
0(r2).
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16E Quantum Physics

Explain how the energy band structure for electrons determines the conductivity
properties of crystalline materials.

A semiconductor has a conduction band with a lower edge Ec and a valence band
with an upper edge Ev . Assuming that the density of states for electrons in the conduction
band is

ρc(E) = Bc(E − Ec)
1
2 , E > Ec ,

and in the valence band is

ρv(E) = Bv(Ev − E)
1
2 , E < Ev ,

where Bc and Bv are constants characteristic of the semiconductor, explain why at low
temperatures the chemical potential for electrons lies close to the mid-point of the gap
between the two bands.

Describe what is meant by the doping of a semiconductor and explain the distinction
between n-type and p-type semiconductors, and discuss the low temperature limit of the
chemical potential in both cases. Show that, whatever the degree and type of doping,

nenp = BcBv[Γ(3/2)]2(kT )3e−(Ec−Ev)/kT ,

where ne is the density of electrons in the conduction band and np is the density of holes
in the valence band.

17D General Relativity

With respect to the Schwarzschild coordinates (r, θ, φ, t), the Schwarzschild geom-
etry is given by

ds2 =
(

1− rs
r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2)−
(

1− rs
r

)
dt2,

where rs = 2M is the Schwarzschild radius and M is the Schwarzschild mass. Show that,
by a suitable choice of (θ, φ), the general geodesic can regarded as moving in the equatorial
plane θ = π/2. Obtain the equations governing timelike and null geodesics in terms of
u(φ), where u = 1/r.

Discuss light bending and perihelion precession in the solar system.
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18D Statistical Physics and Cosmology

What is an ideal gas? Explain how the microstates of an ideal gas of indistinguish-
able particles can be labelled by a set of integers. What range of values do these integers
take for (a) a boson gas and (b) a Fermi gas?

Let Ei be the energy of the i-th one-particle energy eigenstate of an ideal gas in
thermal equilibrium at temperature T and let pi(ni) be the probability that there are ni

particles of the gas in this state. Given that

pi(ni) = e−βEini/Zi (β =
1
kT

),

determine the normalization factor Zi for (a) a boson gas and (b) a Fermi gas. Hence
obtain an expression for n̄i, the average number of particles in the i-th one-particle energy
eigenstate for both cases (a) and (b).

In the case of a Fermi gas, write down (without proof) the generalization of your
formula for n̄i to a gas at non-zero chemical potential µ. Show how it leads to the concept
of a Fermi energy εF for a gas at zero temperature. How is εF related to the Fermi
momentum pF for (a) a non-relativistic gas and (b) an ultra-relativistic gas?

In an approximation in which the discrete set of energies Ei is replaced with a
continuous set with momentum p, the density of one-particle states with momentum in
the range p to p+ dp is g(p)dp. Explain briefly why

g(p) ∝ p2V, (∗)

where V is the volume of the gas. Using this formula, obtain an expression for the total
energy E of an ultra-relativistic gas at zero chemical potential as an integral over p. Hence
show that

E

V
∝ Tα,

where α is a number that you should compute. Why does this result apply to a photon
gas?

Using the formula (∗) for a non-relativistic Fermi gas at zero temperature, obtain an
expression for the particle number density n in terms of the Fermi momentum and provide
a physical interpretation of this formula in terms of the typical de Broglie wavelength.
Obtain an analogous formula for the (internal) energy density and hence show that the
pressure P behaves as

P ∝ nγ

where γ is a number that you should compute. [You need not prove any relation between
the pressure and the energy density you use.] What is the origin of this pressure given that
T = 0 by assumption? Explain briefly and qualitatively how it is relevant to the stability
of white dwarf stars.

Paper 4
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19C Transport Processes

(a) A biological vessel is modelled two-dimensionally as a fluid-filled channel bounded
by parallel plane walls y = ±a, embedded in an infinite region of fluid-saturated tissue. In
the tissue a solute has concentration Cout(y, t), diffuses with diffusivity D and is consumed
by biological activity at a rate kCout per unit volume, where D and k are constants. By
considering the solute balance in a slice of tissue of infinitesimal thickness, show that

Cout
t = DCout

yy − kCout.

A steady concentration profile Cout(y) results from a flux β
(
Cin − Cout

a

)
, per

unit area of wall, of solute from the channel into the tissue, where Cin is a constant
concentration of solute that is maintained in the channel and Cout

a = Cout(a). Write down
the boundary conditions satisfied by Cout(y). Solve for Cout(y) and show that

Cout
a =

γ

γ + 1
Cin, (∗)

where γ = β/
√
kD.

(b) Now let the solute be supplied by steady flow down the channel from one end,
x = 0, with the channel taken to be semi-infinite in the x-direction. The cross-sectionally
averaged velocity in the channel u(x) varies due to a flux of fluid from the tissue to the
channel (by osmosis) equal to λ

(
Cin − Cout

a

)
per unit area. Neglect both the variation of

Cin(x) across the channel and diffusion in the x-direction.

By considering conservation of fluid, show that

aux = λ
(
Cin − Cout

a

)
and write down the corresponding equation derived from conservation of solute. Deduce
that

u(λCin + β) = u0(λCin
0 + β) ,

where u0 = u(0) and Cin
0 = Cin(0).

Assuming that equation (∗) still holds, even though Cout is now a function of x as
well as y, show that u(x) satisfies the ordinary differential equation

(γ + 1)auux + βu = u0

(
λCin

0 + β
)
.

Find scales x̂ and û such that the dimensionless variables U = u/û and X = x/x̂
satisfy

UUX + U = 1.

Derive the solution (1− U)eU = Ae−X and find the constant A.

To what values do u and Cin tend as x→∞?
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20G Theoretical Geophysics

The equation of motion for small displacements u in a homogeneous, isotropic,
elastic material is

ρ
∂2u
∂t2

= (λ+ 2µ)∇(∇ · u)− µ∇ ∧ (∇ ∧ u) ,

where λ and µ are the Lamé constants. Derive the conditions satisfied by the polarisation
P and (real) vector slowness s of plane-wave solutions u = Pf(s · x − t), where f is an
arbitrary scalar function. Describe the division of these waves into P -waves, SH-waves
and SV -waves.

A plane harmonic SV -wave of the form

u = (s3, 0,−s1) exp[iω(s1x1 + s3x3 − t)]

travelling through homogeneous elastic material of P -wave speed α and S-wave speed β
is incident from x3 < 0 on the boundary x3 = 0 of rigid material in x3 > 0 in which the
displacement is identically zero.

Write down the form of the reflected wavefield in x3 < 0. Calculate the amplitudes
of the reflected waves in terms of the components of the slowness vectors.

Derive expressions for the components of the incident and reflected slowness vectors,
in terms of the wavespeeds and the angle of incidence θ0. Hence show that there is no
reflected SV -wave if

sin2 θ0 =
β2

α2 + β2
.

Sketch the rays produced if the region x3 > 0 is fluid instead of rigid.

Paper 4
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21C Mathematical Methods

State Watson’s lemma giving an asymptotic expansion as λ→∞ for an integral of
the form

I1 =
∫ A

0

f(t)e−λtdt , A > 0 .

Show how this result may be used to find an asymptotic expansion as λ → ∞ for an
integral of the form

I2 =
∫ B

−A

f(t)e−λt2dt , A > 0, B > 0 .

Hence derive Laplace’s method for obtaining an asymptotic expansion as λ → ∞
for an integral of the form

I3 =
∫ b

a

f(t)eλφ(t)dt ,

where φ(t) is differentiable, for the cases: (i) φ′(t) < 0 in a ≤ t ≤ b; and (ii) φ′(t) has a
simple zero at t = c with a < c < b and φ′′(c) < 0.

Find the first two terms in the asymptotic expansion as x→∞ of

I4 =
∫ ∞

−∞
log(1 + t2)e−xt2dt .

[You may leave your answer expressed in terms of Γ-functions.]

22F Numerical Analysis

Write an essay on the method of conjugate gradients. You should describe the
algorithm, present an analysis of its properties and discuss its advantages.

[Any theorems quoted should be stated precisely but need not be proved.]
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