Lectures will be held in the Meeting Rooms (MR) of the Centre for Mathematical Sciences, Clarkson Road, unless otherwise stated.

All Part III and PhD students in the Faculty are able to self-enrol on Part III Moodle courses; they will be sent instructions on how to do so. All other members of the University wishing to access these courses are requested to complete the relevant form in the Part III Guide to Courses.

There will be a meeting on the morning of Wednesday 4 October for those intending to offer courses in Part III. Students should refer to the Notes for New Part III Students for further details.

There is a series of meetings for Part III students on Wednesdays at 4.15pm. Students are invited to refer to the Part III Handbook for more details.

For a personalised version of the timetable, which you can import into your own electronic calendar, please see http://www.timetable.cam.ac.uk.

<table>
<thead>
<tr>
<th>Michaelmas 2023</th>
<th>Lent 2024</th>
<th>Easter 2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Relativity</td>
<td>Algebraic Number Theory</td>
<td>Applications of Quantum Field Theory</td>
</tr>
<tr>
<td>Prof. C. M. Warnick</td>
<td>Dr. H. Wiersema</td>
<td>Prof. S. A. Hartnoll</td>
</tr>
<tr>
<td>M. W. F. 9, MR2</td>
<td>M. W. F. 9, MR3</td>
<td>M. Tu. Th. F. 11, MR3</td>
</tr>
<tr>
<td>Advanced Probability</td>
<td>Field Theory in Cosmology</td>
<td>Gravitational Waves and Numerical Relativity</td>
</tr>
<tr>
<td>Prof. P. Sousi</td>
<td>Prof. E. Pajer</td>
<td>Prof. U. Sperhake</td>
</tr>
<tr>
<td>M. W. F. 9, MR3</td>
<td>M. W. F. 9, MR4</td>
<td>M. Tu. Th. F. 12, MR3</td>
</tr>
<tr>
<td>Lie Algebras and Their Representations</td>
<td>Stochastic Calculus and Applications</td>
<td></td>
</tr>
<tr>
<td>Prof. S. Martin</td>
<td>Prof. J. Miller</td>
<td></td>
</tr>
<tr>
<td>M. W. F. 9, MR9</td>
<td>M. W. F. 9, MR5</td>
<td></td>
</tr>
<tr>
<td>Biological Physics and Fluid Dynamics</td>
<td>Fluid Dynamics of the Solid Earth</td>
<td></td>
</tr>
<tr>
<td>Prof. R. Goldstein</td>
<td>Prof. M. G. Worster</td>
<td></td>
</tr>
<tr>
<td>M. W. F. 9, MR12</td>
<td>M. W. F. 9, MR12</td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td>Lecture Type</td>
<td>Room</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>Combinatorics §</td>
<td>M. W. F. 10</td>
<td>MR3</td>
</tr>
<tr>
<td>Cubulating Spaces and Groups</td>
<td>M. W. 9,</td>
<td>MR13</td>
</tr>
<tr>
<td>Algebraic Geometry</td>
<td>M. W. F. 10</td>
<td>MR5</td>
</tr>
<tr>
<td>Quantum Computation</td>
<td>M. W. 9,</td>
<td>MR14</td>
</tr>
<tr>
<td>Slow Viscous Flow §</td>
<td>M. W. F. 10</td>
<td>MR12</td>
</tr>
<tr>
<td>Black Holes</td>
<td>M. W. F. 10</td>
<td>MR2</td>
</tr>
<tr>
<td>Quantum Information, Foundations and Gravity</td>
<td>W. F. 10,</td>
<td>MR13</td>
</tr>
<tr>
<td>Distribution Theory and Applications</td>
<td>M. W. 10,</td>
<td>MR5</td>
</tr>
<tr>
<td>Structure and Evolution of Stars</td>
<td>M. W. F. 10</td>
<td>MR14</td>
</tr>
<tr>
<td>Abelian Varieties</td>
<td>M. W. F. 10</td>
<td>MR9</td>
</tr>
<tr>
<td>Quantum Field Theory</td>
<td>M. W. 11,</td>
<td>MR2</td>
</tr>
<tr>
<td>Spectral Computations in Infinite Dimensions and Applications in Data Science</td>
<td>M. W. 10,</td>
<td>MR11</td>
</tr>
<tr>
<td>Algebraic Topology</td>
<td>M. W. F. 11</td>
<td>MR5</td>
</tr>
<tr>
<td>Fluid Dynamics of the Environment</td>
<td>M. W. F. 11</td>
<td>MR12</td>
</tr>
<tr>
<td>Approximation Theory</td>
<td>M. W. 11,</td>
<td>MR12</td>
</tr>
<tr>
<td>Introduction to Additive Combinatorics</td>
<td>M. W. F. 10</td>
<td>MR13</td>
</tr>
<tr>
<td>Model Theory and Non-Classical Logic</td>
<td>M. W. F. 11</td>
<td>MR13</td>
</tr>
<tr>
<td>Functional Data Analysis</td>
<td>M. W. 10,</td>
<td>MR14</td>
</tr>
</tbody>
</table>
Astrophysical Fluid Dynamics
Prof. R. Rafikov
M. W. F. 11, MR14

Category Theory
Prof. P. T. Johnstone
M. W. F. 12, MR4

Elliptic Curves
Prof. T. Fisher
M. W. F. 11, MR3

Elliptic Partial Differential Equations
Prof. N. Wickramasekera, Dr G. Taujanskas
M. W. F. 11, MR4

Modular Forms
Prof. J. A. Thorne
M. W. F. 12, MR5

Quantum Entanglement in Many-body Physics
Prof. F. Verstraete
M. W. 11, MR9

Modern Statistical Methods ‡
Dr S. Bacallado
M. W. F. 12, MR9

The Life and Death of Galaxies
Prof. V. Belokurov
M. W. F. 11, MR11

Solitons, Instantons and Geometry
Prof. D. M. A. Stuart
M. W. 11, MR12

Numerical Solution of Differential Equations
Prof. A. Iserles
M. W. F. 12, MR13

Large Cardinals
Prof. B. Loewe
M. F. 11, MR13

Planetary System Dynamics
Prof. M. Wyatt
M. W. F. 12, MR14

Advanced Financial Models
Prof. M. R. Tehranchi
M. W. F. 11, MR14

Commutative Algebra
Dr O. Becker
Tu. Th. S. 9, MR3

Advanced Quantum Field Theory
Dr R. A. Reid-Edwards
M. W. F. 12, MR2
Topics in Statistical Theory
Prof. R. Samworth
Tu. Th. 9, MR5
Starting 10 Oct. Additional lecture on 13 Oct, 4pm in MR5

Geometric Group Theory
Prof. H. Wilton
M. W. F. 12, MR5

Functional Analysis §
Dr A. Zsák
Tu. Th. S. 9, MR13

Statistical Learning in Practice
Dr R. Altmeyer
M. W. F. 12, MR9

Statistical Field Theory
Prof. C. E. Thomas
Tu. Th. 10, MR2

Forcing and the Continuum Hypothesis
Dr R. Matthews
M. W. F. 12, MR13

Causal Inference
Dr Q. Zhao
Tu. Th. 10, MR5

Direct and Inverse Scattering of Waves
Dr O. Rath Spivack
M. W. 12, MR14

Differential Geometry
Dr A. Kovalev
Tu. Th. S. 10, MR9

The Standard Model
Prof. D. Tong
Tu. Th. S. 9, MR3

Cosmology
Prof. B. D. Sherwin
Tu. Th. S. 11, MR2

Introduction to Computational Complexity
Prof. W. T. Gowers
Tu. Th. 9, MR5

Lattice Models
Prof. W. Werner
Tu. Th. 11, MR5

Topics in Convex Optimisation
Prof. H. Fawzi
Tu. Th. 9, MR9

Information Theory
Prof. I. Kontoyiannis
Tu. Th. 11, MR9

Hydrodynamic Stability
Prof. R. R. Kerswell
Tu. Th. 9, MR12
<table>
<thead>
<tr>
<th>Subject</th>
<th>Instructor</th>
<th>Days</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Partial Differential Equations</td>
<td>Dr Z. Wyatt</td>
<td>Tu. Th. S. 11, MR13</td>
<td></td>
</tr>
<tr>
<td>Schramm-Loewner Evolutions</td>
<td>Dr Y. Yuan</td>
<td>Tu. Th. 9, MR13</td>
<td></td>
</tr>
<tr>
<td>Symmetries, Fields and Particles</td>
<td>Prof. M. Wingate</td>
<td>Tu. Th. S. 12, MR2</td>
<td></td>
</tr>
<tr>
<td>Toric Varieties</td>
<td>Dr R. Picciotto</td>
<td>Tu. Th. 9, MR14</td>
<td></td>
</tr>
<tr>
<td>Ramsey Theory on Graphs</td>
<td>Dr J. Sahasrabudhe</td>
<td>Tu. Th. 12, MR4</td>
<td></td>
</tr>
<tr>
<td>Symplectic Topology</td>
<td>Dr A. Ward</td>
<td>Tu. Th. 10, MR4</td>
<td></td>
</tr>
<tr>
<td>Local Fields</td>
<td>Dr R. Zhou</td>
<td>Tu. Th. S. 12, MR5</td>
<td></td>
</tr>
<tr>
<td>Robust Statistics</td>
<td>Prof. P-L. Loh</td>
<td>Tu. Th. 10, MR5</td>
<td></td>
</tr>
<tr>
<td>Statistics in Medical Practice +</td>
<td>Dr C. Jackson and colleagues</td>
<td>Tu. Th. 12, MR11</td>
<td></td>
</tr>
<tr>
<td>Supersymmetry</td>
<td>Prof. B. Allanach</td>
<td>Tu. Th. 10, MR9</td>
<td></td>
</tr>
<tr>
<td>Perturbation Methods</td>
<td>Prof. D. Abrahams</td>
<td>Tu. Th. 12, MR12</td>
<td></td>
</tr>
<tr>
<td>Astrophysical Black Holes</td>
<td>Dr D. Sijacki</td>
<td>Tu. Th. 10, MR12</td>
<td></td>
</tr>
<tr>
<td>Theoretical Physics of Soft Condensed Matter</td>
<td>Prof. M. E. Cates</td>
<td>Tu. Th. 10, MR13</td>
<td></td>
</tr>
<tr>
<td>Group Cohomology</td>
<td>Dr C. J. B. Brookes</td>
<td>Tu. Th. 11, MR5</td>
<td></td>
</tr>
</tbody>
</table>
Topological Quantum Matter
Prof. B. Béri
Tu. Th. 11, MR9

Dynamics of Astrophysical Discs
Prof. H. Latter
Tu. Th. 11, MR12

Analysis of Survival Data +
Dr P. Treasure
Tu. Th. 11, MR13

String Theory
Prof D. B. Skinner
Tu. Th. S. 12, MR2

Concentration Inequalities
Dr V. Jog
Tu. Th. 12, MR3

Stochastic Processes in Biology
Dr M. Bruna
Tu. Th. 12, MR12

Laboratory Demonstrations in Fluid Dynamics
Prof. S. Dalziel
W. 2-3:30, Fluids Laboratory

+ These two courses constitute the 24-lecture course in Statistics in Medicine. For examination purposes, Statistics in Medicine is considered a Lent term course.

‡ Recordings for this course will only be made available as a reasonable adjustment for students with a recommendation for access to recordings.

§ There will be no recordings available for this course; the lecturer will make alternative accommodations for students with recommendations for reasonable adjustments that include access to recordings.