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1 Introduction

Each lecture course in the Mathematical Tripos has an official syllabus, or schedule, that sets out formally,
and in technical terms, the material to be covered. The schedules are listed in the booklet Schedules
of Lecture Courses and Form of Examinations that is available for download at https://www.maths.
cam.ac.uk/undergrad/course/schedules.pdf. The Schedules booklet is the definitive reference for
matters of course content and assessment, for students, lecturers and examiners.

The present guide, by contrast, provides an informal description of each lecture course in Part IB. These
descriptions are intended to be comprehensible without much prior knowledge, and to convey something
of the flavour of each course. Summaries of the learning outcomes for each course are also included,
along with some suggestions for preparatory reading, if appropriate.

The full learning outcome for Part IB is that you should understand the material described in the formal
syllabuses given in the Schedules booklet and be able to apply it to the sorts of problems that can be
found on Tripos papers from earlier years.

Changes to lecture courses since last year

Two new courses, IB Analysis II and IB Topological Spaces, will run in 2025-26, replacing the courses
IB Analysis & Topology and IB Geometry from 2024-25.

2 The Structure of Part IB

The structure of Part IB may be summarised as follows:

e There are four courses of 24 lectures, eight courses of 16 lectures, three courses of 12 lectures, and
an additional Computational Projects course (CATAM).

e Five courses are lectured in Michaelmas Term, building on the core material in Part IA, while eight
courses are lectured in Lent Term, allowing more specialisation in preparation for Part II.

e Two of the 12-lecture courses are given in Easter Term and may be taken in either the first or
second year (Optimisation and Variational Principles).

e The examination consists of four papers, with Section I (‘short’) questions and Section II (‘long’)
questions spread as evenly as possible subject to

each 24-lecture course having two short questions and four long questions;

each 16-lecture course having two short questions and three long questions;

each 12-lecture course having two short questions and two long questions;

each course having at most one question of each type (long or short) but at least one question

of either type on each paper.

O O O O

The precise distribution of questions can be found in the Schedules booklet.

e Only four short questions and six long questions may be attempted on each paper, with

o each short (Section I) question marked out of 10 with one beta quality mark;
o each long (Section IT) question marked out of 20 with one quality mark, alpha or beta.

e The Computational Projects course carries 160 marks and no quality marks.

3 Choice of Courses

The Faculty Board has issued the following guidance:

Part IB of the Mathematical Tripos provides a wide range of courses from which students
should, in consultation with their Directors of Studies, make a selection based on their in-
dividual interests and preferred workload, bearing in mind that it is better to do a smaller
number of courses thoroughly than to do many courses scrappily.
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So, you are certainly not expected to take all the courses in Part IB, and the informal course descriptions
below are intended to help you start thinking about your choices. It is important to choose courses that
you will find rewarding, and to be aware of the consequences of your choices for options in Part II; to
this end the Schedules booklet contains a table summarising the relationships between courses in Part II
and those in Part IB.

In Part TA you were expected to follow four 24-lecture courses each term, i.e. to attend two lectures per
day for two terms (total 192 lectures). If you were comfortable with that, then this might be a sensible
target for Part IB. Some students prefer to take slightly fewer courses and learn them more thoroughly,
while other students may choose to take more. You should check the distribution of questions on the
four examination papers (given in the Schedules booklet) before making your final choices for revision.

4 CATAM and Preparatory Work

It is important to start work as early as possible on the computational projects (CATAM). You are
strongly encouraged to complete the non-examinable Introductory Project 0.1 (see the CATAM manual)
over the summer; this will give you valuable practice in programming as well as in producing a coherent
write-up. A model answer for this project will be available in Michaelmas Term and comparison of this
with your own write-up (before having to submit write-ups for real marks) should be instructive.

You are warned that project work can take much longer than you first expect, and rushing to complete
things at the last moment is not a recipe for securing good marks, as well as being a major distraction
from your other work, so it is good to get ahead. If you don’t know how to program in MATLAB, then
you should try to crack this as soon as possible.

Any mathematics that you do over the summer vacation will stand you in good stead for Part IB. It is
suggested, first, that if your College expects you to have supervisions in Michaelmas Term on either of
the IB Easter Term courses then make sure you are up-to-speed and ready for them, and secondly, that
you might wish to do some preparatory reading for one of the Michaelmas Term courses e.g. Analysis
& Topology or Quantum Mechanics. The books suggested below are intended to give an idea of the
appropriate level and approach for each course. They should all be in your college library, and by
browsing there you may find other sources which are just as helpful. More comprehensive reading lists
are also given in the Schedules booklet.

5 Informal Description of Courses

Linear Algebra Michaelmas, 24 lectures

The first-year course Vectors and Matrices includes a concrete introduction to vector spaces. Here,
vector spaces are investigated from an abstract axiomatic point of view. This has two purposes: firstly
to provide an introduction to abstract algebra in an already familiar context and secondly to provide a
foundation for the study of infinite-dimensional vector spaces which are required for advanced courses
in analysis and physics. One important application is to function spaces and differential and difference
operators. A striking result is the Cayley-Hamilton theorem which says (roughly) that any square matrix
satisfies the same equation as its eigenvalues (the characteristic equation).

The spaces studied for the first part of the course have nothing corresponding to length or angle. These
are introduced by defining an inner product (i.e. a ‘dot’ product) on the vector space. This is generalised
to the notion of a bilinear form (‘lengths’ do not have to be positive) and even further. There are direct
applications to quantum mechanics and statistics.

The last part of the course covers the theory of bilinear and hermitian forms, and inner products on vector
spaces. An important example is the quadratic form. The discussion of orthogonality of eigenvectors
and properties of eigenvalues of Hermitian matrices has consequences in many areas of mathematics and
physics, including quantum mechanics.

There are many suitable books on linear algebra: for example Finite-dimensional Vector Spaces by
Halmos (Springer, 1974), Birkhoff and MacLane’s Algebra (Macmillan, 1979) and Strang’s Linear Algebra
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(Academic Press, 1980).
Learning outcomes. By the end of this course, you should:

e understand the concepts of, and be able to prove results in the theory of, real and complex vector
spaces;

e understand the concepts of, and be able to prove results in the theory of, linear maps between and
endomorphisms of real and complex vector spaces, including the role of eigenvectors and eigenvalues
and Jordan canonical form;

e understand, and be able to prove and apply, the Cayley-Hamilton theorem;
e understand, and be able to prove results in the theory of, dual vector spaces;

e understand bilinear forms and their connection with the dual space, and be able to derive their
basic properties;

e know the theory of canonical forms for symmetric, alternating and hermitian forms, and be able
to find them in simple cases;

e understand the theory of hermitian endomorphisms of a complex inner product space, and know
and be able to apply the Gram-Schmidt orthogonalisation process.

Groups, Rings and Modules Lent, 24 lectures

This course unites a number of useful and important algebraic and geometric ideas by developing three
concepts which are fundamental in abstract algebra. Firstly there is the notion of a group which you
met in Part IA Groups and which is found in so much of mathematics, both pure and applied. The
basic concepts of group theory are recalled from the first year and then built upon, resulting in beautiful
theorems that reveal much about the structure of finite groups.

Whereas a group has only one operation, a ring is a set that is equipped with two operations: that of
addition and multiplication, such as the integers. The next third of the course develops this idea in a way
that mirrors the approach to groups, as well as considering examples such as fields and the important
case of a ring of polynomials in one, and in many, variables.

The last part of the course defines and deals with the notion of a module, which can be described as
the immediate generalisation of a vector space where the scalars form a ring rather than a field. The
advantage of this approach is that it allows proof of general results which can then be used to unify
theorems in specific cases, as shown at the end of the course where applications to Jordan Normal Form
are given, along with a proof of the classification of finitely generated abelian groups.

For an introduction to groups, J. F. Humphreys, A course in group theory (Oxford Science Publications)
amongst others is very readable whereas B. Hartley and T. O. Hawkes, Rings, Modules and Linear Algebra
(Chapman and Hall), although somewhat dry, contains nearly all of the rings part of the course and more
than all of the material on modules.

The course also lays the foundations for most of the algebra options in Part II. In particular it is essential
for Galois Theory, and highly desirable for areas such as Number Fields and Representation Theory.

Learning outcomes. By the end of this course, you should:

e have a firm understanding of the fundamental concepts of group theory and be comfortable applying
these to groups of small order;

e know the definition of a ring, a field and an ideal, and be able to determine whether an ideal is
principal, maximal or prime;

e be able to factorise elements in specific rings, including cases where factorisation is non-unique;

e understand the concept of a module and its application to finitely generated abelian groups.



Analysis 11 Michaelmas, 24 lectures

In the Analysis I course in Part IA, you encountered for the first time the rigorous mathematical study
of the concepts of limit, continuity, differentiability and integrability, applied to functions of a single real
variable. This course extends that study in two different ways. First, it introduces the important notion
of uniform convergence, which helps to answer the basic question of when we can ensure continuity,
differentiability and integrability are preserved when passing to limits of sequences of functions. Then
the fundamental ideas of Analysis I are extended from the real line R, first to finite-dimensional Euclidean
spaces R™ and then to still more general ‘metric spaces’ whose ‘points’ may be objects such as functions
or sets.

The advantages of this more general point of view are demonstrated using Banach’s contraction mapping
theorem, whose striking applications include a general existence and uniqueness theorem for solutions of
differential equations, and the inverse function theorem, a result of fundamental importance.

If you wish to do some vacation reading, W.A. Sutherland’s Introduction to Metric and Topological
Spaces (OUP, 1975) provides a good introduction to analysis on more general spaces.

Learning outcomes. By the end of this course, you should:

e understand and be able to prove basic results about uniform convergence and continuous functions
in R™;

e understand and be able to prove basic results about differentiability of functions from R™ to R™,
be able to calculate derivatives and use them to analyse the behaviour of functions;

e understand the notion of uniform continuity of functions and appreciate its significance in the
theory of Riemann integration of a function of a single real variable;

e understand the basic theory of metric spaces and continuous functions on metric spaces;

e understand the statement and proof of the contraction mapping theorem and its applications to
the solution of differential equations and to the inverse function theorem.

Topological Spaces Lent, 16 lectures

Topology is the branch of mathematics that is concerned with the properties of a geometric object that
are preserved under continuous deformation. In other words, it is the study of shapes defined by the
continuous maps that you learned about in Analysis I and II. The first theorems of topology were proved
by Euler in the 18th century, but the subject wasn’t properly formalised until the beginning of the 20th
century. Since then, it has emerged to play a central role in large parts of modern mathematics and
physics.

This course serves as a first introduction to topology, building on the metric spaces that you studied in
Analysis II. After the definition of a topological space, the key topological ideas of connectedness and
compactness are introduced and their applications explained. Fresh views emerge of important results
from Analysis I.

The last part of the course moves on to discuss the topology of manifolds, providing a foundation for
some of the more advanced topics covered in Part IT of the tripos. Plenty of examples are discussed,
and some basic properties are proved. The course finishes with a detailed discussion of 2-dimensional
manifolds, i.e. surfaces. You will learn how to classify them via Euler characteristic.

Munkres’ book Topology (Prentice Hall, 2000) and Lee’s Topological manifolds (Springer, 2000) are good
sources for this course.

Learning outcomes. By the end of this course, you should:

e appreciate the definition of topological spaces and be able to distinguish between standard topo-
logical and non-topological properties;

e understand the topological notion of connectedness and its relation to path-connectedness;



e understand the topological notion of compactness, know its significance in basic analysis and be
able to apply it to identify standard quotients of topological spaces;

e understand the notion of a topological manifold, and recognise several examples;

e be familiar with the classification of surfaces, including the concepts of orientability and Euler
characteristic.

Variational Principles Easter, 12 lectures

The techniques developed in this course are of fundamental importance throughout physics and applied
mathematics, as well as in many areas of pure and applicable mathematics.

The first part of the course considers stationary points of functions on R™ and extends the treatment
in Part TA Differential Equations to deal with constraints using the method of Lagrange multipliers;
e.g. this allows one to determine the stationary points of a function on a surface in R3.

The second part of the course deals with functionals (and functional derivatives) and enables one to find
the path that minimises the distance between two points on a given surface (a geodesic), the path of
a light ray that gives the shortest travel time (satisfying Fermat’s Principle), or the minimum energy
shape of a soap film.

Many fundamental laws of physics (in Newtonian mechanics, relativity, electromagnetism or quantum
mechanics) can be expressed as variational principles in a profoundly elegant and useful way that brings
underlying symmetries to the fore.

Learning outcomes. By the end of this course, you should:

e understand the concepts of a functional, and of a functional derivative;
e be able to apply constraints to variational problems;

e appreciate the relationship between variational statements, conservation laws and symmetries in
physics.

Methods Michaelmas, 24 lectures

This course continues the development of mathematical methods which can be applied to physical sys-
tems. The material is fundamental to nearly all areas of applied mathematics and theoretical physics.

The course introduces the important class of ordinary differential equations that are self-adjoint. The
equivalent in the complex domain, used in Quantum Mechanics, are Hermitian operators. Self-adjoint
equations have nice properties such as having real eigenvalues and orthogonal eigenfunctions, which allow
eigenfunction expansions, the prototype being Fourier series. Fourier series generalise, for non-periodic
functions, to Fourier transforms which provide a useful way of solving linear differential ordinary and
partial differential equations.

Much of the remainder of the course concentrates on second-order partial differential equations: classifi-
cation into wave, diffusion and Laplace type equations; the fundamental solutions of the three different
types; solution by separation of variable which ties in with the earlier work on self-adjoint equations.

The course also introduces the famous Dirac ¢, or spike, function and the Green’s function which can be
regarded as the inverse operator for a differential equation: it is used to express the solution in terms of
an integral. It will reappear as a basic tool in quantum field theory.

It is worthwhile to get to grips early with the major new ideas introduced here: Fourier series/transforms
and Sturm-Liouville equations. Reasonably friendly accounts can be found in Mathematical Methods in
the Physical Sciences by Boas (Wiley, 1983), Mathematical Methods for Physicists by Arfken (Academic
Press, 1985) and Mathematical Methods for Physicists and Engineers by Riley, Hobson and Bence (CUP,
98). It is also worthwhile to revise thoroughly the Variational Principles course from the Easter term.



Learning outcomes. By the end of this course, you should:

e be able to apply the theory of Green’s functions to ordinary differential equations;

understand the basic properties of Sturm-Liouville equations;

be able to apply the method of separation of variables to partial differential equations;

be able to use standard methods to solve partial differential equations.

be able to solve wave problems using Fourier analysis and advanced /retarded coordinates.

Complex Methods Lent, 16 lectures

Complex variable theory was introduced briefly in Analysis I (for example, complex power series). Here,
the subject is developed without the full machinery of a pure analysis course. Rigorous justification of
the results used is given in the parallel course, Complex Analysis.

The course starts with the definition of analyticity and the Cauchy Riemann equations (which must be
satisfied by the real and imaginary parts of a complex function in order for it to be analytic; i.e. in order
for it to be expressible as a power series). There follows a brief discussion of conformal mapping with
applications to Laplace’s equation. Then a heuristic version of Cauchy’s theorem leads, via Cauchy’s
integral formula, to the residue calculus. This is a remarkable technique for evaluating integrals in
the complex plane, which can also be used to calculate definite integrals on the real line. It allows
the calculation of integrals which one would not have a hope of calculating by other means, as well as
remarkably simple and elegant derivations of standard results such as

/OO exp(—2?/2 + ikz) dx = /(27) exp(—k?/2) and /Ooo(sinz)/x de =7/2.

—0o0

An important application is to the theory of Fourier transforms (which were introduced in the Methods
course) and Laplace transforms. The transforms are used to represent, for example, a time dependent
signal as a sum (in fact, an integral unless the function is periodic) over its frequency components. This
is important because one often knows how a system responds to pure frequency signals rather than to
an arbitrary input. In many situations, the use of a transform simplifies a physical problem by reducing
a partial differential equation to an ordinary differential equation. This is a particularly important
technique for numerous branches of physics, including acoustics, optics and quantum mechanics.

For a fairly applied approach, look at chapters 6 and 7 of Mathematical Methods for Physicists by Arfken
(Academic Press, 1985). This material is also sympathetically dealt with in Mathematical Methods in
the Physical Sciences by Boas (Wiley, 1983).

Learning outcomes. By the end of this course, you should:

e understand the concept of analyticity;
e be able to use conformal mappings to find solutions of Laplace’s equations;
e be able to use the theory of contour integration, including the residue theorem, to evaluate integrals;

e understand the theory of Fourier and Laplace transforms and apply it to the solution of ordinary
and partial differential equations.

Complex Analysis Lent, 16 lectures

This course covers about 2/3 of the material in Complex Methods, from a more rigorous point of view.
The main omissions are applications of conformal mappings to solutions of Laplace’s equations and the
theory of Fourier and Laplace transforms.

The theory of complex variable is exceptionally elegant. It is used in many branches of pure mathematics,
including number theory. It also forms one of the guiding models for the modern development of geometry.



A rigorous course not only provides a firm foundation for, and makes clear the underlying structure of,
this material but also allows a deeper appreciation of the links with material in other analysis courses
— in particular, Metric & Topological Spaces.

An excellent book both for the course and for preliminary reading is Hilary Priestley’s Introduction
to Complex Analysis (OUP, paperback). The books by Stewart and Tall (Complex Analysis) and by
Jameson (A First Course in Complex Functions) are also good.

Learning outcomes. By the end of this course, you should:

e understand the concept of analyticity;
e be able to prove rigorously the main theorems in the course;

e be able to use the theory of contour integration, including the residue theorem, to evaluate integrals.

Quantum Mechanics Michaelmas, 16 lectures

Quantum mechanics introduces a profound different way of thinking about the physical world, formulated
using precise mathematical language. It explains phenomena beyond the reach of classical physics, such
as the duality of particles and waves, and the structure and behaviour of atoms, but quantum mechanics
is also at work all around us in our daily uses of modern technology.

This course introduces the subject from scratch and deals mainly with the quantum mechanics of a
single particle, as described by a complex-valued wavefunction obeying the Schridinger equation. For
a quantum particle there is no definite trajectory (as determined classically from Newton’s Laws) and
information about position and momentum must instead be extracted from the wavefunction in terms
of probabilities. One consequence of this is the Heisenberg uncertainty principle.

The Schrédinger equation is first studied in simple but instructive cases in one dimension, before moving
on to three dimensions, culminating in the solution of the Hydrogen atom. The underlying mathematics
involves hermitian or self-adjoint (differential) operators whose eigenvalues give the possible outcomes of
a physical measurement. Consequently, there are significant overlaps with material in Part IB Methods
(and Part TA Vectors and Matrices or equivalently Part IB Linear Algebra), although the treatment in
this course is essentially self-contained.

Standard introductory textbooks are Essential Quantum Physics by Landshoff, Metherell and Rees
(CUP, 2010) and Quantum Mechanics by Rae (IOP Publishing, 2002), while The Quantum Universe by
Hey and Walters (CUP, 1987) contains readable and non-mathematical accounts with lots of pictures,
going well beyond the Part IB course.

Learning outcomes. By the end of this course, you should:

e understand the basic theory of quantum mechanics, including: wavefunctions, the Schrodinger
equation, observables and operators—measurements, eigenvalues, and expectation values;

e be able to solve, and interpret the solution of, the Schrodinger equation in simple cases, including;:
1-dimensional potential wells and steps; the harmonic oscillator; and the hydrogen atom.

Electromagnetism Lent, 16 lectures

Maxwell’s equations of electromagnetism are among the great triumphs of nineteenth century physics.
These equations unify the electric and magnetic forces and provide an explanation for many natural
phenomena, including the existence of light itself. The equations also hold the seed of the theory of
special relativity. This course gives the first opportunity in the Tripos to study a modern physical field
theory.

After a brief discussion of electric and magnetic forces, Maxwell’s equations are introduced. A key idea
is the use of potentials to represent the electric and magnetic fields and it is shown how Maxwell’s
equations imply the existence of such potential functions. The equations are solved in special cases



of physical interest. First, time-independent situations are covered: for example, point charges, bar
magnets, currents in wires. Next, time-varying situations are investigated: for example, induction. It
is also shown how Maxwell’s equations have wave-like solutions which we identify as light. The course
ends with a discussion of special relativity in the context of electromagnetism. When viewed through
the lens of relativity, the Maxwell equations become remarkably simple.

The course relies heavily on vector calculus. The latter part of the course also uses the theory of
tensors from Part TA Vector Calculus and special relativity from Part IA Dynamics and Relativity.
Electromagnetism is important for all of the theoretical physics courses in Part II, and is particularly
relevant to General Relativity through its use of 4-vectors and tensors.

Learning outcomes. By the end of this course, you should:

e understand the physical significance of and be able to manipulate Maxwell’s equations (including
deriving the integral forms);

e solve simple problems in electrostatics including calculation of electrostatic energy, capacity and
force;

e derive, and apply to simple situations, the Biot-Savart law;

e use Gauss’s law and Ampere’s law to calculate electric and magnetic fields in symmetrical situations;
e calculate forces using the Lorentz force;

e derive and apply Faraday’s law of induction to simple circuits;

e solve Maxwell’s equations to obtain plane waves.

Fluid Dynamics Lent, 16 lectures

Fluid dynamics investigates the motion of liquids and gases, such as the motion that enables aircraft to fly.
Newton’s laws of motion apply — acceleration equals force per unit mass — but a subtlety arises because
acceleration means the rate of change of velocity of a fluid particle. It does not mean the rate of change
of the fluid velocity at a fixed point in space. A special mathematical operator, the material derivative,
expresses the required rate of change using vector calculus. The forces entering Newton’s laws can be
external, such as gravity, or internal, arising from pressure or from viscosity (internal friction). When the
viscosity is small enough to be negligible, the motion is often irrotational as well as incompressible: both
the curl and divergence of velocity field vanish. In this situation, the fluid velocity can be described by a
potential, and standard potential theory applies, including in some cases solutions of Laplace’s equation.

The topics studied include jets, bubbles, waves, vortices, flow around aircraft wings, and flow in weather
systems. Suitable introductory reading material can be found in Worster’s Understanding Fluid Flow
(CUP) or in Acheson’s Elementary Fluid Dynamics (Oxford). For background motivation, see also the
visionary discussion in the Feynman Lectures on Physics, last two chapters of Volume II (Addison-
Wesley).

Learning outcomes. By the end of this course, you should:

e understand the basic principles governing the dynamics of parallel viscous flows and flows in which
viscosity in negligible;

e be able to derive and deduce the consequences of the equation of conservation of mass;
e be able solve kinematic problems such as finding particle paths and streamlines;

e be able to apply Bernoulli’s theorem and the momentum integral to simple problems including
river flows;

e understand the concept of vorticity and the conditions in which it may be assumed to be zero;



e calculate velocity fields and forces on bodies for simple steady and unsteady flows derived from
potentials;

e understand the theory of interfacial waves and be able to use it to investigate, for example, standing
waves in a container;

e understand fundamental ideas relating to flows in rotating frames of reference, particularly geostro-
phy.

Numerical Analysis Lent, 16 lectures

An important aspect of the application of mathematics to problems in the real world is the ability to
compute answers as accurately as possible subject to the errors inherent in the data presented and the
limits on the accuracy of calculation. Numerical analysis is the branch of mathematics studying such
computations.

The course commences from approximation theory, focusing on the approximation of functions and data
by polynomials, continues with the numerical solution of ordinary differential equations and concludes
with the solution of linear algebraic systems. Although computational algorithms form a central part of
the course, so do mathematical theories underlying them and investigating their behaviour: computation
and approximation at their best should be done with proper mathematical justification.

An Introduction to Numerical Analysis by Suli & Mayers (CUP, 2003) and Interpolation and Approxi-
mation by Davis (Dover, 1975) are two excellent introductory texts.

Learning outcomes. By the end of this course, you should:

e understand the role of algorithms in numerical analysis;

e understand the role and basic theory (including orthogonal polynomials and the Peano kernel
theorem) of polynomial approximation;

e understand multistep and Runge-Kutta methods for ordinary differential equations and the con-
cepts of convergence, order and stability;

e understand the theory of algorithms such as LU and QR factorisation, and be able to apply them,
for example to least squares calculations.

Statistics Lent, 16 lectures

Statistics is the study of what can be learnt from data. We regard our data as realisations of random
variables, and consider models for the (joint) distribution of these random variables. In this course, we
focus entirely on parametric models, where the class of distributions considered can be indexed by a
finite-dimensional parameter. As a simple example, the family of normal distributions can be indexed by
a two-dimensional parameter, representing the mean and variance. Nonparametric models are treated
in more advanced courses.

Our aim is to make inference about the unknown parameter by, for example, providing a point estimate,
a confidence interval or conducting a hypothesis test. Building on Part TA Probability, this course will
present basic techniques of inference, together with their theoretical justification. The final chapter will
cover the ubiquitous linear model, with its elegant theory of orthogonal projection and application of
results from linear algebra.

The most appropriate book for the course is Statistical inference by Casella and Berger (Duxbury, 2001).
Learning outcomes. By the end of this course, you should:

e understand the basic concepts involved in point estimation, the construction of confidence intervals
and Bayesian inference;



e understand and be able to apply the ideas of hypothesis testing, including the Neyman—Pearson
lemma, and generalised likelihood ratio tests, including applications to goodness of fit tests and
contingency tables.

e understand and be able to apply the theory of the linear model, including examples of linear
regression and one-way analysis of variance.

Markov Chains Michaelmas, 12 lectures

A Markov process is a random process for which the future (the next step) depends only on the present
state; it has no memory of how the present state was reached. A typical example is a random walk (in
two dimensions, the drunkard’s walk).

The course is concerned with Markov chains in discrete time, including periodicity and recurrence. For
example, a random walk on a lattice of integers returns to the initial position with probability one in one
or two dimensions, but in three or more dimensions the probability of recurrence in zero. Some Markov
chains settle down to an equilibrium state and these are the next topic in the course.

The material in this course will be essential if you plan to take any of the applicable courses in Part II.
Further introductory material and notes on the course are available from links on the Study pages on
the DPMMS website.

Learning outcomes. By the end of this course, you should:

e understand the notion of a discrete-time Markov chain and be familiar with both the finite state-
space case and some simple infinite state-space cases, such as random walks and birth-and-death
chains;

e know how to compute for simple examples the n-step transition probabilities, hitting probabilities,
expected hitting times and invariant distribution;

e understand the notions of recurrence and transience, and the stronger notion of positive recurrence;
e understand the notion of time-reversibility and the role of the detailed balance equations;
e know under what conditions a Markov chain will converge to equilibrium in long time;

e be able to calculate the long-run proportion of time spent in a given state.

Optimisation Easter, 12 lectures

A typical problem in optimisation is to find the cheapest way of supplying a set of supermarkets from a
set of warehouses: in more general terms, the problem is to find the minimum (or maximum) value of a
quantity when the variables are subject to certain constraints. Many real-world problems are of this type
and the theory discussed in the course are practically extremely important as well as being interesting
applications of ideas introduced earlier in Numbers and Sets and in Vectors and Matrices.

The theory of Lagrange multipliers, linear programming and network analysis is developed. Topics
covered include the simplex algorithm, the theory of two-person games and some algorithms particularly
well suited to solving the problem of minimising the cost of flow through a network.

Whittle’s Optimisation under Constraints (Wiley, 1971) gives a good idea of the scope and range of the
subject but is a little advanced mathematically; Luenberger’s Introduction to Linear and and Non-linear
Programming (Addison-Wesley, 1973) is at the right level but provides less motivation.

Learning outcomes. By the end of this course, you should:

e understand the nature and importance of convex optimisation;

e be able to apply Lagrangian methods to solve problems involving constraints;
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e be able to solve problems in linear programming by methods including the simplex algorithm and
duality;

e be able to solve network problems by methods using, for example, the Ford—Fulkerson algorithm
and min-cut max-flow theorems.

Computational Projects (CATAM)

This course consists mainly of practical computational projects carried out and written up for submission
a week after the beginning of the Lent and Easter terms. For full credit, you do four projects. The first
two are prescribed and are submitted soon after the beginning of the Lent term. The remaining two are
chosen from a list of projects and are submitted soon after the beginning of the Easter term. There is
also a non-examinable project that allows you to practice programming and writing up results, with a
model answer provided in Michaelmas Term for comparison with your own answer.

The emphasis in the projects is on understanding the mathematical problems being modelled rather than
on the details of computer programming. Some students find the projects somewhat time consuming,
especially those who are not used to programming or have not completed the non-examinable project.
The CATAM manual will be available over the summer and it would be extremely helpful for you to
start as early as possible on the non-examinable project and, if time, the first two examinable projects.

The amount of credit available for the Computational Projects course in Part IB is 160 marks (and
no quality marks), which is additional to the marks gained on examination papers. In recent years
approximately 99% of Part IB students submitted projects (not necessarily complete).

Learning outcomes. By the end of this course, you should:

e be able to programme using a traditional programming language;
e understand the limitations of computers in relation to solving mathematical problems;

e be able to use a computer to solve problems in both pure and applied mathematics involving, for
example, solution of ordinary differential equations and manipulation of matrices.
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