
Learning to use C and the CATAM software library

CD Warner & AN Ross
Faculty of Mathematics, University of Cambridge

February 23, 2010

Contents

1 Introduction 3

2 Using Windows 4

2.1 Logging in . 4

2.2 Windows basics . 4

2.3 The start menu and task bar . 5

2.4 Window elements . 6

2.5 Files and folders . 6

2.6 Logging out . 7

3 C programming 7

3.1 CATAM C programming tools . 7

3.2 Compiling and running a program . 8

3.3 How to type in a program . 9

3.4 Finding the program you want to work on 10

3.5 Producing printouts . 10

3.6 Quitting Emacs . 10

4 Displaying your name on the screen 11

5 Variables, assignments, expressions and operators 12

6 Program flow control 14

6.1 while loops . 15

6.2 do–while loops . 16

6.3 The if–else control structure . 17

6.4 The switch-case-break control . 20

7 MainCL() versus main() 21

7.1 Entering data using CCATSL . 21

8 Plotting graphs and sending output to a file 22

8.1 Arrays . 22

8.2 Plots and windows . 24

1

8.3 Writing output to a file . 25

9 Functions 26

9.1 Functions not returning a value . 26

9.2 Functions returning a value . 29

9.3 Other predefined functions . 30

10 More advanced plotting 31

10.1 Two plots on the same graph with user defined ranges and axis labels . 31

10.2 Using CurveCL to plot a function . 32

10.3 Plotting graphs point by point . 33

10.4 Producing printouts of plots using metafiles 34

10.5 Creating metafiles from within your program 35

2

1 Introduction

This guide is intended to help you to learn how to program in C and how to use the
CCATSL software library, whether you are new to programming, have programmed
before but would like to know more about CCATSL and C, or are more experienced
but need to look at some of the more advanced features of the CCATSL software
library.

Skim over or skip sections containing material that is already familiar to you. How-
ever, you should realise that writing programs is the only way to learn a programming
language — only by typing in and running your own programs will you learn to trans-
late mathematics into computer programs. Although it might be tedious to type in
long programs, instead of just loading them in, you can learn a lot in the process of
typing in, running and changing the programs in this guide.

Sections 2–6 cover material suited to those who are new to Windows and C pro-
gramming and mentions much detail that more advanced users may already know.
These early sections concentrate on programming techniques by deliberately using ex-
amples that are mathematically very simple and by encouraging you to modify the
example programs yourself.

Sections 7–10 cover material that is relevant both to those who are new to C pro-
gramming and to those who have some programming experience. The material covered
is producing plots of data using CCATSL library procedures and using C functions.
Again the example programs are mathematically very simple and you are encouraged
to modify them and write your own programs.

A short guide like this one can only cover a small subset of the CCATSL library
and of the C language. CCATSL allows for the construction of menus to windows,
making programs look professional and allowing the end-user to enter data using the
mouse. This is covered in the last chapter of the CATAM Software library manual.
You should consult reference books for information on some details. Pointers, type-
defs and structs are integral parts of C that you are likely to need in Part II, but
which have not been covered in this guide. There are many books on C available. Two
good introductory books are:
Practical C Programming, S Qualline, 1997,
and
C Programming Made Simple, C Sexton, 1997,

although there are many more and you should try and find one which suits you. Try
looking in your college library. The original guide to the C language is:

The C Programming Language, 2nd Edition, BW Kernighan and DM Richie 1988;

3

this book is not a book for beginners to learn from, but is a useful reference.

The CCATSL manual (which is available in paperback from DAMTP Reception, at
http://www.maths.cam.ac.uk/undergrad/tripos/catam/ccatsl/ or in the CATAM
Room at CMS) also contains much additional information that may be helpful to you.
Finally, a number of example programs have been provided for you to run, copy and
modify: see the directory C:\CCATSL\Examples (if you installed CCATSL on your
own machine) for example programs.

2 Using Windows

2.1 Logging in

If the monitor screen is dark, check that the monitor is switched on and move the
mouse around to switch off any active screensaver. If the computer is turned off
(check the green power light is not lit) press the large round power switch. Wait
until Windows XP has started and a window appears saying Ctrl-Alt-Delete to
Login or Shutdown. While holding down the Control and Alt keys, press the
Delete key. This will bring up a window which gives information relating to the
Computer Misuse Act 1990. Move the mouse over the OK button and left click
to close the window. A little window with a box for your user name and a box for
your password will come up. Type in your user name and password in the right
boxes and press OK with the left mouse button, i.e., move the mouse to point to
point to OK and click the left mouse button . The computer will then log you onto
the PWF. You will see a window appear with some startup messages but this will
disappear when Windows has finished loading. A Message of the Day window will
also appear. Press the red X button to close this window.

2.2 Windows basics

The Windows XP desktop contains several windows and icons. Each program (or
application) running on the computer displays output in one or more windows. A
window can be minimised so that it is hidden from view. This can stop the screen
getting too cluttered.

Windows are controlled using the mouse or keyboard. These notes concentrate on
mouse techniques which are easier for the beginner, but a few keyboard shortcuts
are mentioned. Windows are controlled with the left-hand mouse button using one
of the following operations:

4

• Click: Press and release the button without moving the mouse

• Double click: Click twice quickly

• Drag: Hold down the button and move the mouse

Because in earlier versions of Windows, many people found double clicking a nuisance,
in Windows XP it is possible to set an option that permits a single click to do the
same job; if this option is set on your computer, whenever this guide asks you to
double click the mouse, a single mouse click will have the required effect. Click on
a window to make it active. The active window appears in front of other windows
and responds to characters typed on the keyboard. The active window also has a
dark blue rather than a light blue title bar. A single click is also used to select an
item prior to carrying out some action on it. A selection is marked by highlighting
or a dotted rectangle.

A double click chooses an item. You choose an item to carry out an action, for
example to start a program running from an icon on the dekstop.

Dragging is used to move or resize windows, select blocks of text for copying or
deleting, etc.

2.3 The start menu and task bar

At the bottom of your screen you will typically see a blue bar with a start button
and perhaps some other buttons on it. This is the task bar.

The green button on the far left with start on it is the start menu. It is used to
start up other windows applications such as the CATAM software or Microsoft Word.
Click on start and you will see a menu appear. The most important items are the
ones at the top labeled PWF Information and PWF Programs. These contain
nearly all the programs you will need. Click on PWF Programs and a window
containing a number of folders appears. To find the CATAM software double click
on the Teaching Packages folder then the Catam folder. Double click on the C
Programming Tools icon to start. The Catam News icon gives useful information
about the CATAM projects and the computer facilities and you should check it from
time to time. The Maths Computational Projects icon takes you to the CATAM
home page, from which you can access the electronic version of the project booklets
and other useful information.

The task bar may also contain several other buttons, one for each window on the
screen. If you click on a button the associated window will become the active window.
In the far right of the task bar is a clock.

5

2.4 Window elements

Most windows have several elements which are used to control both the appearance
of the window and its associated program.

• The title bar identifies the window. Drag the title bar around to move the
window. The active window (the one receiving input, normally the foremost
window), is shown with a bright blue title bar. Click anywhere on a window
to make it active. Drag the window border to change its size.

• The minimise button, a blue button showing the character, hides the win-
dow from view. It still appears on the task bar. Pressing the associated button
on the task bar will display the window again and make it the active window.

• The maximise button, a blue button showing a square, enlarges the window to
its maximum size. For many applications the window fills the entire screen. The
maximise button changes its appearance to show two overlapping rectangles.
Click the button again to restore the window to its normal size.

• The close button, a red button showing a X character, closes the window and
terminates the program if there are no other windows associated with it.

• A scroll bar (horizontal or vertical) is displayed when information such as a
text document is too large to fit entirely in the window. Click in the scroll bar
above or below the scroll box to move up or down a page in the document.

Click the scroll arrows to move forwards or backwards through a document
one line at a time. The position of the scroll box within the scroll bar indicates
which part of a document is currently displayed in the window. Drag the scroll
bar to move rapidly through a document.

• The window menu bar contains a list of menus of commands used to control
the application. Select a menu by clicking its name, then choose a menu option
by clicking or dragging. Most applications have a File menu which is used to
save and load data files and a Help menu which gives information about the
program.

2.5 Files and folders

My Computer and Windows Explorer are used to organise files and folders on
the computer disks. Windows Explorer is usually found by clicking on start, then
on All Programs then on Accessories then on the Windows Explorer icon.
Information (C programs, data, results etc.) is stored in files which are given names
consisting of two parts: a filename and (optionally) an extension. A filename must not
contain any of the characters \, /, :, *, ?, ", < or > and should not contain
any of ’, (,) or space. A filename extension consists of a full stop, followed by one
to three letters or digits. The extension denotes the type of information stored in the

6

file. .c indicates that a file contains C program code. .exe indicates an executable
program. It is not unusual for Windows XP to have been set up so that the extensions
are not shown on the screen when using Windows Explorer.

The PWF PCs have several disk drives for storing information — a 3.5” drive (A:)
which accepts removable floppy disks, and an internal drive (C:) which contains Win-
dows. Additional “networked” drives are held on on fileserver computers. Drive U:
holds your own files. I: holds the CATAM software.

When you are working with multiple files it is convenient to organise related files
into groups called folders or directories. Applications access files by default in the
current folder which can be changed using the application’s File Menu. A file outside
the current folder can be specified by a directory path preceding the file name:

I:\CATAM\ccatsl21\examples\a04curve.c

which refers to a file called a04curve.c in a subfolder of the ccatsl21 folder called
examples.

On-line help is accessible by clicking on the start button then on Help and
Support. Regrettably, it can then often be a challenge to track down precisely
what you need to know. One good strategy is to type some relevant words into the
Search window and click on the white arrow in the green square may get you some
helpful information. In particular, you may wish to search for instructions on creating
folders, listing folders’ contents, copying and deleting files, formatting floppy disks
etc.

2.6 Logging out

When you have finished working you need to log off from the network to ensure that
no-one else can alter or delete your files. First exit from any programs you have been
running. To log out click on start then on the Log Off icon and finally on the the
Log Off button.

double click on the Logout from PWF button on the left hand side of the
desktop. After a few seconds you will see your programs being closed down and
the little window saying Press Ctrl+Alt+Delete to Login or Shutdown appear
again. You can now leave the computer.

3 C programming

3.1 CATAM C programming tools

We recommend that you use the CATAM C programming tools for the Maths
Computational Projects. This contains the Emacs text editor, which is used to write
and edit the programs, and which is integrated with the gcc compiler to actually com-
pile and run the programs. This is explained in more detail later. The programming

7

tools also include the C CATAM software library (CCATSL) which contains nu-
merous mathematical and graphical routines which simplify the writing of programs.
This is available from the Maths faculty for use in the projects. It is pre-installed in
the CATAM room in Mill Lane and in CMS, or you can download itfrom the CATAM
web page and install it on your personal computer.

To start up the C programming tools select the item from the start menu
as described in 2.3. When the emacs editor window appears you may see a
window saying

Starting emacs for CCATSL programming, but most modern computers are so
fast that this happens too quickly to see.

The emacs editor will load. It will display two windows. The first time you
start CCATSL you will be taken through a short tutorial on using the software. In
subsequent logins, the left window will display a list of the files in your project folder.
The right window will display a menu providing help on the programming tools. To
load a program into emacs, click on the name in the left window with the middle
button. If your mouse only has two buttons then click them both at the same time.
Try loading the example program intro.c.

3.2 Compiling and running a program

To run (or execute) a program it must first be translated or compiled into machine
instructions. If the C compiler detects a syntax error in the program an error
message and the line number where the error occurred are displayed. The error must
be corrected before you can try to compile the program again. If the program is
compiled successfully it is then linked with CCATSL routines and executed.

To execute the example program you first need to set intro.c as the source file
which tells the compiler which program to compile. Select the Catam menu then
the Set source file menu item. At the bottom of the window, you should see the
line:

Specify source file name: ∼/ccatsl-projects/intro.c

where ∼ indicates your home directory. If so, pressing Return will select intro.c
as the source. If you see:

Specify source file name: ∼/ccatsl-projects/

type intro.c and then press Return. To compile the example program select
Catam then the Build target menu item. You should see the left window split into
two halves, the top half contains the source code while the bottom half contains the
comments CCATSL makes while it compiles the source code. Later on, when we try
to debug our programs, these messages will be useful.

Finally, to run the example program, select Run program from the Catam
menu.

8

3.3 How to type in a program

This section is intended for the novice and should be skipped by those who already
know a little about how Emacs and the C Programming Tools deal with opening,
editing and saving files. In this manual, menu bar choices and menu option choices
(that you select by clicking with the mouse) are shown in bold letters. For example:
Files then Save Buffer
means “click on Files in the menu bar then click on menu option Save Buffer in the
menu that comes up”.

1. Start up emacs as described in section 3.1.

2. List the current contents of your projects folder by selecting Catam then List
Project folder (or simply press F5).

3. Create a new directory by clicking Immediate then Create Directory. At the
bottom of the window, type Tutorials and press Return. This will create a
sub directory where all the programs you write using this booklet will be stored.
When you work on different CATAM projects, it is a good idea to create a
different directory for each project.

4. Open this directory by clicking on Tutorials (which appears in blue) and then
pressing Return.

5. Create a new file by clicking Files then Open File and then give the file a name
by typing it in the line at the bottom of the emacs window. The name you type
will be the name of the program and must end in .c. Our first program will be
called displayname so type displayname.c.

All your files are saved on the U: disk (which is where your private files are kept) in
a folder called ccatsl-projects. You will now see a blank window appear with the
title displayname.c at the top of it and you can type in your own program. Try the
following one which will be discussed in detail in section 4.

#include <catam.h>
int main(void)
{
printf("Chris\n");
return 0;

}

Once you are happy that you have correctly typed in your program, you can save
it with Files then Save Buffer or — if you wish to change its name — Files then
Save Buffer As This is very useful if you want to write a new program that
contains many of the lines you already wrote for an older program. Before running
your program you have to compile it. This turns the program you write (which can be
understood by humans) into something the computer can understand. As before, you
can compile your program with

9

1. Catam then Set source file (or just hit the F6 button) making sure ∼/ccatsl-
projects/tutorials/displayname.c is the name of the source file at the bot-
tom line of the window.

2. Catam then Build target (or just hit the F8 button)

3. Once it is compiled you can run the program with Catam then Run program
(or just hit the F9 button.) This loads the program into the computer’s memory
and starts executing it at the main() function.

3.4 Finding the program you want to work on

To open a project you saved in an earlier session, click Catam then List Project fold-
ers and navigate through your files until you find <program name>.c, where <file-
name> means replace ¡filename¿ by the name of the file, and open it.

You will notice the item Buffers on the menu bar. Buffers in Emacs are documents
that are being edited (like windows in Microsoft Word.) Emacs lists the names of the
files on the left, and to the right (after a % sign), the location. If you have already
opened <program name>.c, it should be somewhere on that list.

Finally, in addition to buffers, sometimes (especially after compiling, i.e., Building)
your window will be split into two halves. To get rid of one of them, simply press F3
(or Ctrl-x and then 1).

3.5 Producing printouts

To print your program, select the window where your program is, and select Catam
then Print buffer. Similarly, select the other CCATSL window, where the output of
your program is, and again Catam then Print buffer to print the output of your
program.

You will later see that CCATSL produces graphs as well. The quickest way to print
graphs is to use Windows’ in-built support for saving images using Alt-PrintScreen.
Typing Alt-PrintScreen copies the content of the active window onto the clipboard.
You can then paste it into any document (e.g., in Microsoft Word, select Paste from
the Edit menu-bar option.) See section 10.4 for more advanced ways to save and print
graphs.

3.6 Quitting Emacs

To exit from emacs click Catam then Quit emacs. If you have not saved all the files
you have open then you will be asked if you want to save them. Press y for yes.

10

4 Displaying your name on the screen

Writing programs is the only way to learn a programming language. The pro-
gram you typed in above in section 3.3 is one that simply displays my name
on the screen (a standard first program for all beginners). Here is the program
once again:

#include <catam.h>
int main(void)
{
printf("Chris\n");
return 0;

}

We will now explain each line individually.

1. A statement in C is a sequence of characters ending in a semi-colon “;”.

2. The line beginning #include tells the compiler that the program could use any-
thing in the CCATSL library or the standard maths and input/output functions.

3. The line int main(void) tells the compiler that this is the start of a section
containing things to do. In C, all the bits of code that do something are contained
in functions. You can think of functions as like building blocks for a program.
Every program must have a function called main() which is where the program
starts running. We will look at functions in more detail later on.

4. The line { tells the compiler that this is the start of the code contained in the
function main

5. The line beginning printf displays anything that is in the brackets, in this case
Chris, in a new window in the main emacs window. It doesn’t display the "
characters — the first " tells the compiler that a character string is beginning
and the second " tells the compiler that the character string has finished. The
characters \n are a special “control code” which means print a newline character.
This moves the cursor on to the beginning of the next line.

6. The line return 0; tells the compiler that the function is finished and the pro-
gram can exit.

7. Finally the line } tells the compiler that this is the end of the function.

Type this simple program into the computer and run it to check that it works. If
you made a typing error (a very common one is to forget the ’;’ on one of the lines),
the C compiler will provide a message in the emacs window to help you find your error
and correct it. Now try a very simple change and alter the program to display your
own name on the screen.

Unlike some other programming languages, the compiler differentiates between up-
per case and lower case letters. For example, as far as the compiler is concerned,

11

Printf, PRINTF, and printf are all completely different functions. Try changing the
case of a few letters in the program to convince yourself that this is indeed true. Take
care when typing in programs to get the case right!

5 Variables, assignments, expressions and opera-

tors

The next program writes out a table of the squares of the first 10 natural numbers. To
do this several new concepts are introduced together, including defining and assign-
ing values to variables, expressions to do mathematics, loops and formatted output.
Variables are assigned values using the symbol = (often read as “set equal to”.) The
assignment statement takes the form

“variable” = “value”; where “value” can be a number or algebraic expression.

/*
findsquare.c - This program prints out the squares of a set of
consecutive natural numbers

*/
#include <catam.h>
int i; /* number */
int isquare; /* squared number */
int ilow; /* smallest number */
int ihigh; /* largest number */
int main(void)
{
/* Set smallest and largest number */
ilow = 1;
ihigh = 10;
/* Compute and display table */
for (i=ilow ; i<=ihigh ; i=i+1)
{
isquare = i*i;
printf("%4d %4d\n",i,isquare);

}
return 0;

}

1. The lines

/*
findsquare.c - This program prints out the squares of a set of
consecutive natural numbers

*/

12

are a comment, which describes what the program is meant to be doing. A com-
ment is any set of characters between /* and */ and is ignored by the compiler.
Comments can appear anywhere in a line and are used to make the program
clearer for reading by humans. Even if you wrote the program yourself, you will
still find it easier to understand and debug if you comment it.

2. C requires each variable and the type of data it contains to be declared before use.
Variables are defined at the beginning of a program and, as you will see later, at
the beginning of a procedure or function. A declaration tells the compiler what
types of variable the program will use and what their names are. For example:

int i; /* number */
int isquare; /* squared number */
int ilow; /* smallest number */
int ihigh; /* largest number */

The text int tells the compiler that the variable following is an integer. All
the variables in this program are integers. Alternatively, you could use double
which is a standard real number that can be used with all the CCATSL library
procedures. double quantities (which we shall use in section 6.3) are treated
and stored differently in the computer memory than int quantities. C provides
several other basic types — see the CCATSL manual for more details.

3. The variables ilow and ihigh are assigned values 1 and 10 respectively by the
assignment statements:

ilow = 1;
ihigh = 10;

4. The syntax of the for loop is as follows. The loop starts with the word for. The
next statement is the loop counter condition (i=ilow ; i<=ihigh ; i=i+1)
which tells the computer to execute the loop once for each value of i from ilow
to ihigh, adding 1 to i after each loop (i.e., once with i = 1 = ilow, once
with i = 2 = ilow + 1, . . . , once with i = 10 = ihigh). The computer sets
i = ilow then it checks if i ≤ ihigh and if it is it executes the two statements
enclosed in the { — } block. i is then incremented by 1, the computer re-
checks if i ≤ ihigh and if true it repeats the two statements. This continues
until i > ihigh. When i > ihigh, the loop ends and the computer carries on
with the first line after the loop. Although the compiler does not care whether
or not you leave blank lines or blank space between variables and operators,
it is a considerable help when checking the logic of your program if you get
into the habit of indenting the statements in loops. Decide on your policy for
indentation and use of blanks and try to stick to it. You will find that when
you type in a program the editor can automatically indent it for you.

13

5. The main work of the program is carried out in the two statements that form
the loop. The assignment statement

isquare = i*i;

computes the square of i and assigns that value to the variable isquare. The
“*” is an “operator” that means “multiply”. Other operators include:
/ (divide)1

+ (add)
- (subtract)
See “Types” in the CCATSL manual for further information on variable types
and operators.

6. The printf statement

printf("%4d %4d\n",i,isquare);
displays the values of the variables i and isquare on the same line in a window
(that automatically comes up on the screen). The string "%4d %4d\n" tells
the compiler the format in which to print the numbers. "%4d" tells the compiler
that we want to print out an integer number with a width of 4 characters. There
are two spaces printed between the two integers and after the second integer
we want to print a newline. Specifying the width of the integers ensures the
numbers are printed out in two neat columns.

Exercise:

Type the program into the computer and run it to check that it works. Then try some
small changes to the program to modify what it does. For example you could

• Display a table of squares of the natural numbers 100–115

• Display a table with the squares of the odd numbers

• Display a table with i, 2*i, 3*i and 4*i

• Make the tables more user friendly by adding a heading to the columns using some
extra printf statements. Why should you not place these statements within the
for loop?

6 Program flow control

The for structure is one of several control structures available for programming in C.
In this section we will describe other control structures and invite you to change the

1Note that the meaning of divide depends on the nature of the variables; e.g., 1/2 takes the value 0
while 1.0/2.0 has the value 0.5

14

program of section 5 to carry out the same simple task but using other control
structures.

6.1 while loops

First consider the while loop. A very simple example which writes out the
factors of a natural number is the program:

#include <catam.h>
int i;
int j;
int k;
int main(void)
{
i = 360; /* number to factor */
j = 1;
while (j <= i)
{
k=i/j;
if(k*j == i)
{
printf("%4d",j);

}
j=j+1;

}
printf(" are factors of %4d\n",i);
return 0;

}

The syntax of the while loop in this example is as follows. The loop starts with
the word while. Then comes the loop test condition (i<=10) which takes the value
TRUE if i is less than or equal to 10 and FALSE otherwise. Then comes a set of
statements enclosed between the single indented { and }. If the loop test condition is
TRUE, these statements are executed. The computer then re-evaluates the loop test
condition, and if TRUE repeats the statements. This happens again and again until
the loop test condition becomes FALSE; then the loop ends and the computer carries
on with the first line after the loop.

The mathematically rather mysterious looking statement

j=j+1;

means “set the value of j to its old value plus 1”. Can you work out how many times
the computer will do the loop?

The statement

15

if(k*j == i)

is the first conditional test statement we have met — more on these later. If k
multiplied by j is equal to (i.e., ==) i, then the statements between the triple-indented
{ and } are executed. This is the case if j is a factor of i; j is printed to the screen.
What value do you think k takes if j is not a factor?

Exercise:

Change the program in section 5 to use a while loop in place of the for loop. There
are advantages and disadvantages in using each of these control structures. Try to
think of an example that would be simpler to write using a while loop than a for
loop. for loops are particularly useful when manipulating array and string variables
(see section 8).

6.2 do–while loops

A very simple example which again writes out the first ten natural numbers is
the program:

#include <catam.h>
int i;
int main(void)
{
i = 1;
do
{
printf("%10d\n",i);
i = i+1;

}
while (i <= 10);
return 0;

}

The syntax of the do–while loop is as follows. The loop starts with the word do.
Then come two statements enclosed by { — } that are executed at least once even if
the loop test condition is FALSE. Then comes the word while followed by the loop test
condition (i<=10). If the loop test condition is TRUE then the computer repeats the
two statements after do. When the loop test condition becomes FALSE, the loop ends
and the computer continues with the first line after the loop. This is very similar to
the while loop apart from the fact that the test condition is evaluated after executing
the two statements rather than before. Sometimes one form is more convenient to
use than the other. Can you think of an example?

16

Exercise:

Change the program in section 5 to use a do–while loop in the place of the while
loop. Are there any situations you can think of where the do–while loop could not
replace a while loop?

6.3 The if–else control structure

This control structure allows you to execute different sets of instructions de-
pending on whether a test condition is TRUE or FALSE. As an example, let
us consider the following program that uses the quadratic formula to solve a
quadratic equation and gives the real or complex solutions as appropriate.

/*
tryif.exe - Solve quadratic equation illustrating if-else
statements.

*/
#include <catam.h> /* declarations of catam functions*/
double const tiny=1.0E-20; /* Small non-zero number */
double a,b,c; /* Coefficients of x*x, x and 1 */
double r,i; /* Real & imaginary parts of solution */
double tmp1,tmp2; /* Temporary real variables */
int main(void)
{
a = 0;
b = 0;
c = 0;
do
{
printf("Enter a, b and c ");
fflush(stdout);
scanf("%lf %lf %lf",&a,&b,&c);
if (fabs(a) <= tiny)
{
printf("Not a quadratic, a is too close to zero\n");

}
}

while (fabs(a) <= tiny);
tmp1 = b*b-4*a*c;
if (tmp1 >= 0)
{
tmp1 = sqrt(tmp1)/(2*a);
tmp2 = -b/(2*a);
r = tmp2 + tmp1;
printf("Solution 1 is %14.4f\n",r);
r = tmp2 - tmp1;

17

printf("Solution 2 is %14.4f\n",r);
}

else
{
r = -b/(2*a);
i = sqrt(-tmp1)/(2*a);
printf("Solution 1 is %14.4f + %14.4f i\n",r,i);
printf("Solution 2 is %14.4f - %14.4f i\n",r,i);

}
return 0;

}

1. The program line
double const tiny=1.0E-20; /* Small non-zero number */

is a statement called a constant declaration. Constants are declared at the be-
ginning of the program and are set to a fixed value that cannot be changed.
In this case we have declared a constant called tiny which is the magnitude of
the smallest value of the variable a that the program considers to be non-zero:
1.0E-20 means 1.0× 10−20. Compare this with the line
double a,b,c;

which declares a, b and c to be real number variables. When the program is
started they are each set to the value 0 by the first three lines of the main()
function, but they can be changed later on.

2. The first if control structure does not have an associated else and is contained
in a do–while loop. The computer repeats the instructions in the loop until the
user has typed in a value of a with absolute value (fabs(a)) that is bigger than
tiny (i.e., far enough from zero to be considered non-zero). If the absolute value
of a, is less than or equal to tiny (too close to zero to be considered non-zero)
then the line

printf("Not a quadratic, a is too close to zero\n");
is executed and the user is prompted to enter a, b, and c again.

3. Note that the statements

printf("Enter a, b and c ");
fflush(stdout);
scanf("%lf %lf %lf",&a,&b,&c);

display the text Enter a b and c on the screen but do not move the output to
the beginning of the next line. When writing on the screen the computer usually
waits until it has several lines to print before displaying them to speed things
up. The line fflush(stdout); forces the computer to print whatever it has
waiting.

4. The line

18

scanf("%lf %lf %lf",&a,&b,&c);

will wait until the user types in three real numbers separated by spaces (not
commas) before continuing with the next line. The "%lf %lf %lf" tells the
computer that it is waiting for three real numbers. The three numbers are stored
in the real variables a, b, and c. Note that the “Enter” key can be used instead
of spaces when typing in the three numbers.

5. tmp1 is initially set to b*b-4*a*c. The if–else control structure tests the value
of tmp1 to decide whether to output real or complex solutions. If tmp1 is greater
than or equal to zero, then the lines

tmp1 = sqrt(tmp1)/(2*a);
tmp2 = -b/(2*a);
r = tmp2 + tmp1;
printf("Solution 1 is %14.4f\n",r);
r = tmp2 - tmp1;
printf("Solution 2 is %14.4f\n",r);

are executed. Following some simple mathematics, the real roots are written to
the display. The syntax of the printf statement is slightly different to cope
with the formatting of the double output. The format string "%14.4f" tells
the computer to output the real variable in a field 14 characters wide with four
decimal places of accuracy.

6. The expression sqrt(tmp1) computes the square root of tmp1 (see section 9 for
more details on functions).

7. If tmp1 is negative then the lines

r = -b/(2*a);
i = sqrt(-tmp1)/(2*a);
printf("Solution 1 is %14.4f + %14.4f i\n",r,i);
printf("Solution 2 is %14.4f - %14.4f i\n",r,i);

are executed instead and the complex roots are written to the display.

Exercise:

Type the program into the computer and run it to check that it works. Then try some
changes to the program to modify what it does. For example you could

• Check if the two roots are the same and, if so, only output one of them. (Because
the computer only stores real numbers approximately you will find that checking
if a real number is equal to zero will not work — you will need to use a test that
checks if a real number is “close” to zero).

• Write a much simpler program to find the square roots of a number, whether
that number is positive or negative.

19

• Think of some examples to test some of the other logical operators i.e.,
== equal to (=)
!= not equal to (6=)
> greater than (>)
< less than (<)
<= less than or equal to (≤)

6.4 The switch-case-break control

The if–else pair should be your default way of controlling the possible branch-
ing in execution. Sometimes though switch-case-break contributes to neater-
looking code.

/* switch.c a switch-case-break example program */
#include<catam.h>
int option;
int main(void)
{
do
{
printf("1: Euler’s \n");
printf("2: Leap Frog \n");
printf("3: RK \n\n");
printf("4: Quit\n\n");
printf("Please enter your choice:");
fflush(stdout);
scanf("%d",&option);
switch(option)
{
case 1:
printf("Attempting Euler\n\n");
/* Code to solve ODE using Euler */
break;

case 2:
printf("Attempting Leap frog\n\n");
/* Code to solve ODE using LF */
break;

case 3:
printf("Attempting RK\n\n");
/* Code to solve ODE using RK */
break;

}
}

while(option<4);
return 0;

20

}

The most error prone aspect of switch is that at the end of each case, the command
break; must appear. Otherwise, the program will “fall through” and execute the next
case. Try leaving out one of the break; commands and watch with horror what
happens.

7 MainCL() versus main()

We will now see how CCATSL can make the programs switch.c and tryif.c of the
previous section more tidy.

1. Open switch.c and change int main(void) to int MainCL(void).

2. Now compile the program. Using MainCL tells the compiler that we may use
graphics in the program, and that we want graphical windows.

3. If asked by the compiler, select “Change program type to Window mode.”

From now on we shall use MainCL() instead of main() when we write a program that
only works in the CCATSL implementation of C. All functions which are specific to
CCATSL end with CL and will not work with a standard C compiler. The advantage
of using MainCL() is that it allows us to do everything main() allows, and more. As
a default, you should use MainCL(). One thing to be aware of, when you now run the
program, is that output sent to stdio (e.g. with printf(), but not PrintfCL()) does
not appear in the buffer, but in a new standard input/output window. To print
the content of the stdio window, select the option Print Stdio data from the control
box (the Gnu icon in the top left corner) of the CCATSL window.

7.1 Entering data using CCATSL

When we wrote a program to find the solutions of a quadratic, we used scanf()
to enter the coefficients a, b and c. Since the format of scanf() is not very
friendly, CCATSL contains some user-friendly alternatives which can be used
when MainCL() is used. To read an integer, we replace the three lines of code

printf("Please enter your choice:");
fflush(stdout);
scanf("%d",&option);

with the statement option=ReadIntCL("Please enter your choice:",1);. Not
only do we not have to worry about forgetting the & in &option or if it should be %d
or %lf, but we also get to set a default value!

21

8 Plotting graphs and sending output to a file

By the end of this section, you will have written a fairly long program which we now
introduce in stages.

8.1 Arrays

We open the program findsquare of section 5, and save it as displaysquares.
We now amend displaysquares.c as follows:

/*
displaysquares.c - This program computes the squares of a set
of consecutive natural numbers and plots a graph of the results

*/
#include <catam.h>
int i; /* number */
double ri[10]; /* array of 10 real numbers */
double rsquare[10]; /* array of 10 real squared numbers */
WindowCT w1, w2; /* ID of a Window Constant for output */
int MainCL(void)
{
/* Define, open and prepare the window for output */
w1 = WindowCL(0.1,0.1,0.8,0.8);
WShowCL(w1);
WTitleCL("Display demo");
/* Compute and display table */
for (i=1 ; i<=10 ; i=i+1)
{
ri[i-1] = i;
rsquare[i-1] = i*i;
PrintfCL(1,i,"%f",ri[i-1]);
PrintfCL(16,i,"%f",rsquare[i-1]);

}
/*
Next section, you should add the code to plot a graph here

*/
return 0;

}

We again go through each new element in this program.

1. In the variables list, we no longer have isquare, but instead have two new vari-
ables, rsquare and ri,

double ri[10]; /* array of 10 real numbers */
double rsquare[10]; /* array of 10 real squared numbers */

which are arrays of ten double quantities. An array is simply a matrix of values,

22

in this case a one dimensional matrix or vector. Eventually, the routine that plots
the graph of rsquare against ri (see section 8.2) expects to plot double arrays
and will fail if you try to plot int arrays.

2. The variable type WindowCT is CCATSL-specific, as are all types ending with CT,
and colours ending with CC. They will not be recognised by other C compilers.

3. The for loop has also changed:

ri[i-1]=i;
rsquare[i-1]=i*i;

These lines illustrate how to address the elements of the arrays. The index i of
the array runs from 0 to 9 so ri[i] is the (i+1)th element of the ri array2.

4. In a “Window mode” program using the printf function will display text in the
standard input/output window. Instead we can create a dedicated window and
display the text in that window. The lines

WindowCT w1, w2;
...
w1 = WindowCL(0.1,0.1,0.8,0.8);
WShowCL(w1);
WTitleCL("Display demo");

define a variable w1 which is used to refer to the window, and then create and
open the window on the screen. The four numbers in the WindowCL function set
the size of the window as a proportion of the screen (the order being left, bottom,
right, top.)

5. If you wish to play with fancy elements of the window (colours etc.) you will
need to use the WindowExCL() function (see the CCATSL manual).

6. The WShowCL function actually draws the window on the screen and gives it the
title given in WTitleCL.

7. The PrintfCL function is equivalent to printf except it has two initial arguments
corresponding to the column and row where the text is to appear.

Exercise:

Type the program into the computer (or edit the program it was derived from) and
run it to check that it works. Then try some small changes to the program to modify
what it does. For example you could

• Change the for loop to create an array containing the first 10 factorials.

2Note that in this case the variable ri[10] is not defined and that an attempt to use it is likely
to cause an error; unfortunately the compiler doesn’t check for this sort of thing

23

• Add some code to compute the differences between consecutive squares.

• Change the double arrays to int arrays. What other things need to be changed
to get the program to run? (Hint: don’t forget PrintfCL)

8.2 Plots and windows

We will now add the necessary code to plot a curve in the default plotting win-
dow. At the end of the program, just before the final return 0; statement, we
add the following lines of code:

PauseCL();
/* Plot ri against rsquare using defaults */
XYCurveCL(ri,rsquare,10,1,JOIN,BlueCC,AUTOAXES);

1. The PauseCL() procedure stops the program until you press a key and is a
useful procedure to divide up the various parts of a program and allow you to
produce paper copies of the graphical output between the pause procedures (see
section 10.4).

2. The line

XYCurveCL(ri,rsquare,10,1,JOIN,BlueCC,AUTOAXES);

plots the array rsquare of real numbers against the array ri of real numbers.
ri contains the x coordinates and rsquare contains the y coordinates of the
graph which will be plotted. The next item in the list, (10), specifies that 10
values from the arrays should be plotted (i.e., all of them). The data points
will be plotted joined (JOIN) by blue (BlueCC) lines and the axis ranges will be
calculated automatically from the data (AUTOAXES). The CCATSL data plotting
procedures all work with double data, hence the need to convert the ints we
had in the original program into doubles.

Add the extra lines to your existing program and run it to check that it works.

While plotting to the default plotting window is very straightforward, you
will probably prefer to manually set up one or more plotting windows using
CCATSL routines. We will now add the necessary code to define, open and
clear a window and to plot the curve in that window. In CCATSL, a window
is identified by a variable (of type WindowCT) that we must add to the variable
list. At the end of the program, just before the XYcurveCL statement, we add
the following lines of code:

/* Define and display window for graph */
w2 = WindowCL(0.5,0.1,0.9,0.9);
WShowCL(w2);
WClearCL();

24

WTitleCL("Plotting graph");

As before, the line

w2 = WindowCL(0.5,0.1,0.9,0.9);

defines a new window w2, a rectangle in the main “parent” (exe) window. Once the
window is shown (and hence selected), the WClearCL() command clears the current
window.

Exercise:

Add the extra lines to your existing program and run it to check that it works. Before
modifying your program, save it in a separate file, as we will be using this program
later on in section 10.1 when we plot two graphs on the same axes.

Now try some small changes to the program to modify what it does. For example
you could

• Experiment with the size and colours of the window.

• Draw a different type of curve e.g. a quadratic.

• Superimpose two graphs in the same window (use PRESET in the place of AU-
TOAXES for the second graph).

• Add an extra window and plot something in that window too.

8.3 Writing output to a file

In this section, we will modify the program we created in sections 8.1 and 8.2 so that
it writes output to a file instead of the screen. The new lines of code and modified old
lines of code that are required to output the results to a file are as follows.

1. Define the output file by adding a variable fv of type FILE to the variable list:

FILE *fv; /* file variable */

2. At the beginning of the MainCL function open a file for output by adding the
extra line of code:

fv = fopen("moresqop.dat","w");

3. After the two PrintfCL statements, Add the fprintf below to write the re-
sults to the file. The fprintf statement works just like the printf statement
but writes to a file instead of printing on the screen. The fprintf statement has
fv at the beginning of the argument list to tell it which file to write to:

fprintf(fv,"%14.4f %14.4f\n",ri[i-1],rsquare[i-1]);

25

4. The fprintf actually writes into temporary memory. To tell CCATSL that we
have nothing more to add to moresqop.dat, insert the line

fclose(fv);

just before the return 0; line at the end of the program. This transfers the data
from the temporary memory to the file and closes it.

Exercise:

Type the program into the computer and run it to check that it works. Open the
output file moresqop.dat to see the output. You can open a file in Emacs by selecting
Files then Open File... from the menu bar. To practice working with output files
you could

• Add headings to the table of squares in the output file.

• Change one of the programs from an earlier section to produce output to a file
as well as to the screen.

9 Functions

Functions are self-contained structures contained in a C program that carry out
particular tasks. They can take several variables as input and can return a value
that can be used as part of an expression as though it were an ordinary vari-
able. For example we could write a function Ffact(i) to compute the factorial
of an integer variable i. It could be used to compute 2∗3!+1 (result) as follows:

result=2*Ffact(3)+1;

9.1 Functions not returning a value

Here is a typical function which does not return a value. It calculates the mean
of an array of values. In some other languages a function which does not return
a value is called a procedure. C does not differentiate between functions and
procedures though.

void GetMean(int npts, double *xmean)
{
int n;
double xsum;
xsum = 0;
for (n=1;n<=npts;n++)
{
xsum += xdat[n];

26

}
*xmean = xsum/npts;

}

The layout is very similar to that of the simple programs in sections 4 and 5.

1. The line void GetMean(int npts, double *xmean) the function GetMean and
the main (calling) program to share the variable. If the * is not included, as for
npts, then only the value is passed and any changes made to the variable within
the function will be lost when the function exits.

2. The lines

int n;
double xsum;

define some variables. These variables exist only inside the function. The main
program cannot access these variables. Also, if the main program were to contain
an integer variable n, the computer would treat it as a different variable to the
integer variable n in the procedure.

3. The statements

{
int n;
double xsum;
xsum = 0;
for (n=1;n<=npts;n++)
{
xsum += xdat[n];

}
*xmean = xsum/npts;

}
do the work of the function. A one statement for loop computes the sum xsum of
the array of values xdat (assumed to exist as a variable in the calling program).
The next statement computes the mean of those values. The calling program can
then use the value of xmean which has been calculated; but it cannot use xsum,
which was only accessible within the procedure.

Here is an example program that uses GetMean.

/*
average.c - Calulate the average of the squares of 1..50

*/
#include <catam.h> /* declarations of catam functions */
int i,nvalues;
double xbar;
double xdat[100];

27

void GetMean(int npts, double *xmean)
{
int n;
double xsum;
xsum = 0;
for (n=1;n<=npts;n++)
{
xsum += xdat[n];

}
*xmean = xsum/npts;

}
int main(void)
{
nvalues = 50;
for (i=1;i<=nvalues;i++)
{
xdat[i] = i*i;

}
GetMean(nvalues,&xbar);
printf("xmean = %14.4f\n",xbar);
return 0;

}

1. After the #include statement, a list of global variables should follow. The
global variables are i, nvalues, xbar and xdat and can be used anywhere in
the program, by any function.

2. The 11 lines of the function GetMean should placed after the global variables
section of the program and before the main function.

3. As explained, the variables defined in the function GetMean are called local
variables and can only be used in that function.

4. The main program fills the xdat array with a sequence of square numbers. When
the computer reaches the function call

GetMean(nvalues,&xbar);

the constant npts in the procedure is set equal to nvalues from the main program
and the variable xmean in the procedure is set equal to xbar from the main
program. The & before xbar means that we want to pass a pointer (the address)
to xbar, not the value of the variable so that the main program can see the
changes made by the function. Control transfers automatically to the beginning
of the function GetMean and the statements in the function are executed.

5. When the computer reaches the final statement in the function, the value of xbar
in the main program is equal to xmean in the function and control then returns
to the statement immediately after the function call, i.e.,

28

printf("xmean = %14.4f\n",xbar);
which prints out the value of the mean.

Exercise:

Type in the program average.c and check that it runs. Then try some small changes
to the program to modify what it does. For example you could

• Add code to the procedure to compute the standard deviation of the data and
return it to the calling program.

• Remove xmean from the list of passed constants and variables and make it a
variable in the main program instead.

• Write another function to read in values of xdat that you enter into the computer.

• Write another function to plot xdat[i] against i on the screen. (Hint: you will
have to use MainCL() instead of main() to do this.)

9.2 Functions returning a value

Functions can also return a value directly to the calling program. A function can
be referenced by including it within an expression as though it were an ordinary
variable. For example:

double coshsq(double t)
{
double cs;
cs = (exp(t)+exp(-t))/2;
return cs*cs;

}
This function computes the square of the hyperbolic cosine of a real variable
t and returns it as coshsq. The double before the function name tells the
compiler that the value returned by the function is a real number. Here is a
very simple test program that produces a table of values of x, cosh2(x), sinh2(x)
and cosh2(x)− sinh2(x). It uses the function coshsq to calculate cosh2(x) and
calculates sinh2(x) directly.

#include <catam.h>
double x,sinhsq,z;
double coshsq(double t)
{
double cs;
cs = (exp(t) + exp(-t))/2;
return cs*cs;

29

}
int main(void)
{
x = -2.0;
while (x <= 2.01)
{
sinhsq = pow(((exp(x)-exp(-x))/2),2);
printf("%6.2f %6.2f %6.2f %6.2f\n",x,coshsq(x),sinhsq,coshsq(x)-

sinhsq);
x += 0.2;

}
return 0;

}
In the function, the line return cs*cs; sets the return value of the function
and in the main program the line

printf("%6.2f %6.2f %6.2f %6.2f\n",x,coshsq(x),sinhsq,coshsq(x)-
sinhsq);

writes the value (x) of x, computes and writes the value (coshsq(x)) of cosh2(x), writes
the value (sinhsq) of sinh2(x) and finally computes and writes the value (coshsq(x)-
sinhsq) of cosh2(x)− sinh2(x) for the current value of x.

Exercise:

Type in the program hypertrig and check that it runs. Then try some small changes
to the program to modify what it does. For example you could

• Write a function to compute sin(x)/x and use it to plot the graph of sin(x)/x

• Write a function length(x,y) to compute
√

x2 + y2

9.3 Other predefined functions

This section contains a list of some of the basic C and CCATSL functions that
are available for use together with a very brief description of their purpose. In
the following list r and s are general double quantities and i is a general int
quantity. The functions starting with a capital letter are CCATSL functions
although they are used in exactly the same way as the basic C functions.

fabs(r), abs(i) absolute value of quantity
sqrt(r) square root of quantity
sin(r), cos(r), tan(r) sine, cosine and tangent of quantity
asin(r), acos(r) inverse sine and cosine of quantity
atan(r) inverse tangent of quantity
exp(r) exponential of quantity

30

log(r) natural logarithm of quantity
log10(r) log to the base 10 of quantity
floor(r) largest integer ≤ r — returns double
ceil(r) smallest integer ≥ r — returns double
pow(r,s) computes rs — returns double

You could investigate these functions further by writing a program to tabulate or
plot some of them.

10 More advanced plotting

10.1 Two plots on the same graph with user defined ranges
and axis labels

We start with a copy of displaysquares.c that we saved at the end of sec-
tion 8.2. We will now add the necessary code to plot two graphs with user
defined ranges and axis labels. Remove (or comment-out using /* ... */ the
line near the end of the program:
XYCurveCL(ri,rsquare,10,1,JOIN,BlueCC,AUTOAXES);

Instead, add the following lines of code:

/*
Plot rsquare and ri against ri using
user-specified axes and titles

*/
XRangeCL(-10,20);
YRangeCL(-100,150);
XAxisLabelCL("natural numbers");
YAxisLabelCL("square / natural");
/* Plot ri against rsquare using defaults */
XYCurveCL(ri,rsquare,10,1,JOIN,BlueCC,DRAWAXES);
XYCurveCL(ri,ri,10,1,JOIN,RedCC,PRESET);

1. The functions XRangeCL and YRangeCL define the ranges of the x and y axes to
be plotted.

2. Similarly, XAxisLabelCL labels the x-axis and YAxisLabelCL the y-axis.

3. Most importantly, you must replace AUTOAXES with DRAWAXES so that the user-
specified axis ranges will be used. If you forget, CCATSL will revert to automatic
calculation of the ranges.

4. The second XYCurveCL procedure plots ri against itself (i.e., plots the curve
y = x) in red (RedCC) using the pre-existing axes (PRESET).

31

Add the extra lines to your existing program and run it to check that it works.
You could investigate other parameters associated with the graph (e.g. Axes’ colours)
using the CCATSL manual (section 3.3.2).

10.2 Using CurveCL to plot a function

The following example program is similar to our previous graph plotting pro-
grams, but computes squares using a function.

/* moresquares.exe - This program plots a graph of
the function y = x*x */

#include <catam.h> /* declarations of catam functions */
int npts; /* number of points to be plotted */
double rilow; /* smallest number */
double rihigh; /* largest number */
WindowCT w1, w2; /* ID of windows for output */
double fun(double x)
{
return x*x;

}
int MainCL(void)
{
/* Define, open and prepare the window for output */
w1 = WindowCL(0.1,0.3,0.5,0.9);
WShowCL(w1);
WTitleCL("PrintfCL demo");
/* Set smallest and largest numbers */
rilow = 1;
rihigh = 10;
npts = 200;
PrintfCL(2,2,"Number of points is %d",npts);
PauseCL();
/* Define and display window for graph */
w2 = WindowCL(0.5,0.1,0.9,0.9);
WShowCL(w2);
WClearCL();
WTitleCL("CurveCL demo");
/* Plot rsquare against ri using defaults */
CurveCL(fun,rilow,rihigh,npts,BlueCC,AUTOAXES);
return 0;

}
By now you should be familiar with most aspects of this program. The only

new command is
CurveCL(fun,rilow,rihigh,npts,CTblue,AUTOAXES);

which plots the function fun for the range rilow < x < rihigh. npts data points
will be plotted joined by blue (BlueCC) lines and the axis ranges will be calculated

32

automatically from the data (AUTOAXES). The simple function fun computes the square
of its argument x.

Exercise:

Type the program into the computer and run it to check that it works. Then try some
small changes to the program to modify what it does. For example you could

• Plot a different function with a different number of points and/or a different
range of x.

• Plot more than one function on the same graph (see section 10.1.)

10.3 Plotting graphs point by point

Sometimes, we may wish to take full control on the way a graph is created. Here
we demonstrate a short program to draw the numerical solution for an ODE,
point by point.

/* euler.c a program to plot the numerical solution of an ODE */
#include<catam.h>
WindowCT w;
double derivative(double y, double t)
{
return y*y;

}
double euler(int n, double t0, double h, double y0)
{
int i; /*counter*/
double yn=y0; /*current value of yn*/
double tn=t0; /*current time */
for(i=1; i<=n; i=i+1)
{
XYDrawCL(tn,yn);
yn=yn+h*derivative(yn,tn);
tn=tn+h;

}
return yn;

}
int MainCL(void)
{
int n;
double t0;
double y0;
double h;
y0=ReadDoubleCL("Enter initial value",1);

33

t0=ReadDoubleCL("Enter initial time",0);
h=ReadDoubleCL("Enter step size",0.01);
n=ReadIntCL("Enter number of steps",20);
w=WindowCL(0.1,0.1,0.8,0.8);
WShowCL(w);
XRangeCL(t0,t0+n*h*1.3);
YRangeCL(y0-derivative(y0,t0)*n*h*5,y0+derivative(y0,t0)*n*h*5);
GAxesCL();
XYMoveCL(t0,y0);
printf("t=%10.4lf, y=%10.4lf",t0+n*h,euler(n,t0,h,y0));
return 0;

}

1. You first need to draw a graph by defining the XRangeCL and YRangeCL as we
saw earlier in this section.

2. You then need to instruct CCATSL to draw the axes, using GAxesCL.

3. XYMoveCL(x,y) moves the pen to position (x, y) without drawing a physical line
on the screen.

4. Conversely, XYDrawCL(x,y) will draw a straight line starting at the current po-
sition of the pen and ending at (x, y).

Exercise:

• The output of euler.c is currently messy with the standard input/output win-
dow obscuring the plot. How can you tidy it up a bit?

• Can you modify the program to solve an ODE using the Leap-frog method? the
RK4 method?

• By consulting the CATAM Software Library manual, try to extend the Euler
plotter to plot the solution to an ODE in two dimensions (Hint: you will need to
use XYZDrawCL and XYZMoveCL).

• Can you combine these with the program switch.c to create a versatile ODE
solver?

10.4 Producing printouts of plots using metafiles

This section will describe how to produce a metafile of a plot. A metafile is a small
and quickly printable file of graphics instructions. Metafiles can be printed out or
included in Word documents. You may recall from section 3.5 that alternatively, just
hitting Alt-PrintScreen will save the active window onto the clip-board from where
it can be pasted into Microsoft Word.

34

1. Run the program displaysquares.c (section 10.1).

2. When the program pauses just before drawing the two curves, click the mouse
in the control menu box (the Gnu icon in the top left hand corner of the main
parent (exe) window).

3. Select the Record current window graphics menu option and only then
press a key to continue.

4. When the program pauses just before the final return 0; with the message
in the menu bar: ... termination --- Press any key to quit, click the
mouse in the control menu box again and select the Save recording as
metafile menu option. Then press any key to continue.

5. A standard save-as box appears where you are asked to give the file a name.
Because of network timing issues it is unfortunately not possible to reliably
save metafiles across the PWF network, i.e., to the U: disk. If you do try
to save metafiles to U:, the computer is likely to crash and will need to be
rebooted. Therefore, you should specify a local filename such as C:\Documents
and Settings\<metafile name> or a floppy disk file such as A:\<metafile
name>.

You can display and print metafiles directly from your programs. Alternatively
you can insert them into a Microsoft Word document by clicking Insert then Picture
and then choose From file and select the metafile you have just created.

10.5 Creating metafiles from within your program

Another way to produce a metafile is to include the instructions to start recording and
saving a metafile within your code.

1. In displaysquares.c, just after the PauseCL(); command, insert the statement
GRecordCL();. This causes the start of a recording of a metafile.

2. Just before the return 0; statement, insert the line GSaveCL("");

The program will run and will prompt you for a name for the new metafile it just
created.

Try producing plots and metafiles of other simple functions by editing the program.
Try labelling the plot axes and superimposing two or more plots.

35

