
MATHEMATICAL TRIPOS Part IB

Friday 7 June 2002 1.30 to 4.30

PAPER 4

Before you begin read these instructions carefully.

Each question in Section II carries twice the credit of each question in Section I.
Candidates may attempt at most four questions from Section I and at most six
questions from Section II.

Complete answers are preferred to fragments.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Answers must be tied up in separate bundles, marked A, B, . . . , H according to
the letter affixed to each question, and a blue cover sheet must be attached to each
bundle.

A green master cover sheet listing all the questions attempted must be completed.

It is essential that every cover sheet bear the candidate’s examination
number and desk number.
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SECTION I

1E Analysis II

(a) Let (X, d) be a metric space containing the point x0, and let

U = {x ∈ X : d(x, x0) < 1}, K = {x ∈ X : d(x, x0) 6 1}.

Is U necessarily the largest open subset of K? Is K necessarily the smallest closed set
that contains U? Justify your answers.

(b) Let X be a normed space with norm ||·||, and let

U = {x ∈ X : ||x|| < 1}, K = {x ∈ X : ||x|| 6 1}.

Is U necessarily the largest open subset of K? Is K necessarily the smallest closed set
that contains U? Justify your answers.

2A Methods

Use the method of Lagrange multipliers to find the largest volume of a rectangular
parallelepiped that can be inscribed in the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

3H Statistics

From each of 100 concrete mixes six sample blocks were taken and subjected to
strength tests, the number out of the six blocks failing the test being recorded in the
following table:

No. x failing strength tests 0 1 2 3 4 5 6
No. of mixes with x failures 53 32 12 2 1 0 0

On the assumption that the probability of failure is the same for each block, obtain an
unbiased estimate of this probability and explain how to find a 95% confidence interval
for it.
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4G Further Analysis

(a) Let X be a topological space and suppose X = C ∪ D, where C and D are
disjoint nonempty open subsets of X. Show that, if Y is a connected subset of X, then Y
is entirely contained in either C or D.

(b) Let X be a topological space and let {An} be a sequence of connected subsets
of X such that An ∩An+1 6= ∅, for n = 1, 2, 3, . . .. Show that

⋃
n>1 An is connected.

5H Optimization

State and prove the max flow/min cut theorem. In your answer you should define
clearly the following terms: flow, maximal flow, cut, capacity.

6F Linear Mathematics

Define the rank and nullity of a linear map between finite-dimensional vector spaces.
State the rank–nullity formula.

Let α : U → V and β : V → W be linear maps. Prove that

rank(α) + rank(β)− dim V 6 rank(βα) 6 min{rank(α), rank(β)} .

7C Fluid Dynamics

If u is given in Cartesian co-ordinates as u = (−Ωy, Ωx, 0), with Ω a constant,
verify that

u·∇u = ∇(− 1
2u

2) .

When incompressible fluid is placed in a stationary cylindrical container of radius
a with its axis vertical, the depth of the fluid is h. Assuming that the free surface does not
reach the bottom of the container, use cylindrical polar co-ordinates to find the equation
of the free surface when the fluid and the container rotate steadily about this axis with
angular velocity Ω.

Deduce the angular velocity at which the free surface first touches the bottom of
the container.
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8B Complex Methods

Let f be a function such that
∫ +∞
−∞ |f(x)|2dx < ∞. Prove that

∫ +∞

−∞
f(x + k)f(x + l) dx = 0 for all integers k and l with k 6= l,

if and only if ∫ +∞

−∞
|f̂(t)|2e−imtdt = 0 for all integers m 6= 0,

where f̂ is the Fourier transform of f .

9D Special Relativity

A particle with mass M is observed to be at rest. It decays into a particle of
mass m < M , and a massless particle. Calculate the energies and momenta of both final
particles.
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SECTION II

10E Analysis II

(a) Let V be a finite-dimensional real vector space, and let ||·||1 and ||·||2 be two
norms on V . Show that a function f : V → R is differentiable at a point a in V with
respect to ||·||1 if and only if it is differentiable at a with respect to ||·||2, and that if this
is so then the derivative f ′(a) of f is independent of the norm used. [You may assume
that all norms on a finite-dimensional vector space are equivalent.]

(b) Let V1, V2 and V3 be finite-dimensional normed real vector spaces with Vj

having norm ||·||j , j = 1, 2, 3, and let f : V1 × V2 → V3 be a continuous bilinear mapping.
Show that f is differentiable at any point (a, b) in V1 × V2, and that f ′(a, b)(h, k) =
f(h, b) + f(a, k). [You may assume that

(
||u||21 + ||v||22

)1/2 is a norm on V1 × V2, and
that {(x, y) ∈ V1 × V2 : ||x||1 = 1, ||y||2 = 1} is compact.]

11A Methods

A function y(x) is chosen to make the integral

I =
∫ b

a

f (x, y, y′, y′′) dx

stationary, subject to given values of y(a), y′(a), y(b) and y′(b). Derive an analogue of the
Euler–Lagrange equation for y(x).

Solve this equation for the case where

f = x4y′′2 + 4y2y′,

in the interval [0, 1] and
x2y(x) → 0, xy(x) → 1

as x → 0, whilst
y(1) = 2, y′(1) = 0.

12H Statistics

Explain what is meant by a prior distribution, a posterior distribution, and a Bayes
estimator. Relate the Bayes estimator to the posterior distribution for both quadratic and
absolute error loss functions.

Suppose X1, . . . , Xn are independent identically distributed random variables from
a distribution uniform on (θ − 1, θ + 1), and that the prior for θ is uniform on (20, 50).

Calculate the posterior distribution for θ, given x = (x1, . . . , xn), and find the point
estimate for θ under both quadratic and absolute error loss function.
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13G Further Analysis

A function f is said to be analytic at ∞ if there exists a real number r > 0 such
that f is analytic for |z| > r and limz→0 f(1/z) is finite (i.e. f(1/z) has a removable
singularity at z = 0). f is said to have a pole at ∞ if f(1/z) has a pole at z = 0. Suppose
that f is a meromorphic function on the extended plane C∞, that is, f is analytic at each
point of C∞ except for poles.

(a) Show that if f has a pole at z = ∞, then there exists r > 0 such that f(z) has
no poles for r < |z| < ∞.

(b) Show that the number of poles of f is finite.

(c) By considering the Laurent expansions around the poles show that f is in fact
a rational function, i.e. of the form p/q, where p and q are polynomials.

(d) Deduce that the only bijective meromorphic maps of C∞ onto itself are the
Möbius maps.
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14H Optimization

A gambler at a horse race has an amount b > 0 to bet. The gambler assesses pi, the
probability that horse i will win, and knows that si ≥ 0 has been bet on horse i by others,
for i = 1, 2, . . . , n. The total amount bet on the race is shared out in proportion to the bets
on the winning horse, and so the gambler’s optimal strategy is to choose (x1, x2, . . . , xn)
so that it maximizes

n∑
i=1

pixi

si + xi
subject to

n∑
i=1

xi = b, x1, . . . , xn ≥ 0, (1)

where xi is the amount the gambler bets on horse i. Show that the optimal solution to
(1) also solves the following problem:

minimize
n∑

i=1

pisi

si + xi
subject to

n∑
i=1

xi = b, x1, . . . , xn ≥ 0.

Assume that p1/s1 ≥ p2/s2 ≥ . . . ≥ pn/sn. Applying the Lagrangian sufficiency
theorem, prove that the optimal solution to (1) satisfies

p1s1

(s1 + x1)2
= . . . =

pksk

(sk + xk)2
, xk+1 = . . . = xn = 0,

with maximal possible k ∈ {1, 2, . . . , n}.

[You may use the fact that for all λ < 0, the minimum of the function x 7→ ps
s+x − λx on

the non-negative axis 0 ≤ x < ∞ is attained at

x(λ) =
(√

ps

−λ
− s

)+

≡ max
(√

ps

−λ
− s, 0

)
.]

Deduce that if b is small enough, the gambler’s optimal strategy is to bet on the
horses for which the ratio pi/si is maximal. What is his expected gain in this case?
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15F Linear Mathematics

Define the dual space V ∗ of a finite-dimensional real vector space V , and explain
what is meant by the basis of V ∗ dual to a given basis of V . Explain also what is meant
by the statement that the second dual V ∗∗ is naturally isomorphic to V .

Let Vn denote the space of real polynomials of degree at most n. Show that, for
any real number x, the function ex mapping p to p(x) is an element of V ∗

n . Show also
that, if x1, x2, . . . , xn+1 are distinct real numbers, then {ex1 , ex2 , . . . , exn+1} is a basis of
V ∗

n , and find the basis of Vn dual to it.

Deduce that, for any (n + 1) distinct points x1, . . . , xn+1 of the interval [−1, 1],
there exist scalars λ1, . . . , λn+1 such that

∫ 1

−1

p(t) dt =
n+1∑
i=1

λip(xi)

for all p ∈ Vn. For n = 4 and (x1, x2, x3, x4, x5) = (−1,− 1
2 , 0, 1

2 , 1), find the corresponding
scalars λi.

16C Fluid Dynamics

Use Euler’s equation to show that in a planar flow of an inviscid fluid the vorticity
ω satisfies

Dω

Dt
= 0 .

Write down the velocity field associated with a point vortex of strength κ in
unbounded fluid.

Consider now the flow generated in unbounded fluid by two point vortices of
strengths κ1 and κ2 at x1(t) = (x1, y1) and x2(t) = (x2, y2), respectively. Show that
in the subsequent motion the quantity

q = κ1x1 + κ2x2

remains constant. Show also that the separation of the vortices, |x2−x1|, remains constant.

Suppose finally that κ1 = κ2 and that the vortices are placed at time t = 0 at
positions (a, 0) and (−a, 0). What are the positions of the vortices at time t?
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17B Complex Methods

(a) Using the inequality sin θ ≥ 2θ/π for 0 ≤ θ ≤ π
2 , show that, if f is continuous

for large |z|, and if f(z) → 0 as z →∞, then

lim
R→∞

∫
ΓR

f(z)eiλzdz = 0 for λ > 0,

where ΓR = Reiθ, 0 ≤ θ ≤ π.

(b) By integrating an appropriate function f(z) along the contour formed by the
semicircles ΓR and Γr in the upper half-plane with the segments of the real axis [−R,−r]
and [r, R], show that ∫ ∞

0

sinx

x
dx =

π

2
.

18D Special Relativity

A javelin of length 2m is thrown horizontally and lengthwise into a shed of length
1.5m at a speed of 0.8c, where c is the speed of light.

(a) What is the length of the javelin in the rest frame of the shed?

(b) What is the length of the shed in the rest frame of the javelin?

(c) Draw a space-time diagram in the rest frame coordinates (ct, x) of the shed,
showing the world lines of both ends of the javelin, and of the front and back of the shed.
Draw a second space-time diagram in the rest frame coordinates (ct′, x′) of the javelin,
again showing the world lines of both ends of the javelin and of the front and back of the
shed.

(d) Clearly mark the space-time events corresponding to (A) the trailing end of the
javelin entering the shed, and (B) the leading end of the javelin hitting the back of the
shed. Give the corresponding (ct, x) and (ct′, x′) coordinates for both (A) and (B). Are
these two events space-like, null or time-like separated? How does the javelin fit inside the
shed, even though it is initially longer than the shed in its own rest frame?

END OF PAPER
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