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Before you begin read these instructions carefully.

Each question is divided into Part (i) and Part (ii), which may or may not be
related. Candidates may attempt either or both Parts of any question, but must not
attempt Parts from more than SIX questions. If you submit answers to Parts of
more than six questions, your lowest scoring attempt(s) will be rejected.

The number of marks for each question is the same, with Part (ii) of each question
carrying twice as many marks as Part (i). Additional credit will be given for a
substantially complete answer to either Part.

Begin each answer on a separate sheet.

Write legibly and on only one side of the paper.

At the end of the examination:

Tie your answers in separate bundles, marked C, D, E, . . . , M according to the
letter affixed to each question. (For example, 13E, 15E should be in one bundle
and 6F, 18F in another bundle.)

Attach a completed cover sheet to each bundle.

Complete a master cover sheet listing all Parts of all questions attempted.

It is essential that every cover sheet bear the candidate’s examination
number and desk number.
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1M Markov Chains

(i) Consider the continuous-time Markov chain (Xt)t>0 on {1, 2, 3, 4, 5, 6, 7} with
generator matrix

Q =



−6 2 0 0 0 4 0
2 −3 0 0 0 1 0
0 1 −5 1 2 0 1
0 0 0 0 0 0 0
0 2 2 0 −6 0 2
1 2 0 0 0 −3 0
0 0 1 0 1 0 −2


.

Compute the probability, starting from state 3, that Xt hits state 2 eventually.

Deduce that
lim

t→∞
P(Xt = 2|X0 = 3) =

4
15
.

[Justification of standard arguments is not expected.]

(ii) A colony of cells contains immature and mature cells. Each immature cell, after
an exponential time of parameter 2, becomes a mature cell. Each mature cell, after an
exponential time of parameter 3, divides into two immature cells. Suppose we begin with
one immature cell and let n(t) denote the expected number of immature cells at time t.
Show that

n(t) = (4et + 3e−6t)/7.
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2G Principles of Dynamics

(i) Show that Hamilton’s equations follow from the variational principle

δ

∫ t2

t1

[pq̇ −H(q, p, t)] dt = 0

under the restrictions δq(t1) = δq(t2) = δp(t1) = δp(t2) = 0. Comment on the difference
from the variational principle for Lagrange’s equations.

(ii) Suppose we transform from p and q to p′ = p′(q, p, t) and q′ = q′(q, p, t), with

p′q̇′ −H ′ = pq̇ −H +
d
dt
F (q, p, q′, p′, t),

where H ′ is the new Hamiltonian. Show that p′ and q′ obey Hamilton’s equations with
Hamiltonian H ′.

Show that the time independent generating function F = F1(q, q′) = q′/q takes the
Hamiltonian

H =
1

2q2
+

1
2
p2q4

to harmonic oscillator form. Show that q′ and p′ obey the Poisson bracket relation

{q′, p′} = 1.
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3K Functional Analysis

(i) Suppose that (fn) is a decreasing sequence of continuous real-valued functions on
a compact metric space (X, d) which converges pointwise to 0. By considering sets of the
form Bn = {x : fn(x) < ε}, for ε > 0, or otherwise, show that fn converges uniformly to
0.

Can the condition that (fn) is decreasing be dropped? Can the condition that
(X, d) is compact be dropped? Justify your answers.

(ii) Suppose that k is a positive integer. Define polynomials pn recursively by

p0 = 0, pn+1(t) = pn(t) + (t− pk
n(t))/k.

Show that 0 6 pn(t) 6 pn+1(t) 6 t1/k, for t ∈ [0, 1], and show that pn(t) converges to t1/k

uniformly on [0, 1].

[You may wish to use the identity ak − bk = (a− b)(ak−1 + ak−2b+ . . .+ bk−1).]

Suppose that A is a closed subalgebra of the algebra C(X) of continuous real-valued
functions on a compact metric space (X, d), equipped with the uniform norm, and suppose
that A has the property that for each x ∈ X there exists a ∈ A with a(x) 6= 0. Show that
there exists h ∈ A such that 0 < h(x) 6 1 for all x ∈ X.

Show that h1/k ∈ A for each positive integer k, and show that A contains the
constant functions.

4H Groups, Rings and Fields

(i) What does it mean for a ring to be Noetherian? State Hilbert’s Basis Theorem.
Give an example of a Noetherian ring which is not a principal ideal domain.

(ii) Prove Hilbert’s Basis Theorem.

Is it true that if the ring R[X] is Noetherian, then so is R?
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5D Electromagnetism

(i) A plane electromagnetic wave in a vacuum has an electric field

E = (E1, E2, 0) cos(kz − ωt),

referred to cartesian axes (x, y, z). Show that this wave is plane polarized and find
the orientation of the plane of polarization. Obtain the corresponding plane polarized
magnetic field and calculate the rate at which energy is transported by the wave.

(ii) Suppose instead that

E = (E1 cos(kz − ωt), E2 cos(kz − ωt+ φ), 0),

with φ a constant, 0 < φ < π. Show that, if the axes are now rotated through an angle ψ
so as to obtain an elliptically polarized wave with an electric field

E′ = (F1 cos(kz − ωt+ χ), F2 sin(kz − ωt+ χ), 0),

then
tan 2ψ =

2E1E2 cosφ
E2

1 − E2
2

.

Show also that if E1 = E2 = E there is an elliptically polarized wave with

E′ =
√

2E
(
cos(kz − ωt+ 1

2φ) cos 1
2φ, sin(kz − ωt+ 1

2φ) sin 1
2φ, 0

)
.
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6F Dynamics of Differential Equations

(i) Define the Floquet multiplier and Liapunov exponent for a periodic orbit x̂(t) of
a dynamical system ẋ = f(x) in R2. Show that one multiplier is always unity, and that
the other is given by

exp

(∫ T

0

∇· f(x̂(t))dt

)
, (∗)

where T is the period of the orbit.

The Van der Pol oscillator ẍ + εẋ(x2 − 1) + x = 0 , 0 < ε � 1 has a limit cycle
x̂(t) ≈ 2 sin t. Show using (∗) that this orbit is stable.

(ii) Show, by considering the normal form for a Hopf bifurcation from a fixed point
x0(µ) of a dynamical system ẋ = f(x, µ), that in some neighbourhood of the bifurcation
the periodic orbit is stable when it exists in the range of µ for which x0 is unstable, and
unstable in the opposite case.

Now consider the system

ẋ = x(1− y) + µx

ẏ = y(x− 1)− µx

}
x > 0 .

Show that the fixed point (1+µ , 1+µ) has a Hopf bifurcation when µ = 0, and is unstable
(stable) when µ > 0 (µ < 0).

Suppose that a periodic orbit exists in µ > 0. Show without solving for the orbit
that the result of part (i) shows that such an orbit is unstable. Define a similar result for
µ < 0.

What do you conclude about the existence of periodic orbits when µ 6= 0? Check
your answer by applying Dulac’s criterion to the system, using the weighting ρ = e−(x+y).

7K Geometry of Surfaces

(i) State what it means for surfaces f : U → R3 and g : V → R3 to be isometric.

Let f : U → R3 be a surface, φ : V → U a diffeomorphism, and let g = f ◦ φ : V →
R3.

State a formula comparing the first fundamental forms of f and g.

(ii) Give a proof of the formula referred to at the end of part (i). Deduce that
“isometry” is an equivalence relation.

The catenoid and the helicoid are the surfaces defined by

(u, v) → (u cos v, u sin v, v)

and
(ϑ, z) → (cosh z cosϑ, cosh z sinϑ, z).

Show that the catenoid and the helicoid are isometric.

Paper 3



7

8J Logic, Computation and Set Theory

(i) Explain briefly what is meant by the terms register machine and computable
function.

Let u be the universal computable function u(m,n) = fm(n) and s a total
computable function with fs(m,n)(k) = fm(n, k). Here fm(n) and fm(n, k) are the unary
and binary functions computed by the m-th register machine program Pm. Suppose
h : N → N is a total computable function. By considering the function

g(m,n) = u(h(s(m,m)), n)

show that there is a number a such that fa = fh(a).

(ii) Let P be the set of all partial functions N × N → N. Consider the mapping
Φ : P → P defined by

Φ(g)(m,n) =


n+ 1 if m = 0,
g(m− 1, 1) if m > 0, n = 0 and g(m− 1, 1) defined,
g(m− 1, g(m,n− 1)) if mn > 0 and g(m− 1, g(m,n− 1)) defined,
undefined otherwise.

(a) Show that any fixed point of Φ is a total function N× N → N. Deduce that Φ
has a unique fixed point.
[The Bourbaki-Witt Theorem may be assumed if stated precisely.]

(b) It follows from standard closure properties of the computable functions that
there is a computable function ψ such that

ψ(p,m, n) = Φ(fp)(m,n).

Assuming this, show that there is a total computable function h such that

Φ(fp) = fh(p) for all p.

Deduce that the fixed point of Φ is computable.
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9J Number Theory

(i) Let π(x) denote the number of primes 6 x, where x is a positive real number.
State and prove Legendre’s formula relating π(x) to π(

√
x). Use this formula to compute

π(100)− π(10).

(ii) Let ζ(s) =
∑∞

n=1 n
−s, where s is a real number greater than 1. Prove the following

two assertions rigorously, assuming always that s > 1.

(a) ζ(s) =
∏
p

(1− p−s)−1, where the product is taken over all primes p;

(b) ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n−1

ns
.

Explain why (b) enables us to define ζ(s) for 0 < s < 1. Deduce from (b) that
lim
s→1

(s− 1)ζ(s) = 1.

10M Algorithms and Networks

(i) Consider the unconstrained geometric programme GP

minimise g(t) =
n∑

i=1

ci Πm
j=1 t

aij

j

subject to tj > 0 j = 1, . . . ,m.

State the dual problem to GP. Give a careful statement of the AM-GM inequality, and
use it to prove the primal-dual inequality for GP.

(ii) Define min-path and max-tension problems. State and outline the proof of the
max-tension min-path theorem.

A company has branches in five cities A,B,C,D and E. The fares for direct flights
between these cities are as follows:

A B C D E
A – 50 40 25 10
B 50 – 20 90 25
C 40 20 – 10 25
D 25 90 10 – 55
E 10 25 25 55 –

Formulate this as a min-path problem. Illustrate the max-tension min-path algorithm by
finding the cost of travelling by the cheapest routes between D and each of the other cities.
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11L Stochastic Financial Models

(i) Explain briefly what it means to say that a stochastic process {Wt, t > 0} is a
standard Brownian motion.

Let {Wt, t > 0} be a standard Brownian motion and let a, b be real numbers.
What condition must a and b satisfy to ensure that the process eaWt+bt is a martingale?
Justify your answer carefully.

(ii) At the beginning of each of the years r = 0, 1, . . . , n − 1 an investor has income
Xr, of which he invests a proportion ρr, 0 6 ρr 6 1, and consumes the rest during the
year. His income at the beginning of the next year is

Xr+1 = Xr + ρrXrWr,

where W0, . . . ,Wn−1 are independent positive random variables with finite means and
X0 > 0 is a constant. He decides on ρr after he has observed both Xr and Wr at the
beginning of year r, but at that time he does not have any knowledge of the value of Ws,
for any s > r . The investor retires in year n and consumes his entire income during that
year. He wishes to determine the investment policy that maximizes his expected total
consumption

E

[
n−1∑
r=0

(1− ρr)Xr +Xn

]
.

Prove that the optimal policy may be expressed in terms of the numbers b0, b1, . . . ,
bn where bn = 1, br = br+1 + E max (br+1Wr, 1), for r < n, and determine the optimal
expected total consumption.
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12M Principles of Statistics

(i) Describe in detail how to perform the Wald, score and likelihood ratio tests of a
simple null hypothesis H0 : θ = θ0 given a random sample X1, . . . , Xn from a regular one-
parameter density f(x; θ). In each case you should specify the asymptotic null distribution
of the test statistic.

(ii) Let X1, . . . , Xn be an independent, identically distributed sample from a distribu-
tion F , and let θ̂(X1, . . . , Xn) be an estimator of a parameter θ of F .

Explain what is meant by: (a) the empirical distribution function of the sample;
(b) the bootstrap estimator of the bias of θ̂, based on the empirical distribution function.
Explain how a bootstrap estimator of the distribution function of θ̂ − θ may be used to
construct an approximate 1− α confidence interval for θ.

Suppose the parameter of interest is θ = µ2, where µ is the mean of F , and the
estimator is θ̂ = X̄2, where X̄ = n−1

∑n
i=1Xi is the sample mean.

Derive an explicit expression for the bootstrap estimator of the bias of θ̂ and show
that it is biased as an estimator of the true bias of θ̂.

Let θ̂i be the value of the estimator θ̂(X1, . . . , Xi−1, Xi+1, . . . , Xn) computed from
the sample of size n− 1 obtained by deleting Xi and let θ̂. = n−1

∑n
i=1 θ̂i. The jackknife

estimator of the bias of θ̂ is
bJ = (n− 1) (θ̂. − θ̂) .

Derive the jackknife estimator bJ for the case θ̂ = X̄2, and show that, as an estimator of
the true bias of θ̂, it is unbiased.

13E Foundations of Quantum Mechanics

(i) Two particles with angular momenta j1, j2 and basis states |j1 m1〉, |j2 m2〉 are
combined to give total angular momentum j and basis states |j m〉. State the possible
values of j,m and show how a state with j = m = j1 + j2 can be constructed. Briefly
describe, for a general allowed value of j, what the Clebsch-Gordan coefficients are.

(ii) If the angular momenta j1 and j2 are both 1 show that the combined state |2 0〉 is

|2 0〉 =

√
1
6

(
|1 1〉|1 −1〉+ |1 −1〉|1 1〉

)
+

√
2
3
|1 0〉|1 0〉.

Determine the corresponding expressions for the combined states |1 0〉 and |0 0〉, assuming
that they are respectively antisymmetric and symmetric under interchange of the two
particles.

If the combined system is in state |0 0〉 what is the probability that measurements
of the z-component of angular momentum for either constituent particle will give the value
of 1?

[Hint: J±|j m〉 =
√

(j ∓m)(j ±m+ 1) |j m± 1〉 .]
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14D Statistical Physics and Cosmology

(i) Write down the first law of thermodynamics for the change dU in the internal
energy U(N,V, S) of a gas of N particles in a volume V with entropy S.

Given that
PV = (γ − 1)U,

where P is the pressure, use the first law to show that PV γ is constant at constant N and
S.

Write down the Boyle-Charles law for a non-relativistic ideal gas and hence deduce
that the temperature T is proportional to V 1−γ at constant N and S.

State the principle of equipartition of energy and use it to deduce that

U =
3
2
NkT.

Hence deduce the value of γ. Show that this value of γ is such that the ratio Ei/kT
is unchanged by a change of volume at constant N and S, where Ei is the energy of the
i-th one particle eigenstate of a non-relativistic ideal gas.

(ii) A classical gas of non-relativistic particles of mass m at absolute temperature T
and number density n has a chemical potential

µ = mc2 − kT ln

(
gs

n

(
mkT

2π~2

) 3
2
)
,

where gs is the particle’s spin degeneracy factor. What condition on n is needed for the
validity of this formula and why?

Thermal and chemical equilibrium between two species of non-relativistic particles
a and b is maintained by the reaction

a+ α↔ b+ β,

where α and β are massless particles with zero chemical potential. Given that particles
a and b have masses ma and mb respectively, but equal spin degeneracy factors, find the
number density ratio na/nb as a function of ma, mb and T . Given that ma > mb but
ma −mb � mb show that

na

nb
≈ f

(
(ma −mb)c2

kT

)
for some function f which you should determine.

Explain how a reaction of the above type is relevant to a determination of the
neutron to proton ratio in the early universe and why this ratio does not fall rapidly to
zero as the universe cools. Explain briefly the process of primordial nucleosynthesis by
which neutrons are converted into stable helium nuclei. Let

YHe =
ρHe

ρ

be the fraction of the universe that ends up in helium. Compute YHe as a function of the
ratio r = na/nb at the time of nucleosynthesis.
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15E Symmetries and Groups in Physics

(i) LetD6 denote the symmetry group of rotations and reflections of a regular hexagon.
The elements of D6 are given by {e, c, c2, c3, c4, c5, b, bc, bc2, bc3, bc4, bc5} with c6 = b2 = e
and cb = bc5. The conjugacy classes of D6 are {e}, {c, c5}, {c2, c4}, {c3}, {b, bc2, bc4} and
{bc, bc3, bc5}.

Show that the character table of D6 is

D6 e {c, c5} {c2, c4} {c3} {b, bc2, bc4} {bc, bc3, bc5}

χ1 1 1 1 1 1 1
χ2 1 1 1 1 −1 −1
χ3 1 −1 1 −1 1 −1
χ4 1 −1 1 −1 −1 1
χ5 2 1 −1 −2 0 0
χ6 2 −1 −1 2 0 0

(ii) Show that the character of an SO(3) rotation with angle θ in the 2l+1 dimensional
irreducible representation of SO(3) is given by

χl(θ) = 1 + 2 cos θ + 2 cos(2θ) + . . .+ 2 cos((l − 1)θ) + 2 cos(lθ) .

For a hexagonal crystal of atoms find how the degeneracy of the D-wave orbital
states (l = 2) in the atomic central potential is split by the crystal potential with D6

symmetry and give the new degeneracies.

By using the fact that D3 is isomorphic to D6/{e, c3}, or otherwise, find the
degeneracies of eigenstates if the hexagonal symmetry is broken to the subgroup D3 by a
deformation. The introduction of a magnetic field further reduces the symmetry to C3.
What will the degeneracies of the energy eigenstates be now?
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16C Transport Processes

(i) A layer of fluid of depth h(x, t), density ρ and viscosity µ sits on top of a rigid
horizontal plane at y = 0. Gravity g acts vertically and surface tension is negligible.

Assuming that the horizontal velocity component u and pressure p satisfy the
lubrication equations

0 = −px + µuyy

0 = −py − ρg,

together with appropriate boundary conditions at y = 0 and y = h (which should be
stated), show that h satisfies the partial differential equation

ht =
g

3ν
(
h3hx

)
x
, (∗)

where ν = µ/ρ.

(ii) A two-dimensional blob of the above fluid has fixed area A and time-varying width
2X(t), such that

A =
∫ X(t)

−X(t)

h(x, t) dx.

The blob spreads under gravity.

Use scaling arguments to show that, after an initial transient, X(t) is proportional
to t1/5 and h(0, t) is proportional to t−1/5. Hence show that equation (∗) of Part (i) has
a similarity solution of the form

h(x, t) =
(
A2ν

gt

)1/5

H(ξ), where ξ =
x

(A3gt/ν)1/5
,

and find the differential equation satisfied by H(ξ).

Deduce that

H =


[

9
10

(
ξ20 − ξ2

)]1/3 in −ξ0 < ξ < ξ0

0 in |ξ| > ξ0 ,

where

X(t) = ξ0

(
A3gt

ν

)1/5

.

Express ξ0 in terms of the integral

I =
∫ 1

−1

(
1− u2

)1/3
du.
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17C Mathematical Methods

(i) State the Fredholm alternative for Fredholm integral equations of the second kind.

Show that the integral equation

φ(x)− λ

∫ 1

0

(x+ t)φ(t)dt = f(x) , 0 6 x 6 1 ,

where f is a continuous function, has a unique solution for φ if λ 6= −6±4
√

3. Derive this
solution.

(ii) Describe the WKB method for finding approximate solutions f(x) of the equation

d2f(x)
dx2

+ q(εx)f(x) = 0 ,

where q is an arbitrary non-zero, differentiable function and ε is a small parameter. Obtain
these solutions in terms of an exponential with slowly varying exponent and slowly varying
amplitude.

Hence, by means of a suitable change of independent variable, find approximate
solutions w(t) of the equation

d2w

dt2
+ λ2tw = 0 ,

in t > 0, where λ is a large parameter.
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18F Nonlinear Waves

(i) Show that the equation

∂φ

∂t
− ∂2φ

∂x2
+ 1− φ2 = 0

has two solutions which are independent of both x and t. Show that one of these is
linearly stable. Show that the other solution is linearly unstable, and find the range of
wavenumbers that exhibit the instability.

Sketch the nonlinear evolution of the unstable solution after it receives a small,
smooth, localized perturbation in the direction towards the stable solution.

(ii) Show that the equations

∂u

∂x
+
∂v

∂x
= e−u+v ,

−∂u
∂y

+
∂v

∂y
= e−u−v

are a Bäcklund pair for the equations

∂2u

∂x∂y
= e−2u ,

∂2v

∂x∂y
= 0 .

By choosing v to be a suitable constant, and using the Bäcklund pair, find a solution
of the equation

∂2u

∂x∂y
= e−2u

which is non-singular in the region y < 4x of the (x, y) plane and has the value u = 0 at
x = 1

2 , y = 0.

19F Numerical Analysis

(i) Determine the order of the multistep method

yn+2 − (1 + α)yn+1 + αyn = h[ 1
12 (5 + α)fn+2 + 2

3 (1− α)fn+1 − 1
12 (1 + 5α)fn]

for the solution of ordinary differential equations for different choices of α in the range
−1 6 α 6 1.

(ii) Prove that no such choice of α results in a method whose linear stability domain
includes the interval (−∞, 0).
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