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Introduction

1 General

Please read the whole of this introductory chapter before beginning work on the projects. It
contains important information that you should know as you plan your approach to
the course.

1.1 Introduction

The course is a continuation of the Part IB Computational Projects course. The aim is to
continue your study of the techniques of solving problems in mathematics using computational
methods.

As in Part IB, the course is examined entirely through the submission of project
reports; there are no questions on the course in the written examination papers. The de�nitive
source for up-to-date information on the examination credit for the course is the Faculty of
Mathematics Schedules booklet for the academic year 2025-26. At the time of writing (July
2025) the booklet for the academic year 2024-25 states that

No questions on the Computational Projects are set on the written examination pa-

pers, credit for examination purposes being gained by the submission of reports. The

maximum credit obtainable is 150 marks and there are no alpha or beta quality marks.

Credit obtained is added directly to the credit gained on the written papers. The max-

imum contribution to the �nal merit mark is thus 150, which is the same as the

maximum for a 16-lecture course. The Computational Projects are considered to be

a single piece of work within the Mathematical Tripos.

1.2 The nature of CATAM projects

CATAM projects are intended to be exercises in independent investigation somewhat like those
a mathematician might be asked to undertake in the `real world'. They are well regarded by
external examiners, employers and researchers (and you might view them as a useful item of
your curriculum vitae).

The questions posed in the projects are more open-ended than standard Tripos questions: there
is not always a single `correct' response, and often the method of investigation is not fully
speci�ed. This is deliberate. Such an approach allows you both to demonstrate your ability
to use your own judgement in such matters, and also to produce mathematically intelligent,
relevant responses to imprecise questions. You will also gain credit for posing, and responding
to, further questions of your own that are suggested by your initial observations. You are allowed
and encouraged to use published literature (but it must be referenced, see also �5) to substantiate
your arguments, or support your methodology.

1.3 Timetable

You should work at your own speed on the projects contained in this booklet, which cover a
wide range of mathematical topics.
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A lecture covering administrative aspects of the course is given towards the start of the Michael-
mas Term. You may also wish to take advantage of programming tutorials available on-line if
you did not attempt the Computational Projects course in Part IB.

Your write-ups must be submitted by the second week of the Easter Term (see �6.2 below).
Please also note that you must be available in the last week of Easter term in case you
are called either for a routine Viva Voce Examination, or for an Examination Interview or an
Investigative Meeting if unfair means are suspected (see �5.2 below).

1.3.1 Planning your work

� You are strongly advised to complete all your computing work by the end of the Easter
vacation if at all possible, since the submission deadline is at the start of Easter Term.

� Do not leave writing up your projects until the last minute. When you are writing
up it is highly likely that you will either discover mistakes in your programming and/or
want to re�ne your code. This will take time. If you wish to maximise your marks, the
process of programming and writing-up is likely to be iterative, ideally with at least a
week or so between iterations.

� It is a good idea to write up each project as you go along, rather than to write all the
programs �rst and only then to write up the reports; each year several students make this
mistake and lose credit in consequence (in particular note that a program listing without
a write-up, or vice versa, gains no credit). You can, indeed should, review your write-ups
in the �nal week before the relevant submission date.

1.4 Programming language[s]

As was the case last year, the Faculty of Mathematics is supportingMatlab for Part II. However,
you are free to use any programming language that you choose as long as it does not make the
programming task trivial (see discussion below). During your time in Cambridge the University
will provide you with a free copy of Matlab for your computer. Alternatively you can use the
version of Matlab that is available on the Managed Cluster Service (MCS) that is available at
a number of UIS and institutional sites around the Collegiate University.

1.4.1 Your copy of Matlab

All undergraduate students at the University are entitled to download and install Matlab on
their own computer that is running Windows, MacOS or Linux; your copy should be used for
non-commercial University use only. The �les for download, and installation instructions, are
available at

http://www.maths.cam.ac.uk/undergrad/catam/software/matlabinstall/matlab-personal.htm.

This link is Raven protected. Several versions of Matlab may be available; if you are down-
loading Matlab for the �rst time it is recommended that you choose the latest version.

1.4.2 Programming guides and manual[s]

The Faculty of Mathematics has produced a booklet Learning to use Matlab for CATAM

project work , that provides a step-by-step introduction to Matlab suitable for beginners. This
is available on-line at
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http://www.maths.cam.ac.uk/undergrad/catam/MATLAB/manual/booklet.pdf

However, this short guide can only cover a small subset of the Matlab language. There are
many other guides available on the net and in book form that cover Matlab in far more depth.
In addition:

� Matlab has its own extensive built-in help and documentation.

� The suppliers of Matlab, The MathWorks, provide MATLAB Onramp, an interactive
tutorial on the basics which does not require MATLAB installation: see

http://uk.mathworks.com/support/learn-with-matlab-tutorials.html

� The MathWorks also provide the introductory guide Getting Started with Matlab. You
can access this by `left-clicking' on the Getting Started link at the top of a Matlab
`Command Window'. Alternatively there is an on-line version available at

http://uk.mathworks.com/help/matlab/getting-started-with-matlab.html

� Further, The MathWorks provide links to a whole a raft of other tutorials; see

https://uk.mathworks.com/support/learn-with-matlab-tutorials.html

In addition their Matlab documentation page gives more details on maths, graphics,
object-oriented programming etc.; see

http://uk.mathworks.com/help/matlab/index.html

� There is a plethora of books on Matlab. For instance:

(a) Numerical Computing with Matlab by Cleve Moler (SIAM, Second Edition, 2008,
ISBN 978-0-898716-60-3). This book can be downloaded for free from

http://uk.mathworks.com/moler/chapters.html

(b) Matlab Guide by D.J. Higham & N.J. Higham (SIAM, Second Edition, 2005, ISBN
0-89871-578-4).

You may be spoilt for choice: Google returns about 100,000,000 hits for the search
`Matlab introduction', and about 11,000,000 hits for the search `Matlab introduction
tutorial'.

� The Engineering Department has a webpage that lists a number of helpful articles; see

http://www.eng.cam.ac.uk/help/tpl/programs/matlab.html

Similarly, many online resources are available for learning other programming languages (e.g.
python, R, Julia, etc.)
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1.4.3 To Matlab, or not to Matlab

Use of Matlab is recommended,1 but you are free to write your programs in any computing

language whatsoever. Python, Julia,2 R,3 C, C++, Mathematica,4 Maple 5 and Haskell have been
used by several students in the past, and Excel has been used for plotting graphs of computed
results. The choice is your own, provided your system can produce results and program listings
for inclusion in your report.6

However, you should bear in mind the following points.

� The Faculty does not promise to help you with programming problems if you use a language
other than Matlab.

� Not all languages have the breadth of mathematical routines that come with the Matlab
package. You may discover either that you have to �nd reliable replacements, or that you
have to write your own versions of mathematical library routines that are pre-supplied in
Matlab (this can involve a fair amount of e�ort). To this end you may �nd reference
books, such as Numerical Recipes by W. H. Press et al. (CUP), useful. You may use
equivalent routines to those in Matlab from such works so long as you acknowledge
them, and reference them, in your write-ups.

� If you choose a high-level programming language that can perform advanced mathematical
operations automatically, then you should check whether use of such commands is permit-
ted in a particular project. As a rule of thumb, do not use a built-in function if there is
no equivalent Matlab routine that has been approved for use in the project description,
or if use of the built-in function would make the programming considerably easier than
intended. For example, use of a command to test whether an integer is prime would not
be allowed in a project which required you to write a program to �nd prime numbers. The
CATAM Helpline (see �4 below) can give clari�cation in speci�c cases.

� Subject to the aforementioned limited exceptions, you must write your own computer

programs. Downloading computer code, e.g. from the internet, that you are asked to write
yourself counts as plagiarism (see �5).

1.4.4 Computer Algebra Systems

Some projects require the use of a Computer Algebra System (CAS). At present none is speci�-
cally recommended but possible choices include the Symbolic Math Toolbox in Matlab, Math-
ematica and Maple.

1 Except where an alternative is explicitly stated, e.g. see footnotes 3 and 5.
2 Julia is a high-level open source language well suited to numerical computation. An Introduction to Julia

for CATAM under ongoing development is available from https://sje30.github.io/catam-julia/.
3 R is a programming language and software environment for statistical and numerical computing, as well as

visualisation. It is the recommended language for some Part II projects. R is available for free download for the
Linux, MacOS and Windows operating systems from http://www.r-project.org/.

4 Mathematica is a software package that supports symbolic computations and arbitrary precision numerical
calculations, as well as visualisation. At the time of writing Mathematica is also available for free to mathematics
students, but the agreement is subject to renewal. You can download versions of Mathematica for the Linux,
MacOS and Windows operating systems from

https://www.maths.cam.ac.uk/computing/software/mathematica/
5 Maple is a mathematics software package that supports symbolic computations and arbitrary precision

numerical calculations, as well as visualisation. It is the recommended language for some Part II projects.
6 There is no need to consult the CATAM Helpline as to your choice of language.
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Mathematica and Maple are also sensible choices for several projects other than the ones for
which a CAS is actually required, and you should feel free to use them for any of the projects,
but you should be aware of a few points:

� For intensive numerical calculations Maple should be told to use the hardware �oating-
point unit (see help on evalhf).

� If you choose to use Maple, Mathematica, or any other CAS to do a project for which a
CAS is not speci�cally required, you should bear in mind that you may not be allowed to
use some of the built-in functions (see �1.4.3).

2 Project Reports

2.1 Project write-ups: examination credit

For each project, 40% of the marks available are awarded for writing programs that work and for
producing correct graphs, tables of results and so on. A further 50% of the marks are awarded
for answering mathematical questions in the project and for making appropriate mathematical
observations about your results.

The �nal 10% of marks are awarded for the overall `excellence' of the write-up. Half of these
`excellence' marks may be awarded for presentation, that is for producing good clear output
(graphs, tables, etc.) which is easy to understand and interpret, and for the mathematical
clarity of your report.

The assessors may penalise a write-up that contains an excessive quantity of irrelevant material
(see below). In such cases, the `excellence' mark may be reduced and could even become negative,
as low as -10%.

Unless the project speci�es a way in which an algorithm should be implemented, marks are, in
general, not awarded for programming style, good or bad. Conversely, if your output is poorly
presented � for example, if your graphs are too small to be readable or are not annotated �
then you may lose marks.

No marks are given for the submission of program code without a report, or vice versa.

The marks for each project are scaled so that a possible maximum of 150 marks are available
for the Part II Computational Projects course. No quality marks (i.e. αs or βs) are awarded.
The maximum contribution to the �nal merit mark is thus 150 and the same as the maximum
for a 16-lecture course.

2.1.1 Examination credit: algorithm applied to the mark awarded for each project

Each project has a unit allocation. The mark awarded for each project is weighted according
to the unit allocation, with each project unit equating to a maximum of 5 Tripos marks. The
weighted marks for each project are summed to obtain a candidate's total Tripos mark.

To obtain maximum credit, you should submit projects with unit allocations that sum to 30 units.
If you submit N units, where N > 30 (i.e. if you submit more then the maximum number of
units), then the following algorithm applies:
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If your weakest project is M units with M > N − 30 then the mark on that project
will be rescaled by [M − (N − 30)]/M . If M ⩽ N − 30 then that project will be
discarded entirely, a revised N will be calculated, and the algorithm will be applied
recursively.

This algorithm ensures that you can score no more than the overall maximum available, i.e. 150
Tripos marks, by reducing the mark only on your weakest project. There is no expectation that
you submit more than 30 units; this algorithm is simply a way to calculate your mark if you
do.7

A fractional total Tripos mark resulting from the weighting/scaling process is rounded up or
down to the nearest integer, with an exact half being rounded up.

2.2 Project write-ups: advice

Your record of the work done on each project should contain all the results asked for and your
comments on these results, together with any graphs or tables asked for, clearly labelled and
referred to in the report. However, it is important to remember that the project is set as a piece
of mathematics, rather than an exercise in computer programming; thus the most important
aspect of the write-up is the mathematical content. For instance:

� Your comments on the results of the programs should go beyond a rehearsal of the program
output and show an understanding of the mathematical and, if relevant, physical points
involved. The write-up should demonstrate that you have noticed the most important
features of your results, and understood the relevant mathematical background.

� When discussing the computational method you have used, you should distinguish between
points of interest in the algorithm itself, and details of your own particular implementation.
Discussion of the latter is usually unnecessary, but if there is some reason for including it,
please set it aside in your report under a special heading: it is rare for the assessors to be
interested in the details of how your programs work.

� Your comments should be pertinent and concise. Brief notes are perfectly satisfactory �
provided that you cover the salient points, and make your meaning precise and unam-
biguous � indeed, students who keep their comments concise can get better marks. An
over-long report may well lead an assessor to the conclusion that the candidate is unsure
of the essentials of a project and is using quantity in an attempt to hide the lack of quality.
Do not copy out chunks of the text of the projects themselves: you may assume that the
assessor is familiar with the background to each project and all the relevant equations.

� Similarly you should not reproduce large chunks of your lecture notes; you will not gain
credit for doing so (and indeed may lose credit as detailed in �2.1). However, you will be
expected to reference results from theory, and show that you understand how they relate to
your results. If you quote a theoretical result from a textbook, or from your notes, or from
the WWW, you should give both a brief justi�cation of the result and a full reference.8 If
you are actually asked to prove a result, you should do so concisely.

� Graphs will sometimes be required, for instance to reveal some qualitative features of your
results. Such graphs, including labels, annotations, etc., need to be computer-generated

7 Needless to say, if you submit fewer than 30 units no upwards scaling applies.
8 See also the paragraph on Citations in �5
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(see also � 2.3). Further, while it may be easier to include only one graph per page, it is
often desirable (e.g. to aid comparison) to include two or more graphs on a page. Also,
do not forget to clearly label the axes of graphs or other plots, and provide any other
annotation necessary to interpret what is displayed. Similarly, the rows and columns of
any tables produced should be clearly labelled.

� You should take care to ensure that the assessor sees evidence that your programs do
indeed perform the tasks you claim they do. In most cases, this can be achieved by
including a sample output from the program. If a question asks you to write a program
to perform a task but doesn't specify explicitly that you should use it on any particular
data, you should provide some `test' data to run it on and include sample output in your
write-up. Similarly, if a project asks you to `print' or `display' a numerical result, you
should demonstrate that your program does indeed do this by including the output.

� Above all, make sure you comment where the manual speci�cally asks you to.
It also helps the assessors if you answer the questions in the order that they appear in
the manual and, if applicable, number your answers using the same numbering scheme
as that used by the project. Make clear which outputs, tables and graphs correspond to
which questions and programs.

The following are indicative of some points that might be addressed in the report; they are not
exhaustive and, of course not all will be appropriate for every project. In particular, some are
more relevant to pure mathematical projects, and others to applied ones.

� Does the algorithm or method always work? Have you tested it?

� What is the theoretical running time, or complexity, of the algorithm? Note that this
should be measured by the number of simple operations required, expressed in the usual
O
(
f(n)

)
or Ω

(
f(n)

)
notation, where n is some reasonable measure of the size of the input

(say the number of vertices of a graph) and f is a reasonably simple function. Examples
of simple operations are the addition or multiplication of two numbers, or the checking of
the (p, q) entry of a matrix to see if it is non-zero; with this de�nition �nding the scalar
product of two vectors of length n takes order n operations. Note that this measure of
complexity can di�er from the number of Matlab commands/`operations', e.g. there is a
single Matlab command to �nd a scalar product of two vectors of length n.

� What is the accuracy of the numerical method? Is it particularly appropriate for the
problem in question and, if so, why? How did you choose the step-size (if relevant), and
how did you con�rm that your numerical results are reliably accurate for all calculations
performed?

� How do the numerical answers you obtain relate to the mathematical or physical system
being modelled? What conjectures or conclusions, if any, can you make from your results
about the physical system or abstract mathematical object under consideration?

In summary, it is the candidate's responsibility to determine which points require discussion
in the report, to address these points fully but concisely, and to structure the whole so as to
present a clear and complete response to the project. It should be possible to read your write-up
without reference to the listing of your programs.
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2.2.1 Project write-ups: advice on length

The word brief peppers the last few paragraphs. To emphasise this point, in general eight sides
of A4 of text, excluding in-line graphs, tables, etc., should be plenty for a clear concise report
of a seven or eight unit project.9 Indeed, the best reports are sometimes shorter than this.

To this total you will of course need to add tables, graphs etc. However, do not include every

single piece of output you generate: include a selection of the output that is a representative

sample of graphs and tables. It is up to you to choose a selection which demonstrates all the
important features but is reasonably concise. Presenting mathematical results in a clear and
concise way is an important skill and one that you will be evaluated upon in CATAM. Twenty
pages of graphs would be excessive for most projects, even if the graphs were one to a page.10

Remember that the assessors will be allowed to deduct up to 10% of marks for any project
containing an excessive quantity of irrelevant material. Typically, such a project might be long-
winded, be very poorly structured, or contain long sections of prose that are not pertinent.
Moreover, if your answer to the question posed is buried within a lot of irrelevant material then
it may not receive credit, even if it is correct.

2.3 Project write-ups: technicalities

As emphasised above, elaborate write-ups are not required. You are required to submit your
project reports electronically. In particular, you will be asked to submit your write-ups elec-
tronically in Portable Document Format (PDF) form, and you should ensure that the submitted
�le can be printed (in portrait mode on standard A4 paper). Note that many word processors
(e.g. LATEX, Microsoft Word, LibreO�ce) will generate output in PDF form. In addition, there
are utility programs to convert output from one form to another, in particular to PDF form
(e.g. there are programs that will convert plain text to PDF). Before you make your choice of
word processor, you should con�rm that you will be able to generate submittable output in PDF
form. Please note that a PDF �le including pages generated by scanning a hand-written report
or other text document is not acceptable.

In a very few projects, where a sketch (or similar) is asked for, a scanned hand-drawing is
acceptable. Such exceptions will be noted explicitly in the project description.

If it will prove di�cult for you to produce electronic write-ups, e.g. because of a disability, then
please contact the CATAM Helpline as early as possible in the academic year, so that reasonable
adjustments can be made for you.

Choice of Word Processor. As to the choice of word processor, there is no de�nitive answer.
Many mathematicians use LATEX (or, if they are of an older generation, TEX), e.g. this
document is written in LATEX. However, please note that although LATEX is well suited for
mathematical typesetting, it is absolutely acceptable to write reports using other word-
processing software, e.g. Microsoft Word or LibreO�ce.

� Microsoft Word is commercial, but is available free while you are a student at Cam-
bridge: see

https://help.uis.cam.ac.uk/service/collaboration/office365.

� LibreO�ce can be installed for free for, inter alia, the Windows, MacOS and Linux
operating systems from

9 Reports of projects with fewer/more units might be slightly shorter/longer.
10 Recall that graphs should not as a rule be printed one to a page.
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http://www.libreoffice.org/download/download/.

LATEX. If you decide to use LATEX, you can use an online editor or install LATEXon your own
personal computer.

If you use an online editor, it is essential that you do not share your project with anyone

(see section on Unfair Means). A popular online LATEXeditor is called Overleaf. The
University currently provides a `Professional' level Overleaf license for students, see

https://www.overleaf.com/edu/cambridge.

If you use Overleaf or another online editor, we strongly advise keeping a local copy of
your report �les.

Whether you use an online editor or not, you will probably want to install it on your own
personal computer. This can be done for free. For recommendations of TEX distributions
and associated packages see

� http://www.tug.org/begin.html and

� http://www.tug.org/interest.html.

Front end. In addition to a TEX distribution you will also need a front-end (i.e. a `clever
editor'). A comparison of TEX editors is available on WikipediA; below we list a
few of the more popular TEX editors.

TEXstudio. For Windows, Mac and Linux users, there is TEXstudio. The proTEXt
distribution, based on MiKTEX, includes the TEXstudio front end.

TEXworks. Again for Windows, Mac and Linux users, there is TEXworks. The
MiKTEX distribution includes TEXworks.

TEXShop. Many Mac a�cionados use TEXShop. To obtain TEXShop and the TEXLive
distribution see http://pages.uoregon.edu/koch/texshop/obtaining.html.

TEXnicCenter. TEXnicCenter is another [older] front end for Windows users.

Learning LATEX. A Brief LATEX Guide for CATAM is available for download from

http://www.maths.cam.ac.uk/undergrad/catam/files/Brief-Guide.pdf .

� The LATEX source �le (which may be helpful as a template), and supporting �les,
are available for download as a zip �le from

http://www.maths.cam.ac.uk/undergrad/catam/files/Guide.zip .

Mac, Unix and most Windows users should already have an unzip utility. Win-
dows users can download 7-Zip if they have not.

Layout of the �rst page. The �rst page of your report should include the project name and
project number.

Your script is marked anonymously. Hence, your name or user identi�er should not ap-
pear anywhere in the write-up (including any output).

Further technicalities. Please do not use red or green for text (although red and/or green lines
on plots are acceptable). Please leave a margin at least 2 cm wide at the left, and number
each page, table and graph.

Program listings. At the end of each report you should include complete listings (i.e. printout
of source code) of every major program used to generate your results. You do not need to
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include a listing of a program which is essentially a minor revision of another which you
have already included. Make sure that your program listings are the very last thing in
your reports. Please do not mix program output and program listings together; if you do,
the program output may not be marked as part of the report.

3 Computing Facilities

You may write and run your programs on any computer you wish, whether it belongs to you
personally, to your College, or to the University. If you believe that do not have access to
an adequate computer to complete the CATAM projects, you should contact your Director of
Studies and/or the CATAM helpline well in advance of any project deadlines.

3.1 Backups

Whatever computing facilities you use,make sure you make regular backups of your work
in case of disaster! Remember that occasionally systems go down or disks crash or computers
are stolen. Malfunctions of your own equipment or the MCS are not an excuse for
late submissions: leave yourself enough time before the deadline.

Possibly one of the easiest ways to ensure that your work is backed up is to use an online `cloud'
service; many of these services o�er some free space. WikipediA has a fairly comprehensive list
at http://en.wikipedia.org/wiki/Comparison_of_online_backup_services. In particular note
that eligible students have 1TB of OneDrive personal storage space via their University Microsoft
account and 500Gb of personal storage on Google Drive under a University agreement (see https:
//help.uis.cam.ac.uk/service/data-and-file-storage/store-documents-are-personal-you).

4 Information Sources

There are many ways of getting help on matters relating to CATAM.

The CATAM Web Page. The CATAM web page,

http://www.maths.cam.ac.uk/undergrad/catam/

contains much useful information relating to CATAM. There are on-line, and up-to-date,
copies of the projects, and any data �les required by the projects can be downloaded.
There is also the booklet Learning to use Matlab for CATAM project work .

CATAM News and Email. Any important information about CATAM (e.g. corrections to pro-
jects or to other information in the Manual) is publicised via CATAM News, which can
be reached from the CATAM web page. You must read CATAM News from time to time
(e.g. just before starting a project) to check for these and other important announcements,
such as submission dates and procedures.

As well as adding announcements to CATAM News, occasionally we will email students
using the year lists maintained by the Faculty of Mathematics. You have a responsibility
to read email from the Faculty, and if we send an email to one of those lists we will assume
that you have read it.

After 1 October 2025 you can check that you are on the appropriate Faculty year list by
referring to the https://lists.cam.ac.uk/mailman/raven webpage (to view this page you
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will need to authenticate using Raven if you have not already done so). You should check
that the Maths-II mailing list is one of your current lists.

If you are not subscribed to the correct mailing list, then this can be corrected by contact-
ing the Faculty Undergraduate O�ce (email: undergrad-office@maths.cam.ac.uk) with a
request to be subscribed to the correct list (and, if necessary, unsubscribed from the wrong
list).

The CATAM Helpline. If you need help (e.g. if you need clari�cation about the wording of a
project, or if you have queries about programming and/orMatlab), you can email a query
to the CATAM Helpline: catam@maths.cam.ac.uk. Almost all queries may be sent to the
Helpline, and it is particularly useful to report potential errors in projects. However the
Helpline cannot answer detailed mathematical questions about particular projects. Indeed
if your query directly addresses a question in a project you may receive a standard reply
indicating that the Helpline cannot add anything more.

In order to help us manage the emails that we receive,

� please use an email address ending in cam.ac.uk (rather than a Gmail, etc. address)
both so that we may identify you and also so that your email is not identi�ed as
spam;

� please specify, in the subject line of your email, `Part II' as well as the project number
and title or other topic, such as `Matlab query', to which your email relates;

� please also restrict each email to one question or comment (use multiple emails
if you have more than one question or comment).

The Helpline is available during Full Term and one week either side. Queries sent outside
these dates will be answered subject to personnel availability. We will endeavour (but
do not guarantee) to provide a response from the Helpline within three working days.
However, if the query has to be referred to an assessor, then it may take longer to receive
a reply. Please do not send emails to any other address.

The CATAM FAQ Web Pages. Before asking the Helpline about a particular project, please
check the CATAM FAQ web pages (accessible from the main CATAM web page). These
list questions which students regularly ask, and you may �nd that your query has already
been addressed.

Advice from Supervisors and Directors of Studies. The general rule is that advicemust be gen-
eral in nature. You should not have supervisions on any work that is yet to be submitted
for examination.

5 Unfair Means, Plagiarism and Guidelines for Collaboration

The objective of CATAM is for you to learn computational methods, mathematics and written
presentation skills. To achieve these objectives, you must work independently on the projects,
both on the programming and on the write-ups.

The work that you turn in must be your own. This applies equally to the source code and the
write-ups, i.e. you must write and test all programs yourself, and all reports must be written
independently.

Any attempt to gain an unfair advantage, for example by copying computer code, mathematics,
or written text, is not acceptable and will be subject to serious sanctions.
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If you have any questions about what constitutes unfair means, you should seek advice from the
CATAM helpline.

Citations. It is, of course, perfectly permissible to use reference books, journals, reference articles
on the WWW or other similar material: indeed, you are encouraged to do this. You may
quote directly from reference works so long as you acknowledge the source (WWW pages
should be acknowledged by a full URL). There is no need to quote lengthy proofs in full,
but you should at least include your own brief summary of the material, together with a
full reference (including, if appropriate, the page number) of the proof.

Programs. You must write your own computer programs. Downloading computer code, e.g.
from the internet, that you are asked to write yourself counts as plagiarism even if cited.

Acceptable collaboration. It is recognised that some candidates may occasionally wish to discuss
their work with others doing similar projects. This can be educationally bene�cial and is
accepted provided that it remains within reasonable bounds. Acceptable collaboration may
include an occasional general discussion of the approach to a project and of the numerical
algorithms needed to solve it. Small hints on debugging code (note the small), as might
be provided by an adviser, are also acceptable.

Unacceptable collaboration (also known as collusion). If a general discussion either is happening
regularly or gets to the point where physical or virtual notes are being exchanged (even on
the back of an envelope, napkin or stamp), then it has reached the stage of unacceptable
collaboration. As an example to clarify the limits of `acceptable collaboration', if an
assessor reading two anonymous write-ups were to see signi�cant similarities in results,
answers, mathematical approach or programming which would clearly not be expected from
students working independently, then there would appear to be a case that the students
have breached the limits. An Investigative Meeting would then be arranged (unless such
similarities were deemed to be justi�ed in light of the declared lists of discussions, see
below). If you are uncertain about what constitutes an unacceptable collaboration you
should seek advice from the CATAM Helpline.

Generative AI. Using generative AI (e.g. ChatGPT, Gemini, Claude and similar) to produce
some or part of the submitted write-up or source code would not be original work and
hence is considered a form of academic misconduct. This interpretation is consistent with
University guidelines. We use software that is capable of detecting AI-generated content,
and where a case of unfair means is suspected, the Examiners may, at their discretion,
examine a candidate by means of an Oral Examination.

The following actions are examples of unfair means

� copying any other person's program, either automatically or by typing it in from a listing;

� using someone else's program or any part of it as a model, or working from a jointly
produced detailed program outline;

� copying or paraphrasing of someone else's report in whole or in part;

� turning in output from a generative AI either in the report or in the source code.

These comments apply just as much to copying from the work of previous Part II students, or
another third party (including any code, etc. you �nd on the internet), as they do to copying
from the work of students in your own year. Asking anyone for help that goes past the limits of
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acceptable collaboration as outlined above, and this includes posting questions on the internet
(e.g. StackExchange), constitutes unfair means.

Further, you should not allow any present or future Part II student access to the work you have
undertaken for your own CATAM projects, even after you have submitted your write-ups. If
you knowingly give another student access to your CATAM work you are in breach of these
guidelines and may be charged with assisting another candidate to make use of unfair means.

5.1 Further information about policies regarding plagiarism and other forms
of unfair means

University-wide Statement on Plagiarism. You should familiarise yourself with the University's
Statement on Plagiarism.

There is a link to this statement from the University's Good academic practice and plagia-
rism website

http://www.plagiarism.admin.cam.ac.uk/,

which also features links to other useful resources, information and guidance.

Faculty Guidelines on Plagiarism. You should also be familiar with the Faculty of Mathematics
Guidelines on Plagiarism. These guidelines, which include advice on quoting, paraphrasing,
referencing, general indebtedness, and the use of web sources, are posted on the Faculty's
website at

http://www.maths.cam.ac.uk/facultyboard/plagiarism/.

In order to preserve the academic integrity of the Computational Projects component of the
Mathematical Tripos, the following procedures have been adopted.

Declarations. To certify that you have read and understood these guidelines, you will be asked
to sign an electronic declaration. Further instructions will be given during Michaelmas
Term.

In order to certify that you have observed these guidelines, you will be required to sign
an electronic submission form provided when you submit your write-ups, and you are
advised to read it carefully; it will be similar to that reproduced (subject to revision) as
Appendix A. You must list on the form anybody (students, supervisors and Directors of
Studies alike) with whom you have exchanged information (e.g. by talking to them, or by
electronic means) about the projects at any more than a trivial level: any discussions that
a�ected your approach to the projects to any extent must be listed. Failure to include on
your submission form any discussion you may have had is a breach of these guidelines.

However, declared exchanges are perfectly allowable so long as they fall within the limits
of `acceptable collaboration' as de�ned above, and you should feel no qualms about listing
them. For instance, as long as you have refrained from discussing in any detail your pro-
grams or write-ups with others after starting work on them, then the limits have probably
not been breached.

The assessors will not have knowledge of your declaration until after all your projects have
been marked. However, your declaration may a�ect your CATAM marks if the assessors
believe that discussions have gone beyond the limits of what is acceptable. If so, or if there
is a suspicion that your have breached any of the other guidelines, you will be summoned
to an Investigative Meeting (see �5.2). Ultimately, your case could be brought to the
University courts and serious penalties could result (see Sanctions below).
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Plagiarism detection. The programs and reports submitted will be checked carefully
both to ensure that they are your own work, and to ensure the results that
you hand in have been produced by your own programs.

Checks on submitted program code. The Faculty of Mathematics uses (and has used for
many years) specialised software, including that of external service providers, which
automatically checks whether your programs either have been copied or have un-
acceptable overlaps (e.g. the software can spot changes of notation). All programs
submitted are screened.

The code that you submit, and the code that your predecessors submitted, is kept in
anonymised form to check against code submitted in subsequent years.

Checks on electronically submitted reports. In addition, the Faculty of Mathematics will
screen your electronically submitted reports using the Turnitin UK text-matching
software. Further information will be sent to you before the submission date. The
electronic declaration which you will be asked to complete at the start of the Michael-
mas term will, inter alia, cover the use of Turnitin UK.

Your electronically submitted write-ups will be kept in anonymised form to check
against write-ups submitted in subsequent years.

Sanctions. If plagiarism, collusion or any other method of unfair means is suspected in the
Computational Projects, normally the Chair of Examiners will convene an Investigative

Meeting (see �5.2). If the Chair of Examiners deems that unfair means were used, the case
may be brought to the University courts. According to the Statues and Ordinances of the
University 11

suspected cases of the use of unfair means (of which plagiarism is one form) will
be investigated and may be brought to one of the University courts or disci-
plinary panels. The University courts and disciplinary panels have wide powers
to discipline those found to have used unfair means in an examination, including
depriving such persons of membership of the University, and deprivation of a
degree.

The Faculty of Mathematics wishes to make it clear that any breach of these
guidelines will be treated very seriously.

However, we also wish to emphasise that the great majority of candidates have, in the past,
had no di�culty in keeping to these guidelines. Unfortunately there have been a small number
of cases in recent years where some individuals have been penalised by the loss of signi�cant

numbers of marks, indeed su�cient to drop a class. If you �nd the guidelines unclear in any
way you should seek advice from the CATAM Helpline. These policies and practices have been
put in to place so that you can be sure that the hard work you put into CATAM will be fairly
rewarded.

5.2 Oral examinations

Viva Voce Examinations. A number of candidates may be selected, either randomly or formu-
laically, for a Viva Voce Examination after submission of either the core or the additional

11From https://www.admin.cam.ac.uk/univ/so/.

July 2025/Part II/Introduction Page 14 of 19 ⃝c University of Cambridge

http://www.plagiarism.admin.cam.ac.uk/turnitin-uk
http://www.plagiarism.admin.cam.ac.uk/turnitin-uk
https://www.admin.cam.ac.uk/univ/so/


projects. This is a matter of routine, and therefore a summons to a Viva Voce Examina-

tion should not be taken to indicate that there is anything amiss. You will be asked some
straightforward questions on your project work, and may be asked to elaborate on the ex-
tent of discussions you may have had with other students. So long as you can demonstrate
that your write-ups are indeed your own, your answers will not alter your project marks.

Examination Interviews. Additionally, the Chair of Examiners may summon a particular can-
didate or particular candidates for interview on any aspect of the written work of the
candidate or candidates not produced in an examination room which in the opinion of
the Examiners requires elucidation. If plagiarism or other unfair means is suspected, an
Investigative Meeting will be convened (see below).

Investigative Meetings. When plagiarism, collusion or other unfair means are suspected the
Chair of Examiners may summon a candidate to an Investigative Meeting. If this hap-
pens, you have the right to be accompanied by your Tutor (or another representative at
your request). The reasons for the meeting, together with copies of supporting evidence
and other relevant documentation, will be given to your Tutor (or other representative).
One possible outcome is that the case is brought to the University courts where serious
penalties can be imposed (see Sanctions above).

Timing. Viva Voce Examinations, Examination Interviews and Investigative Meetings are a for-
mal part of the Tripos examination, and if you are summoned then you must attend. These
will usually take place during the last week of Easter Full Term. Viva Voce Examinations

are likely to take place on the Monday of the last week (i.e. Monday 15th June 2025),
while Examination Interviews and Investigative Meetings may take place any time that
week. If you are required to attend a Viva Voce Examination, an Examination Interview

and or an Investigative Meeting you will be informed in writing just after the end of the
written examinations. You must be available in the last week of Easter Full Term in
case you are summoned.

6 Submission and Assessment

In order to gain examination credit for the work that you do on this course, you must write
reports on each of the projects that you have done. As emphasised earlier it is the quality (not
quantity) of your written report which is the most important factor in determining the marks
that you will be awarded.

6.1 Submission form

When you submit your project reports you will be required to complete and upload the submis-
sion form provided, detailing which projects you have attempted and listing all discussions you
have had concerning CATAM (see �5, Unfair Means, Plagiarism and Guidelines for Collabora-

tion, and Appendix A). Further details, including the de�nitive submission form, will be made
available when the arrangements for electronic submission of reports and programs (see below)
are announced.

6.2 Submission of written work

In order to gain examination credit, you must:
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� submit electronic copies of your reports and programs (see �6.3);

� complete and submit your submission form listing each project for which you wish to gain
credit.

Further details about submission arrangements will be announced via CATAM News and email
closer to the time.

The submission deadline is

Thursday 30th April 2026, 4pm.

Self-certi�ed extensions may be obtained for a period of up to 7 days. A form to apply for an
extension will be made available on Moodle at the start of the submission period. Students must
inform their college Tutor that they are applying for an extension before �lling out the extension
request form. Whenever possible, students should apply for an extension before the original
submission deadline. It will not be possible to apply for a self-certi�ed extension later than 7
days after the original submission deadline. We strongly encourage all students to complete and
turn-in their work well in advance of the original submission deadline to allow time to deal with
any issues arising during submission and avoid impacts on other coursework and revision.

The Computational Projects Assessors Committee reserves the right to reduce the marks
awarded for any projects (including reports and source code) which are submitted late (either
the standard or extended deadline, as appropriate).

6.3 Electronic submission

You will be required to submit electronically copies of both your reports and your program source
�les. Electronic submission enables the Faculty to run automatic checks on the independence
of your work, and also allows your programs to be inspected in depth (and if necessary run) by
the assessors.

As regards your programs, electronic submission applies whether you have done your work on
your own computer, on the MCS, or elsewhere, and is regardless of which programming language
you have chosen.

Details of the procedure will be given in advance of the submission deadlines via CATAM News

and email.

However please note that you will need to know your UIS password in
order to submit copies of your report and program source �les.

If you cannot remember your UIS password you will need to follow that instructions provided by
the University Information Service.12 Note that if you need a Password Reset Token then this
may take some time to obtain, so check that you know your UIS password well before submission
day.

6.4 Saving and sharing electronic �les

After the submission deadline the electronic �les will be taken o�ine and you will not be able
to download your submitted work from the submission site. We recommend that you keep
electronic copies of your work.

12 See https://password.raven.cam.ac.uk/.
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Since the manuals will be taken o�-line after the close of submission, you might also like to save
a copy of the projects you have attempted.

It is critical that you do not make your reports or source code available to any
present or future students. This includes posting to publically accessible repositories
such as github.

Please note that all material that you submit electronically is kept in anonymised form to check
against write-ups and program code submitted in subsequent years.

6.5 Returning from intermission

If a student is returning from intermission that began in an academic year during which they
submitted some or all of the CATAM projects, then in certain circumstances it is possible to
carry forward some or all of their CATAM marks from that year. Action is required by the
Director of Studies. Hence, before attempting any further CATAM work, the student should
discuss the options available with their Director of Studies and decide on their intended strategy.

The following general policies have been approved by the Faculty Board. If there are exceptional
circumstances in which these seem inappropriate, the Director of Studies should discuss these
with the CATAM Director: catam-director@maths.cam.ac.uk.

In the unlikely event that a Part II student submits some CATAM projects in the Easter Term,
intermits, and is then allowed to repeat the entire year starting in Michaelmas Term, they should
normally be expected to start CATAM afresh as a logical part of repeating the year.

On the other hand, if a Part II student submits some CATAM projects in the Easter Term, then
intermits, and then returns at the start of either the Lent Term or the Easter Term, then any
marks on projects submitted should be carried over. In addition, the student may submit as
many new projects as they wish in the Easter Term of the year they return. If the total number
of units submitted is greater than 30, then they will receive credit for their best 30 units, as
de�ned by the standard algorithm. The Director of Studies must notify the Undergraduate
O�ce and the CATAM Director about any marks that are to be carried forward.
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A Appendix: Example Submission Form

PART II MATHEMATICAL TRIPOS 2025-26

Computational Projects 2025

COMPUTATIONAL PROJECTS

STATEMENT OF PROJECTS SUBMITTED FOR EXAMINATION CREDIT

Please observe these points when submitting your CATAM projects:

1. Your name, College or CRSid User Identi�ermust not appear anywhere in the submitted
work.

2. Complete this declaration form and submit it electronically with your reports.

3. The Moodle submission site will close at 4pm on submission day and it is likely to be
slow immediately prior to the deadline. Please turn in your work earlier if possible and be
prepared for delays in the website on submission day.

IMPORTANT

Candidates are reminded that Discipline Regulation 7 reads:

No candidate shall make use of unfair means in any University examination. Unfair
means shall include plagiarism13 and, unless such possession is speci�cally autho-
rized, the possession of any book, paper or other material relevant to the examina-
tion. No member of the University shall assist a candidate to make use of such unfair
means.

To con�rm that you are aware of this, you must check and sign the declaration below and
include it with your work when it is submitted for credit.

The Faculty of Mathematics wishes to make it clear that failure to comply with this

requirement is a serious matter that could render you liable to sanctions imposed by

the University courts.

13 Plagiarism is de�ned as submitting as one's own work, irrespective of intent to deceive, that which derives
in part or in its entirety from the work of others without due acknowledgement.
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DECLARATION BY CANDIDATE

I hereby submit my reports on the following projects and wish them to be assessed for exami-
nation credit:

Project Number Brief Title Credit Units

Total Credit Units

I certify that I have read and understood the section Unfair Means, Plagiarism and Guidelines

for Collaboration in the Projects Manual (including the references therein), and that I have
conformed with the guidelines given there as regards any work submitted for assessment at the
University. I understand that the penalties may be severe if I am found to have not kept to the
guidelines in the section Unfair Means, Plagiarism and Guidelines for Collaboration. I agree to
the Faculty of Mathematics using specialised software, including Turnitin UK, to automatically
check whether my submitted work has been copied or plagiarised and, in particular, I certify
that

� the composing and writing of these project reports is my own unaided work and no part
of it is a copy or paraphrase of work of anyone other than myself;

� the computer programs and listings and results were not copied from anyone or from
anywhere (apart from the course material provided);

� I have not shown my programs or written work to any other candidate or allowed anyone
else to have access to them;

� I have listed below anybody, other than the CATAM Helpline or CATAM advisers, with
whom I have had discussions or exchanged information at any more than a trivial level
about the CATAM projects, together with the nature of those discussions and/or ex-
changes.

Declaration of Discussions and Exchanges (continue on a separate sheet if necessary)

Signed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1 Numerical Methods

1.1 Fourier Transforms of Bessel Functions (6 units)

This project assumes only material contained in Part IA and Part IB core courses. Other
than that, the project is self contained (although the Part II courses on Numerical Analysis,
Further Complex Methods and Asymptotic Methods may provide relevant but non-essential
background).

1 Introduction

Bessel’s equation of order n is the linear second-order equation

x2y′′ + xy′ + (x2 − n2)y = 0. (1)

Bessel functions of the first kind are solutions of (1) which are finite at x = 0. They are usually
written Jn(x).

Question 1 Investigate (1) for n = 0, 1, 4 using a Runge–Kutta (or similar) method
commencing the integration for a strictly positive value of x and a number of different
values of y and y′ of your choice. You may employ a library routine to solve (1); for
example if using Matlab you can employ the built-in ode45 routine. Integrate forwards
and backwards in x for a few such initial conditions, plotting y. Describe what you
observe, and illustrate any notable behaviour using appropriate plots.

Now try starting at x = 0. What happens, and why?

Question 2 The series solution for Jn(x) is

Jn(x) =
∞∑
r=0

(−1)r(12x)
2r+n

r!(n+ r)!
. (2)

Write a program to sum a truncation of this series. Plot Jn(x) for n = 0, 1, 4 for a range
of x, e.g., for 0 ⩽ x ⩽ 100. Discuss your choice of truncation, and identify a range of x
for which this summation method is not accurate and explain why.

2 The Discrete Fourier Transform

The Fourier Transform F̂ (k) of a function F (x) may be defined as

F̂ (k) =

∫ +∞

−∞
F (x) exp(−2πikx) dx. (3)

If F (x) is a function which is only appreciably non-zero over a limited range of x, say 0 < x < X,
then it is possible to approximate F̂ (k) by means of finite sums. Suppose

Fr = F (r∆x) for r = 0, . . . , (N − 1) , where ∆x = X/N . (4)

An approximation to (3), known as the Discrete Fourier Transform (DFT), is

F̂s =
X

N

N−1∑
r=0

Fr ω
−rs
N , where ωN = e2πi/N . (5)
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The exact inverse of (5) is

Fr =
1

X

N−1∑
s=0

F̂s ω
rs
N . (6)

In order to deduce the relationship between the F̂s and F̂ (k), we first note from (5) that F̂s

represents values of the Fourier Transform spaced by the “wavenumber” interval ∆k, where

∆k = 1/X . (7)

Also F̂s is periodic in s with period N ; this corresponds to a “wavenumber” periodicity

K = N∆k = N/X = 1/∆x. (8)

Now it is to be expected that (5) will fail to approximate to (3) when the exponential function
oscillates significantly between sample points, that is when

|k| ≳ 1

2∆x
= 1

2K. (9)

This, together with its periodicity, suggests that F̂s will be related to F̂ (k) by

F̂s
∼=

{
F̂ (s∆k) s = 0, . . . , 12N − 1,

F̂ (s∆k −K) s = 1
2N, . . . , N − 1.

(10)

Thus (6) is an approximation to

F (x) ∼=
∫ +K/2

−K/2
F̂ (k) exp(2πikx) dk. (11)

Because of the periodicity, the F̂s are usually thought of as a series with s = 0, . . . , N − 1, the
upper half being mentally re-positioned to correspond to negative “wavenumber”. Note that if
F (x) is real, and ∗ denotes a complex conjugate, then

F̂ (k) = F̂ ∗(−k). (12)

Question 3 Carefully discuss under what limiting conditions for both N and X (pos-
sibly after a suitable change in origin in x), does the DFT tend to the Fourier Transform?

3 The Fast Fourier Transform

The Fast Fourier Transform (FFT) method provides an efficient way to evaluate the DFT. This
method involves effcient evaluation of sums of the form

λs =
N−1∑
r=0

µr ω
σrs
N , s = 0, . . . , N − 1 , σ = ±1 , (13)

where N is an integer and the µr are a known sequence. The “fast” in FFT requires N to be
a power of a small prime, or combination of small primes; for simplicity we will assume that
N = 2M .

A brief outline of the FFT method is given in the Appendix. However, it is not necessary to
understand the implementation details, since you may use the one-dimensional Fast Fourier
Transform function fft in Matlab, scipy, numpy, or an equivalent routine in any other
package. Alternatively you may write your own routine (however do not simply compute the
series (5) and (6); you will not receive credit if you do not use the FFT method.).

Note that the fft algorithm will work for any value of N , but the performance (in terms of
compute time) is best when N is a power of 2.
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4 Fourier Transforms of Bessel Functions

Question 4 Show analytically that if F (x) is a real even function and

I1 =

∫ X

0
F (x) exp(−2πikx) dx , I2 =

∫ +X

−X
F (x) exp(−2πikx) dx, (14a)

then

Im(I2) = 0 , Re(I2) = 2Re(I1). (14b)

With the definitions of §2 and §3, the FFT algorithm is ideally suited to approximating
I1 rather than I2. Hence if an approximation to I2 is desired, an approximation to I1
could first be calculated, and then the relations (14b) could be used. If this procedure for
calculating I2 is adopted, and FN ̸= F0, explain why F0 should be replaced by 1

2(F0+FN )
before calculating the DFT. What is the equivalent result to (14b) if F (x) is a real odd
function?

Question 5 Using a FFT code, and the results of question 4, find numerically the
Fourier Transform of Jn(x):

Ĵn(k) =

∫ +∞

−∞
Jn(x) exp (−2πikx) dx . (15)

Compare it with the theoretical formula

Ĵn(k) = 2(−i)n(1− 4π2k2)−1/2 Tn(2πk), (16)

where Tn(µ) is the Chebyshev polynomial of order n defined by

Tn(µ) =

{
cosnθ, µ = cos θ ;

0, |µ| > 1 .
(17)

To obtain Jn(x), you may either devise a method of your own (e.g., a combination of
questions 1 and 2), or you may use the Matlab procedure besselj or a similar function
from another package.

You should obtain results for n = 0, 1, 2, 4, and 8. Choose sufficient points in the
transform to adequately resolve the functions.

Plots of Jn(x) for a few representative values of n should be included in your write-up.
You should also include plots of Ĵn and Ĵn on the same graph. Choose a range of k which
allows you to see the detailed behaviour in the interval −1 ⩽ πk ⩽ 1.

Comment on your results and discuss their accuracy. Discuss how the FFT deals with
any values of k which might be expected from the theoretical result to give problems. You
should also describe the effects of varying N and X; in particular you should systemat-
ically examine how the numerical errors change as N and/or X are varied, e.g. in the
light of your answer to question 3.

You should also find a way to demonstrate from your computational results how the
execution time necessary to calculate the transform varies with N , and how this compares
with the theoretical prediction. Hint: given the speed of current computers, timing a
single run of your program is likely to be dominated by start/end overheads.
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Appendix: The Fast Fourier Transform

The Fast Fourier Transform (FFT) technique is a quick method of evaluating sums of the form

λr =
N−1∑
s=0

µs ω
σrs
N , r = 0, . . . , N − 1, σ = ±1, (18)

where N is an integer, µs is a known sequence and ωN = e2πi/N . The “fast” in FFT depends
on N being a power of a small prime, or combination of small primes; for simplicity we will
assume that N = 2M . Write

λr ←→ µs, r, s = 0, . . . , N − 1 (19)

to denote that (18) is satisfied. Introduce the half-length transforms

λE
r ←→ µ2s

λO
r ←→ µ2s+1

}
r, s = 0, . . . , 12N − 1; (20)

then it may be shown that

λr = λE
r + ωσr

N λO
r

λr+N/2 = λE
r − ωσr

N λO
r

}
r = 0, . . . , 12N − 1. (21)

Hence if the half-length transforms are known, it costs 1
2N products to evaluate the λr.

To execute an FFT, start from N vectors of unit length (i.e., the original µs). At the sth stage,
s = 1, 2, . . . ,M , assemble 2M−s vectors of length 2s from vectors of length 2s−1 – this “costs”
2M−s × 1

2(2
s) = 2M−1 = 1

2N products for each stage. The complete discrete Fourier transform
has been formed after M stages, i.e., after O(12N log2N) products. For N = 1024 = 210, say,
the cost is ≈ 5× 103 products, compared to ≈ 106 products in naive matrix multiplication.

A description and short history of the FFT are given in Chapter 12 of the book Numerical
Recipes by Press et al.
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1 Numerical Methods

1.6 Multigrid Methods (10 units)

Knowledge of Part II Numerical Analysis would be advantageous for this project.

1 Solution of Poisson’s Equation by Relaxation Methods

We consider the problem of solving Poisson’s equation in a square domain with homogeneous
Dirichlet boundary conditions

∇2u = f in 0 < x < 1, 0 < y < 1, (1)

with u = 0 on x = 0, x = 1, y = 0 and y = 1.

A numerical solution is attempted by finding values for u at grid points in a square N × N
mesh. The (i, j)th point is given by (xi, yj) = (ih, jh) where h = 1/(N − 1). The value of ∇2u
is approximated at each of the interior points by a finite-difference formula

(∇2u)i,j ≃
1

h2
[ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j ] . (2)

By requiring that (∇2u)i,j is equal to f(xi, yj) at each of the interior points, we obtain (N −2)2

linear equations for the (N − 2)2 unknowns ui,j , (1 ⩽ i ⩽ N − 2, 1 ⩽ j ⩽ N − 2), of the form

1

h2
[ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j ] = f(xi, yj) . (3)

The values of ui,j at the boundary points are set by the boundary conditions. Here ui,j is equal
to zero at each boundary point.

We now have to solve these linear equations as quickly and as accurately as possible. Note that
even if the solution of the linear equations were obtained with perfect accuracy, it would still
be only an approximate solution to the original partial differential equation, since (2) is only
an approximation to equation (1).

For larger values of N it is impractical to solve the (N −2)2 linear equations by direct methods,
such as Gaussian elimination, because of storage limitations. An alternative approach is to
use an iterative “relaxation” method. Equation (3) may be reordered to suggest the iteration
scheme

un+1
i,j =

1

4

[
un+1
i−1,j + un+1

i,j−1 + uni+1,j + uni,j+1 − h2f(xi, yj)
]

for i, j = 1, . . . , N − 2 , (4)

where the superscripts denote the number of the iteration; this is conventionally called the
Gauss-Seidel scheme. Note the appearance of (n + 1)th iterates on the right-hand side. The
calculation works through the grid with i and j increasing, and updated values are used as soon
as they become available.

Question 1 Take f(x, y) = x(1 − x)y2(1 − y). Write a program to apply the Gauss-
Seidel scheme (4) to solve (3) on an arbitrary sized (N ×N) mesh. Use your program to
investigate the convergence properties of the scheme as N varies. In particular, after a
reasonably large number of iterations you should calculate:
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(a) the variation over the grid of the residual error, ϵni,j , where the residual error is the
amount by which (3) is not satisfied, i.e.

ϵni,j =
1

h2
[
uni+1,j + uni−1,j + uni,j+1 + uni,j−1 − 4uni,j

]
− f(xi, yj) , (5)

(b) an approximation for the asymptotic rate of convergence, i.e.

r∞ = − log

(
lim
n→∞

{
maxi,j |ϵn+1

i,j |
maxi,j |ϵni,j |

})
. (6)

Why is this a good definition of the rate of convergence?

What do you conclude about the number of iterations needed for convergence to a spec-
ified accuracy (e.g. for the magnitude of residual error to be less than a given tolerance
at each point)? Estimate as a power of N the number of operations (i.e. additions, mul-
tiplications and divisions) needed for such convergence. Check your answer by measuring
the computational time in different cases.* Suggested values for N that you might try are
9, 17, 33, 65, etc. Also estimate as a power of N the number of operations needed for
convergence to an accuracy consistent with the truncation error of the discretisation (3)
of equation (1).

2 The Multigrid Method

Your calculations should show that the part of the error that decays slowest for each N (and
therefore that which dominates after a large number of iterations) has a form very similar to
the lowest Fourier mode that will fit into the domain. The convergence is thus limited by large
scales, not by small scales.

This motivates the multigrid method described below. The basic idea is that the error left
after a few iterations is on scales much larger than the grid scale. The correction needed to
the approximate solution to remove this error may therefore be determined more efficiently
by transferring the error to a coarser grid, iterating on the coarser grid where convergence is
more rapid, then transferring the calculated correction back to the finer grid, updating the
approximate solution, and iterating on the finer grid again. The whole procedure is then
repeated until the required convergence is achieved. Furthermore the procedure need not be
confined to two grids. It is natural to improve the convergence of the coarse grid problem by
transferring the error in that to a coarser grid still, and so on.

The multigrid procedure may be defined more exactly as follows. Assume that we have a
sequence of K grids, labelled by J = 1, . . . , K in increasing order of fineness, the Jth grid
having size NJ ×NJ . It is convenient to take the mesh spacing of the (J − 1)th grid to be twice
that of the Jth grid, i.e. NJ = 2NJ−1 − 1.

On the Jth grid we wish to solve the linear system

LJu
(J) = r(J) , (7)

where the operator LJ corresponds to that acting on the left-hand side of (3), if NJ = N . Note
that it is important when writing down the form of L for arbitrary J to remember that h in (3)
must be replaced by 1/(NJ − 1).

*Hint: given the speed of current computers, the timing of a single run of your program might be dominated
by start/end overheads.
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Descending part of multigrid cycle

(A) Apply the Gauss-Seidel iteration scheme (hereafter G-S) ν1 times to obtain an approximate
solution ũ(J). The error v(J) in this solution therefore satisfies

LJv
(J) = r(J) − LJ ũ

(J). (8)

(B) Transfer the problem of determining v(J) to the coarser (J − 1)th grid as

LJ−1u
(J−1) = R(r(J) − LJ ũ

(J)) = r(J−1) , (9)

where the operator R is known as the restriction operator (see below).

The descending part of the cycle repeats (A) and (B), transferring the correction at each
stage to coarser and coarser grids, starting with J = K and ending with J = 2.

Coarsest grid

(C) On the coarsest grid apply G-S ν2 times to obtain an approximate solution ũ(1).

Ascending part of cycle

(D) Transfer the approximate solution on the (J − 1)th grid to the Jth grid to give a new
approximation to the solution to the problem on that grid

ũ(J)
new = ũ

(J)
old + Pũ(J−1) , (10)

where P is the prolongation operator (see below).

(E) Apply G-S ν3 times on the Jth grid to improve the approximation ũ(J).

The ascending part of the cycle repeats (D) and (E), starting with J = 2 and ending with
J = K to leave an approximate solution to the full problem.

Note that within each multigrid cycle, the approximate solution ũ(J) and the right-hand side
r(J) are generated from the problem on the (J + 1)th grid during the descending part of the
cycle and must be stored for use again at the Jth level during the ascending part of the cycle.
Each r(J) changes from cycle to cycle, except r(K) which is always equal to f (K) (i.e. the vector
whose elements are f evaluated at each internal point of the Kth grid).

It remains to specify the restriction and prolongation operators R and P that you should use.
It is natural to take both to be linear operators. Consider the following two sets of points.

part of Jth grid

centred on (i, j)

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

P
←−
R
−→

• . • . •
. . . . .
• . • . •
. . . . .
• . • . •

part of (J − 1)th grid

centred on (k, l)

That on the left is a set of points in the Jth grid with the centre point labelled (i, j). That on
the right is the same region in the (J − 1)th grid. In the latter only those points marked with
a • are included in the grid, with the centre point now labelled (k, l) say.

The prolongation operator P maps a function defined on points in the (J − 1)th grid onto the
points in the Jth grid. Similarly the restriction operator R maps a function defined on points
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in the Jth grid onto the points in the (J − 1)th grid. It is convenient to represent both by the
“masks”

P =


1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

 , R =


1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 .

That for P means that if f = 0 for all points in the (J − 1)th grid except that labelled (k, l),
then Pf will be zero at all points on the Jth grid except for the square of nine points centred
on (i, j) where it will take the values in the “mask”. Pf may be evaluated for general functions
f by linearity. Each number in the mask for R represents the contribution from a point in the
Jth grid, e.g. the square of nine points centred on (i, j) to the point (k, l) in the (J − 1)th grid;
note that points outside this square make no contribution.

Question 2 Write a program to apply the multigrid method as specified above. You
will probably find it useful to have separate procedures/subprograms, working on grids of
arbitrary resolution, to carry out each of the operations of prolongation and restriction, to
calculate the residual in the difference equations and to apply the Gauss-Seidel iteration
(exploit your existing program from question 1 here).

Apply the multigrid method to the solution of the same equation as in question 1. Investi-
gate the rate of convergence associated with a single multigrid cycle for a fixed resolution
of the finest grid, particularly its dependence on

(i) the resolution of the coarsest grid;

(ii) the number of times that the G-S iteration is applied at each stage, i.e. ν1 (on each
grid during the descending cycle), ν2 (on the coarsest grid), and ν3 (on each grid
during the ascending cycle).

To start with, a suggested value for NK is 65, for NK−1 is 33, etc. In each case estimate
the total number of operations in a complete cycle, and give a measure of the numerical
efficiency. Justify carefully the measure of efficiency that you are using (e.g.
remember to include the cost of all operations within a cycle).

What are your conclusions about the best choices for the resolution of the coarsest grid,
and for the numbers ν1, ν2 and ν3? Next, choose suitable values of N1, ν1, ν2 and ν3,
and investigate the dependence of the rate of convergence on NK . Finally, discuss the
improvement in efficiency of multigrid over the simple Gauss-Seidel iteration in question 1
when the aim is convergence to an accuracy consistent with the truncation error of the
discretisation (3) of equation (1).

References

[1] Briggs, William L., Henson, Van Emden, McCormick, Steve F. (2000) A Multigrid Tutorial,
SIAM (ISBN 0-89871-462-1).
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2 Waves

2.2 Dispersion (7 units)

This project assumes only the elementary properties of dispersive waves, covered in the Part II
Waves course (but the relevant material can be found in the references).

1 Introduction

This project illustrates the way in which a disturbance in a ‘dispersive-wave’ system can change
shape as it travels. In order to fix ideas we shall consider one-dimensional waves, depending
on a single spatial coordinate x and time t, which are modelled by a system of linear constant-
coefficient partial differential equations that is (i) second-order in time and (ii) time-reversible.
Such a system has single-Fourier-mode (aka ‘plane-harmonic-wave’) solutions proportional to

eikx∓iω(k)t (1)

for any real ‘[angular] wavenumber’ k, where the ‘[angular] frequency’ ω is real and related to
k by a system-dependent ‘dispersion relation’. The waves are ‘dispersive’ if ω is not directly
proportional to k (and so ‘group velocity’ dω/dk and ‘phase velocity’ ω/k vary with k, and
are unequal). As an example, one-dimensional ‘capillary-gravity’ waves on the free surface of
incompressible fluid of uniform depth h have dispersion relation

ω2 =
(
gk + ρ−1γk3

)
tanh (kh) (2)

where g is gravitational acceleration, ρ the fluid density and γ the coefficient of surface tension.

If the disturbance is described by a function F (x, t), representing say the [non-dimensionalised]
vertical displacement of the fluid surface, the general solution for F will be a superposition of
all Fourier modes of the form (1):

F (x, t) =

∫ ∞

−∞

(
a+(k) e

ikx−iω(k)t + a−(k) e
ikx+iω(k)t

)
dk , (3)

where the amplitudes a+(k) and a−(k) are fixed by the initial conditions. For simplicity we
shall take these to be

F (x, 0) = exp

(
−x2

σ2

)
cos (k0x) and

∂F

∂t
(x, 0) = 0 . (4)

where σ and k0 are constants.

Question 1 Show that (3) then can be written as

F (x, t) =

∫ ∞

−∞
A(k) cos[ω(k)t] eikx dk , (5)

where A(k) is a real function to be determined.

In order to plot the solution some method is needed for evaluating the Fourier integral (5).

July 2025/Part II/2.2 Page 1 of 4 ⃝c University of Cambridge



2 The Discrete Fourier Transform

The Fourier Transform Ĝ(k) of a function G(x) may be defined by*

Ĝ(k) =
1

2π

∫ ∞

−∞
G(x) e−ikx dx , (6)

with inverse

G(x) =

∫ ∞

−∞
Ĝ(k) eikxdk . (7)

The integral (7) can be approximated by the discretisation

∆k

N/2∑
n=−N/2+1

Ĝne
in(∆k)x , Ĝn = Ĝ(n∆k) (8)

provided that ∆k is small enough to resolve the variation of the integrand with k, and that
Ĝ(k) is only significant for |k| < 1

2N∆k. With ∆k = 2π/L and ∆x = L/N , this approximates
G(x = m∆x) by

gm ≡ 2π

L

N/2∑
n=−N/2+1

Ĝne
2πimn/N for −N/2 + 1 ⩽ m ⩽ N/2 . (9)

[note that gm is periodic in m with period N , and cannot be expected to give a useful approxi-
mation to G(x = m∆x) for |m| > N/2, i.e. for |x| > L/2, since the eikx-factor in the integrand
would be chronically under-resolved].

(9) is the exact inverse of

Ĝn =
L

2πN

N/2∑
m=−N/2+1

gme−2πimn/N for −N/2 + 1 ⩽ n ⩽ N/2 ; (10)

the right-hand side is a discretisation of the integral (6) with k = n∆k, but that will not required
in this project. The so-called Discrete Fourier Transform (10) and its inverse (9) converge to
the Fourier Transform (6) and its inverse (7) in the double limit L → ∞, N/L → ∞.

3 The Fast Fourier Transform

The Fast Fourier Transform (FFT) technique is a quick method of evaluating sums of the form

λm =

N−1∑
n=0

µn (ζN )smn , m = 0, . . . , N − 1 , ζN = e2πi/N , s = ±1 (11)

where the µn are a known sequence, and N is a product of small primes, preferably a power
of 2. A brief outline of the FFT is given in the appendix for reference, but it is not necessary
to understand the details of the algorithm in order to complete the project – indeed, you are
strongly advised to use a black-box FFT procedure such as Matlab’s fft/ifft. Note that since

(ζN )smn = (ζN )s(m±N)n = (ζN )sm(n±N) (12)

*There are various conventions regarding the sign of the exponent and the placement of the 2π-factor.
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the sums in (9) and (10) can be converted to the form (11) by repositioning part of the series
(and Matlab arrays are indexed from 1 to N rather than 0 to N − 1). Similar considerations
also apply to available routines in other languages, and you may also need to take special care
regarding sign conventions and scaling.

Programming Task: Write a program to compute a DFT approximation to F (x, t).

4 No Dispersion

In the limit of ‘shallow water’ (|k|h ≪ 1 ⇒ tanh (kh) ≈ kh) and negligible surface tension
(ρ−1γ|k|3 ≪ g|k|), the dispersion relation (2) can be approximated by the ‘dispersionless’

ω2 = c20k
2 (13)

with c0 =
√
gh. The integral (5) can then be evaluated analytically.

Question 2

Use this to test the program for t up to 10 s, taking σ = 0.5m, k0 = 0m−1 and c0 = 1ms−1

[so h ≈ 0.1m if g = 9.81m s−2]. Choose appropriate values for the parameters L and N
so that your plots are correct to ’graphical accuracy’; present evidence of this accuracy in
your write-up. Comment on your results [e.g. on the appropriateness of the ‘shallow-water’
approximation for these parameter values].

5 Gravity Waves

The ‘deep-water’ (|k|h ≫ 1 ⇒ tanh (kh) ≈ sign(k)) and negligible-surface-tension limit of the
dispersion relation (2) is

ω2 = g|k|. (14)

Question 3 Take g = 9.81m s−2 and in the first instance use initial condition (4) with
σ = 1 m, k0 = 0m−1.

� For t = 2 s investigate the effects of changing the values of L and N (maybe start
with L = 32 m and N = 32). Report the results of this investigation in your write-
up, especially with regard to the errors in the solution, using both numerical values
and plots.

� Display graphical results to illustrate how the solution for this initial condition evolves
for t up to at least 6 s, giving justification for your choices of L and N . Do likewise
for the initial condition (4) with σ = 6 m and k0 = 1m−1, for t up to at least 20 s.

� Comment on the solutions, particularly in the light of group and phase velocity.
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6 Capillary Waves

Consider now the dispersion relation for ‘deep-water’ surface waves when surface-tension effects
dominate over gravitational:

ω2 = ρ−1γ|k|3 . (15)

Question 4 Perform similar calculations to those in Q3 for water with ρ = 103 kgm−3

and γ = 0.074 kg s−2, using the initial condition (4) with σ = 0.002 m, k0 = 0m−1 and
with σ = 0.005 m, k0 = 1250m−1, for t up to at least 0.1 s.

� Compare and contrast your results with those in Q3. You will want to use different
value(s) for L (and maybe N): can the concept of group velocity help in choosing a
suitable L for given time?

� How much difference would it make to these results if the exact ‘deep-water’ disper-
sion relation

ω2 = g|k|+ ρ−1γ|k|3 (16)

were used, with g = 9.81m s−2?

References

Billingham, J. & King, A. C., Wave Motion: Theory and Applications, CUP.

Lighthill, M. J., Waves in Fluids, CUP.

Whitham, G. B., Linear and Nonlinear Waves, Wiley.

Appendix: The Fast Fourier Transform

For simplicity restrict to the optimal case N = 2M . Then the DFT (11) can be split into its
even and odd terms

λm =

N/2−1∑
n′=0

µ2n′
(
ζN/2

)smn′

︸ ︷︷ ︸
λE
m

+(ζN )sm
N/2−1∑
n′=0

µ2n′+1

(
ζN/2

)smn′

︸ ︷︷ ︸
λO
m

(17)

and since λE
m and λO

m are periodic in m with period N/2, and (ζN )sN/2 = −1,

λm+N/2 = λE
m − (ζN )sm λO

m . (18)

Thus if the half-length transforms λE
m, λO

m (0 ⩽ m ⩽ N/2−1) are known, it ‘costs’ 1
2N products

to evaluate the λm for 0 ⩽ m ⩽ N − 1. The process can be performed recursively M times,
giving a decomposition in terms of N transforms of length one – which are just the original µn

(0 ⩽ n ⩽ N − 1).

To execute an FFT, start with these length-one transforms; at the s-th stage, s = 1, 2, . . . , M ,
assemble 2M−s transform of length 2s from transforms of length 2s−1, at a ‘cost’ of 2M−1 = 1

2N
products. The complete DFT is formed after M stages, i.e. after 1

2N log2N products, as
opposed to N2 products in naive matrix multiplication – so for N = 1024 = 210 the cost is
5× 103 products compared to 106 products!

For more details, see for example Press et al., Numerical Recipes, CUP.
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2 Waves

2.11 Fisher’s Equation for Population Dispersal

Problems

(9 units)

This project is essentially self-contained, and does not directly rely on any Part II lecture course.
However, attendance at a Part II Numerical Analysis course may be of some help, as may
attendance at the Part II course, Mathematical Biology.

Problem Formulation

An equation commonly encountered in population genetics is the one-dimensional diffusion
equation

∂ρ̂

∂t̂
= − ∂j

∂x̂
+ F (ρ̂). (1)

Here, x̂ denotes the spatial position, t̂ the time, ρ̂(x̂, t̂) the population density, j the population
flux, and F (ρ̂) is a local source term that describes the net rate of growth in the population
density.

A typical model for local population growth is given by the Pearl-Verhulst law

F (ρ̂) =

{
γρ̂(1− ρ̂/ρ̂s) 0 < ρ̂ < ρ̂s;

0 ρ̂ ⩽ 0 ρ̂ ⩾ ρ̂s.
(2)

This describes how a homogeneous population would grow, initially in an exponential manner,
until the population saturated at some density ρ̂s.

The flux j is the source of the diffusive behaviour and is given by,

j = −D
∂ρ̂

∂x̂
. (3)

If it is assumed that dispersal is due to random motion of individuals, then the diffusion coeffi-
cient D is constant and Fisher’s equation is obtained. However, as a remedy to overcrowding,
dispersal would be much more effective if the diffusion coefficient were population density-
dependent. In fact this has been observed in populations of small animals. Here we consider
the case D = D0ρ̂. With suitable non-dimensionalisation, we obtain the modified Fisher equa-
tion,

∂ρ

∂t
=

∂

∂x

(
ρ
∂ρ

∂x

)
+ ρ(1− ρ). (4)

A similar equation also arises in combustion dynamics.

Travelling wave solutions to this equation are the subject of project 2.11(a). A situation of
more practical interest is when the population density is known at some initial time, and the
subsequent evolution of the population is required. In projects 2.11(b) and 2.11(c) the expansion
of a population which is initially limited to a finite spatial range is considered. Thus solutions
to (4) are required subject to the following boundary conditions:

ρ(x, 0) =

{
ρ0(x), 0 ⩽ x ⩽ 1,

0, x > 1,
(5)

∂ρ

∂x
(0, t) = 0, t > 0,

ρ(x, t) → 0 as x → ∞.
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The form of the initial data leads us to consider a solution which is piecewise continuous with
a single jump across x = s(t), where conditions given by conservation laws must be satisfied.
The initial boundary-value problem can now be reformulated as follows:

0 ⩽ x ⩽ s(t) :

ρt = (ρρx)x + ρ(1− ρ),

ρ(x, 0) = ρ0(x),

ρx(0, t) = 0, (6)

ρ(s(t), t) = 0, ρx(s(t), t) = −ṡ(t).

s(t) < x :

ρ(x, t) ≡ 0

We refer to x = s(t) as the population front. From the initial population distribution (5) we
see that s(0) = 1.

In project 2.11(b), solutions of (4) are obtained for a particular initial distribution, and the
behaviour as t → ∞ is examined. In project 2.11(c), the code developed in project 2.11(b) is
used to examine the propagation of the population front.

Project 2.11(a): Travelling Wave Solutions

Here we consider solutions of (4) corresponding to steady expansion of a saturated population.

Question 1 By writing ρ(x, t) = ϕ(ξ), where ξ = x− ct−x0, show that ϕ is governed
by the nonlinear ODE,

ϕϕ′′ + (ϕ′)2 + cϕ′ + ϕ(1− ϕ) = 0 (7)

This is to be solved subject to the boundary conditions ϕ → 1 as ξ → −∞, ϕ → 0 as
ξ → ∞. General analytic solutions to (7) are not available and hence numerical solutions
are required. Such solutions could be obtained by shooting, but here it is preferable to
consider the asymptotic form of ϕ as ξ → −∞.

Question 2 By linearising (7) about ϕ = 1, show that as ξ → −∞,

ϕ ∼ 1−Aeλξ (8)

where A is an arbitrary constant, due to the translational invariance of (7), and λ is to be
determined as a function of c. This then provides suitable initial conditions for a forward
integration in ξ, ie.,

ϕ(ξ0) = 1− δ, ϕ′(ξ0) = −λδ, δ ≪ 1, (9)

for arbitrary ξ0.

Question 3 Obtain solutions for c = 2.25, 1.5, 1 and 0.75 using a suitable integration
method. These travelling wave solutions should be plotted on the same graph on axes
with the origin chosen such that ϕ(ξ = 0) = 1

2 (to within graphical accuracy).
Investigate the change in the wave profile as the wave speed c is decreased still further.
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Question 4 Show that

ϕ(ξ) =

{
1− e(ξ−ξ1)/

√
2, −∞ < ξ < ξ1;

0 ξ1 ⩽ ξ.
(10)

is an exact solution for a particular value of c to be determined. Comment on this solution,
and plot the waveform, with ξ1 chosen so that ϕ(ξ = 0) = 1

2 , as before.

Project 2.11(b): Large-Time Limit for the Initial Value Problem

Travelling wave solutions often give clues to the general behaviour of solutions of a nonlinear
wave equation. However, a more commonly encountered problem is when the population density
is known at some initial time, and the subsequent evolution of the population is required. In this
exercise we obtain solutions to (6). For numerical efficiency, renormalise the domain [0, s(t)], to
[0, 1], by introducing a new spatial coordinate y = x/s(t).

Question 5 Show that the evolution of ρ(y, t) is given by

∂ρ

∂t
=

1

2s2
∂2(ρ2)

∂y2
+

ṡy

s

∂ρ

∂y
+ ρ(1− ρ) (11)

ρy(0, t) = 0, ρ(1, t) = 0, ρy(1, t) = −sṡ. (12)

The equation (11) is to be solved subject to the boundary conditions (12), and initial conditions

ρ(y, 0) = ρ0(y). (13)

The final condition in (12) then determines the motion of the population front, with s(0) = 1.

Many methods exist for the numerical solution of parabolic equations. Here we consider a very
simple finite-difference method, where spatial derivatives are expressed using centred differences
and the solution is advanced in time using forward Euler. Writing tj = j(∆t), yn = n/N ,
(n = 0, 1, . . . , N), and using the notation ρj,n ≡ ρ(tj , yn), sj ≡ s(tj) we discretise (11) in the
form,

ρj+1,n − ρj,n
∆t

=
1

2s2j

ρ2j,n+1 − 2ρ2j,n + ρ2j,n−1

(∆y)2
+

ṡjyn
sj

ρj,n+1 − ρj,n−1

2(∆y)
+ ρj,n(1− ρj,n),

n = 1, 2, . . . , N − 1

ρj,0 = ρj,1,

ρj,N = 0,

sj+1 − sj
∆t

= ṡj = −s−1
j

ρj,N−2 − 4ρj,N−1

2∆y
,

where ∆y = 1/N . The expression for ṡj is obtained by using the final condition in (12) with a
three-point backward difference expression for ρy(y = 1).

There are several more sophisticated numerical methods of solving this system of equations, but
the method described is very simple to implement and proves sufficient for the current purposes.
The main drawback is that ∆t must be chosen very small to ensure numerical stability.

Question 6 Write your own program to solve (11) using the discretisation given above.
Obtain solutions for initial distribution ρ0(x) = 0.3ex(1 − x). Start with N = 100 and
∆t = 0.0001, but confirm that your code produces solutions that are independent of mesh-
size. Plot the solution as a function of the original spatial variable x at t = 0, 2, 4, 6, 8
and 10. Also plot the velocity of the wave front, ṡ(t), as a function of time. Compare the
large-time wave profile with the travelling wave solutions obtained in project 2.11(a).
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Project 2.11(c): Motion of the Wave Front

Using the same program written for project 2.11(b), we now investigate the early evolution of
the wave front for different classes of initial population distribution.

Consider three different initial profiles:

(i) ρ0(x) = A1e
x(1− x);

(ii) ρ0(x) = A2e
2x(1− x)2;

(iii) ρ0(x) = A3e
3x(1− x)3;

where Ai are numerical constants characterising the total initial population.

Question 7 Using the same mesh-size as above, obtain solutions for 0 < t ⩽ 0.5,
for initial distribution (i). Consider various values of the coefficient A1, in the range
0.1 ⩽ A1 ⩽ 0.9. For some values of A1 (which?) it may be necessary to reduce the time
step-size. Do not include plots of ρ(x, t) in your report, but concentrate on the motion of
the wave front. Write down a relationship between the initial velocity of the wave front
and the initial profile and show that this is in agreement with your numerical results.

Question 8 Calculate solutions for initial distribution (ii) with A2 = 0.2 for 0 < t ⩽ 1.
As before plot ṡ(t) as a function of time. Repeat these calculations with the spatial mesh-
size reduced to ∆y = 0.002 and then ∆y = 0.001, adjusting ∆t as necessary. Describe the
movement of the wave front. Repeat these calculations with A2 = 0.05, for 0 < t ⩽ 0.75.

Analysis suggests that for some classes of initial distributions, the population front is fixed until
a certain waiting time tw has elapsed, after which the population expands.

Question 9 For initial distributions which are locally quadratic in the vicinity of the
wavefront, it can be shown that the waiting time is given by

tw = log

(
1 +

1

6g2

)
(14)

where ρ0(x) ∼ g2 (1−x)2, as x → 1. Are the numerical results you have obtained in broad
agreement with this result? With reference to the shape and properties of the wavefront
and of the initial profile, discuss why such a phenomenon may occur in the evolution of a
population.

Question 10 Calculate the motion of the population front for initial distribution (iii)
with A3 = 0.2. As with case (ii), reduce the mesh-size. Compare your results with the
results of (ii).

References

A background to the biological models underlying these equations can be found in Some exact
solutions to a nonlinear diffusion problem in population genetics and combustion by Newman
(J. Theoretical Biology (1980) 85, 325–334).

An in-depth analysis of equations of this form is presented in The effects of variable diffusivity
on the development of travelling waves in a class of reaction-diffusion equations by King &
Needham (Phil. Trans. Roy. Soc. Lond. A (1994) 348, 229–260). This contains derivation of
the results for waiting times, but reference to this paper is not necessary for the purposes of
this project.
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3 Fluid and Solid Mechanics

3.6 Particle Drift in a Periodic Flow Field (4 units)

This project builds on material in the Part IB Fluid Dynamics course.

A one-dimensional periodic flow in a fluid has velocity u in the x-direction only, given by

u = α cos k(x− ct). (1)

A material fluid element subject to this motion will have trajectory X(t) satisfying

dX

dt
= α cos k(X(t)− ct). (2)

Question 1 Explain why, without loss of generality, distance and time units may be
chosen so that k = 2π and c = 1, giving

dX

dt
= a cos 2π(X(t)− t). (3)

How is a related to α?

Question 2 Solve (3) numerically for a representative set of values of a, taking
X(0) = 0. Describe your results qualitatively, and plot the solutions against time. You
can use your own ODE integrator, or alternatively one such as the Matlab function
ode45. In either case you should justify the accuracy of your results (for example, by
considering results produced with different step-sizes or tolerances). What if X(0) ̸= 0?

Question 3 Verify from your numerical results that for |a| sufficiently small, there is
a time-averaged mean ‘drift’ velocity of 1

2a
2. Include details of your method.

Question 4 Give a physical interpretation of the interaction between the flow and the
material element. Do not confine your answer only to small |a|.
Hint: You may wish to consider a graph of dX

dt against X.

Question 5 Analyse mathematically the above system, using any approach you see
fit, e.g. in the case of question 3 you might seek an approximate solution for small |a|.
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3 Fluid and Solid Mechanics

3.9 Viscous Flow in a Collapsible Channel (9 units)

This project requires a knowledge of lubrication theory for a viscous fluid, as taught in the Part II
course Fluid Dynamics II and described in [1].

1 Introduction

The tubes that carry fluid around the body (such as veins, arteries, lung airways, the urethra,
etc.) have deformable walls. The shape of such a tube is strongly coupled to the flow within it
through the internal pressure distribution. This nonlinear flow-structure interaction imparts to
such systems unusual but biologically significant properties, notably “flow limitation” (so that
airway flexibility limits the rate at which you can expel air from your lungs, for example). To
explore such interactions, one can consider a simple model system in which an incompressible
fluid flows steadily through a two-dimensional channel, one wall of which is formed by a mem-
brane under longitudinal tension. Assuming that the channel is long and thin, and that the
fluid is sufficiently viscous, lubrication theory can be used to describe the flow.

Suppose the channel lies in 0 ⩽ y ⩽ h(x), 0 ⩽ x ⩽ L, where L ≫ h. Applying no-slip and
no-penetration conditions along the rigid wall y = 0 and the membrane y = h, the relationship
between the steady, uniform flux q of fluid along the channel and the local pressure gradient
px is approximately q = −h3px/(12µ), where µ is the fluid’s viscosity, assumed constant. The
fluid pressure distribution p(x) is controlled by the shape of the channel wall according to
p = −Thxx, where T is the tension in the membrane, assumed constant; the pressure outside
the membrane is taken to be zero. We assume that the membrane is fixed at either end, so
that h(0) = h(L) = h0, for some constant h0. The flow is controlled by the upstream and
downstream pressures p(0) = pu and p(L) = pd, and characterised by the relationship between
the flux q and the pressure drop along the channel, pu − pd, holding either pu or pd constant.

The problem can be simplified by nondimensionalisation. Let

h(x) = h0H(X) , x = LX , and p(x) = p0P (X) ,

where p0 = Th0/L
2. This yields nondimensional parameters Q = 12µL3q/(Th40), Pu = pu/p0,

Pd = pd/p0 and governing equations

Q = −H3PX , P = −HXX (0 ⩽ X ⩽ 1) (1)

subject to
H(0) = 1, H(1) = 1, P (0) = Pu, P (1) = Pd. (2)

We seek graphs of ∆P = Pu−Pd > 0 as a function of Q, for fixed values of Pu or Pd. (So only 3
of the 4 boundary conditions in (2) are relevant.)

This is a two-point, third-order, boundary-value problem. It can be solved by two different
methods: shooting, which is relatively easy to program but which cannot normally be extended
to problems in higher dimensions; and a direct finite-difference method, which is more com-
plicated to set up but adaptable to more complex situations. The relatively straightforward
problem given by (1) and (2) can be used to explore the relative merits of each method; both
methods can be used to explore the fluid mechanics of collapsible channel flow.
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2 The shooting method

Use a Runge-Kutta routine, or equivalent (e.g. the Matlab function ode45), to integrate (1)
from X = 1 to X = 0 (say), by fixing Q and Pd, setting H(1) = 1, H ′(1) = β, H ′′(1) = −Pd

and then varying β until H(0) = 1. If you know that a solution exists for β1 < β < β2, say,
a root-finding routine will be useful in quickly homing in to the required solution. Note that
you should not use a boundary-value problem solver such as the Matlab functions bvp4c or
bvp5c, or equivalent.

You should check that your predicted channel shapes and pressure distributions are of sufficient
accuracy by varying any tolerance you have specified on the step-length, etc. You will also need
to compute solutions with Pu fixed, shooting from X = 0 to X = 1 (see Question 3 below).

3 The direct finite-difference method

Writing (1) in the form HXXXH3 = Q, discretise this equation and the boundary condi-
tions with second-order accurate finite differences on a uniform N -node grid with grid-spacing
∆ = 1/(N−1) and grid points Xj = (j−1)∆ (j = 1, . . . , N). Use forward (or backward) differ-
ences for the discretisation of the second derivative in the upstream (or downstream) pressure
boundary condition. In most of the interior domain you can use a central difference expression
for the discretisation of HXXX , but near one of the boundaries of the domain you will have to
use a non-central difference expression; suitable difference formulae are given in Appendix A.

The three discretised boundary conditions and the discretised ODE, written at (N − 3) interior
gridpoints Xj ,(j = 3, . . . , N−1), provide a total of N non-linear algebraic equations Fi(Hj) = 0
(i, j = 1, . . . , N) for the discrete membrane heights Hj = H(Xj) . Solve this set of equations
with a Newton-Raphson method (e.g. [2]).

The Newton-Raphson method requires the Jacobian matrix of the non-linear equations

Jij = ∂Fi/∂Hj ,

which can be determined by differentiating the discretised equations. At each stage of the
iteration, the method requires solution of a set of linear equations. You might find the MATLAB
function spdiags useful here (see also help sparfun in MATLAB).

You should include a brief summary of the equations needed for this method in your write-up.

4 Continuation techniques

The Newton-Raphson method usually requires a “good” initial guess in order to converge to a
solution, so to generate solutions corresponding to strongly deformed channels a continuation
technique should be used. (The shooting method can also benefit from this approach, but it is
not usually necessary.) Start the computation with parameter values corresponding to a known
solution (e.g. a slightly deformed channel with Pd = 0, Q ≪ 1) and use the undeformed channel
(H = 1) as an initial guess. Having found this solution, slowly increment the parameters Q and
Pd to construct solutions with the channel highly deformed.

5 Questions

Throughout this project you should comment on the physical interpretation of your computed
results as well as their mathematical or numerical features.
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Question 1 Compute some static wall shapes when there is no flux through the chan-
nel, with the fluid pressure both positive and negative. These shapes can be determined
analytically: compare your predictions using both numerical methods above with the
exact analytical results.

By considering analytically the case when |H − 1| ≪ 1, or otherwise, show that for Q > 0
there are three possible types of solution, depending on the values of Pu or Pd: those with
the channel dilated (H > 1 in 0 < X < 1); those with the channel collapsed (0 < H < 1
in 0 < X < L); and those with both dilation and collapse (H > 1 for 0 < X < Xb

and H < 1 for Xb < X < 1, for some Xb). Show that both numerical methods predict
the same channel shapes and pressure distributions for typical values of Q, Pu and Pd.
Comment on the qualitative differences between Q = 0 and Q > 0.

Question 2 Using either method, produce graphs of ∆P as a function of Q for fixed
values of the downstream transmural pressure Pd, showing examples with Pd both positive
and negative (consider, say, −3 ⩽ Pd ⩽ 3, 0 ⩽ Q ⩽ 6). Show that the slope of the graph
of ∆P versus Q falls as Q increases, and show how the channel shape evolves as this
happens. Explain this behaviour in physical terms.

Question 3 By shooting from X = 0 to X = 1, produce graphs of ∆P as a function
of Q for fixed values of the upstream transmural pressure Pu, both positive and negative,
and again describe the evolution of the channel shape. This case requires slightly more
care than Question 2, as you may find that the solution is not unique. Show that for each
value of Pu there is a maximum possible flow rate through the channel. Obtain the same
graphs using the direct finite-difference method; explain any techniques that you may
need to introduce in order to obtain converged solutions. Explain the physical mechanism
by which the flux may fall as the pressure drop across the channel is increased.

References

[1] Acheson, D. J. Elementary Fluid Mechanics, Oxford University Press, 1990.

[2] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. Numerical Recipes (available
in various editions for different languages). Cambridge University Press, 1992.

A Finite difference formulae

Here is a collection of second-order accurate finite difference expressions for the second and
third derivatives of the channel height [Hj = H ((j − 1)∆)]:

H ′′(Xj) =
Hj−1 − 2Hj +Hj+1

∆2

H ′′(Xj) =
2Hj − 5Hj+1 + 4Hj+2 −Hj+3

∆2

H ′′(Xj) =
2Hj − 5Hj−1 + 4Hj−2 −Hj−3

∆2

H ′′′(Xj) =
Hj+2 − 2Hj+1 + 2Hj−1 −Hj−2

2∆3

H ′′′(Xj) =
3Hj+1 − 10Hj + 12Hj−1 − 6Hj−2 +Hj−3

2∆3
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3 Fluid and Solid Mechanics

3.10 Smoke Rings (8 units)

This project discusses a simple model of the motion of smoke rings. Knowledge of Part IB Fluid
Dynamics is required, while knowledge of the Part II course Classical Dynamics will help with
Question 2. The articles by Acheson [1] and Tophøjj & Aref [5], and the book by Saffman [4]
may be found helpful.

A smoke ring is a vortex tube wrapped around into a closed circle (a vortex ring), which
propagates normal to the plane of the circle under its self-induced velocity field. The politically
incorrect method of generating them involves the inhalation of noxious substances; a more
socially acceptable method involves a volcano [6]. We will, throughout this project, neglect
various effects and crudely model a three-dimensional axisymmetric vortex ring of diameter a
and strength κ by a pair of point vortices in two-dimensional fluid of strengths κ and −κ, a
distance a apart.

1 2D vortex dynamics: Theory

Question 1 Show that the equations of motion of a set of point vortices of strengths
κi at positions (xi(t), yi(t)), in a two-dimensional inviscid fluid which is otherwise at rest,
are

dxi
dt

= − 1

2π

∑
j ̸=i

κj(yi − yj)

r2ij
, (1a)

dyi
dt

=
1

2π

∑
j ̸=i

κj(xi − xj)

r2ij
, (1b)

where

rij = ((xi − xj)
2 + (yi − yj)

2)1/2 . (1c)

Question 2 Show carefully that the equations of motion can be written in the form

dxi
dt

= κ−1
i

∂H

∂yi
,

dyi
dt

= −κ−1
i

∂H

∂xi
(no summation) , (2)

where

H = − 1

4π

∑
i,j
i ̸=j

κiκj log rij . (3)

H is invariant under space translations and rotations, which implies the existence of three
scalar conserved quantities. What are they?

Hint: Suppose H has a continuous family of symmetries, i.e.

H(X(x, y, δ), Y (x, y, δ)) = H(x, y) ,

such that X(x, y, 0) = x and Y (x, y, 0) = y. Observe that

0 =
∑
i

(
∂H

∂xi

∂Xi

∂δ
+

∂H

∂yi

∂Yi
∂δ

)
δ=0

.
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H is also invariant under time translations — what conserved quantity does this give?

Programming Task: Write a program to integrate the equations of motion (1a), (1b)
and (1c). You should use an adaptive stepsize ODE integrator (such as the Matlab
function ode45). You will find it useful to write your code to handle arbitrarily many
vortices.

2 Simulations of smoke rings

Question 3 Use your code to investigate the motion of a single “axisymmetric vortex
ring” under this model. This problem can also be solved analytically; use the analytic so-
lution to test your code. Demonstrate to what accuracy your code preserves the constants
of the motion.

Question 4 What happens when two smoke rings are fired towards each other on the
same axis? Describe the resulting motion, giving clear physical explanations for each
behaviour observed. You should start by considering two rings with equal strengths and
widths, but should also explain what happens in the general case.

Question 5 What happens when two smoke rings are fired in the same direction on
the same axis? Describe the resulting motion, giving clear physical explanations for each
behaviour observed. You should start by considering two rings with equal strengths and
widths, but should also explain what happens in the general case. You should not need
to integrate to large times, but you should (where relevant) show several cycles of the
motion.

Question 6 We have made a number of modelling assumptions in reducing the full
three-dimensional problem to this simple two-dimensional version. Discuss how good
they are. Would the behaviour that you have observed in question 5 occur in a real
physical system? Are the physical explanations that you gave in questions 4 and 5 for
two dimensional flow relevant in the real geometry? What other possible effects have we
neglected?

3 Symmetries and instabilities

Question 7 Repeat a typical one of the simulations you did for question 5, but now
integrate to large times and show your output. What happens? Is the resulting behaviour
physically plausible for a pair of 3D vortex rings? What happens if you adjust the error
tolerances of your ODE solver?

Programming Task: Produce a program which can only model coaxial smoke rings,
but which explicitly enforces the symmetry about the axis. In other words, use the mirror
symmetry of the model system to reduce the number of ODEs that you have to solve.

Note that this is not the best way to handle symmetries and conserved quantities in the
numerical solution of ODEs. See Iserles et. al. [2] for more information. For this project,
however, this method will suffice.

Question 8 Use this new program to repeat the simulation you did for question 7.
Show your output and comment.
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4 More smoke rings

Question 9 Consider three coaxial smoke rings, fired in the same direction. Use your
new program to investigate the resulting motion. Give a survey of the different kinds of
behaviour you observe, including a selection of your plots (four or so should suffice).

Note that the parameter space you have to search is rather large. You should think of ways
to reduce it.
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4 Dynamics

4.5 Euler’s Equations (8 units)

This project is self-contained, though material from the Part II(C) course Classical Dynamics
is relevant.

1 Introduction

The angular velocity with respect to principal axes of inertia in a rigid body is taken to be

ω = (ω1, ω2, ω3). (1)

If the principal moments of inertia are A, B, C with respect to these axes, then the angular
momentum is

h = (Aω1, Bω2, Cω3). (2)

These axes are fixed in the body and have angular velocity ω with respect to an inertial frame
instantaneously coincident with the principal axes. The rate of change of angular momentum
with respect to such an inertial frame is

dh

dt
+ ω ∧ h. (3)

In the case when there is no net moment of external forces acting on the body, the law “rate of
change of angular momentum = moment of external forces” gives:

dh

dt
+ ω ∧ h = 0. (4)

Expanding this equation into components gives:

Adω1
dt + (C −B)ω2ω3 = 0

B dω2
dt + (A− C)ω3ω1 = 0

C dω3
dt + (B −A)ω1ω2 = 0

 (5)

It can be shown analytically that these equations have two first integrals, which say that the
energy and the magnitude of the angular momentum remain constant, as follows:

1
2Aω

2
1 +

1
2Bω2

2 +
1
2Cω2

3 = E (6)

A2ω2
1 +B2ω2

2 + C2ω2
3 = H2 (7)

Since the moment of external forces is zero, we also know that the angular momentum vector
h is constant when measured in an inertial frame.

2 Project work

2.1 Program requirements

Write a program to solve Euler’s equations (5) numerically and plot the results. You should
use MATLAB’s 64-bit (8-byte) double-precision floating-point values or the equivalent in other
programming languages. Output from your program should include:
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1. Graphs of ω1(t), ω2(t) and ω3(t) against t;

2. 3-D phase space plots of ω1, ω2 and ω3. Choose the OX axis for ω1, etc.

Equations (6) and (7) can be used to check the accuracy of your numerical results by calculating
and displaying the values of these expressions at the beginning and end of runs.

The objective of the project is to investigate and classify all possible types of motion. The
following questions provide some guidelines for the investigation.

Question 1 Since A, B, C, ω1(0), ω2(0) and ω3(0) may all in principle take arbitrary
values, the parameter space to be explored may seem very large. If A, B and C take
distinct values, explain how the results from taking

A > B > C (8)

can be generalised. Briefly explain what happens if any two (or all three) of A, B, C are
equal. For given values of A/B and C/B, explain why we may take B = 1 without loss
of generality.

Show further that choosing E = 1 is equivalent to re-scaling the time variable t, and give
the scaling factor.

2.2 Results requirements

From this point on, take B = 1 and E = 1 and build these values into your program. Your
program should allow you to set and change the values of A/B and C/B. Assume that A/B > 1
and C/B < 1, and work with A = 1.4, B = 1 and C = 0.7 unless other values are suggested.
You may find it convenient to accept arbitrary input for ω1(0), ω2(0) and ω3(0) and then scale
the input values so that E = 1.

Question 2 Use your program to demonstrate that solutions are possible in which the
vector ω(t) rotates around the OX axis with small amplitude deviation from (

√
2/A, 0, 0)

(i.e., (1, 0, 0) before scaling), and that similar stable solutions exist near the OZ axis.
Include copies of your results.

Question 3 Approximate Euler’s Equations (5) by linearising them for the cases where
(i) ω1 ≈

√
2/A and ω2, ω3 are small, and (ii) ω3 ≈

√
2/C and ω1, ω2 are small. Describe

the analytic solutions. Are your solutions consistent with the results obtained for ques-
tion 2 above? Give analytic expressions for the period of the motion in each case and
compare with your results. (You need not compute the periods; an estimate by eye from
your graphs of ω vs t is sufficient.)

Question 4 Are your numerical results consistent with equations (6) and (7)? To
what extent are further checks on numerical accuracy needed?

Question 5 What solutions do you obtain if starting conditions are chosen so that
ω(0) lies very close to the OY axis? Describe the motion physically.

Question 6 Make a plausible case based on your computed results that there exists a
solution ω(t) which begins away from the OY axis but which tends towards the steady
(but unstable) solution parallel to the OY axis as t → ∞. What happens if you attempt
to simulate such a solution numerically? What value must H take for such a solution?
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Question 7 Using the following scheme, classify all the possible qualitative types of
motion of the system assuming A, B and C take distinct values. Take the solution
discussed in question 6 as a type of its own, and use it to separate the remaining solutions
into two types. Describe the range of behaviour observable for each type. Explain clearly
how the solution discussed in question 6 divides the solution space into regions (can you
find the equations of the boundaries of these regions?) and how solutions behave physically
as the boundaries are approached.

Try different values of A/B and C/B. How does the choice of these parameters affect
your results?

Question 8 The rigid body is now subjected to slow friction via a retarding couple
−kω, where k is a very small parameter. How does this affect equations (5), (6) and (7)?
Alter your program to incorporate the couple and investigate a few types of solutions for
the original values of A, B and C. You may find it useful to consider 3D phase plots of a
suitably normalised ω(t), as well as your normal plots.

Question 9 Is your classification in question 7 still of any use or has it become irrele-
vant? Is there still a division of the solution space into regions?
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5 Quantum Mechanics

5.3 Bound State Energies for One-Dimensional

Potentials

(9 units)

This project can be done with knowledge of the course Principles of Quantum Mechanics.

1 Introduction

One-dimensional bound states in quantum mechanics are investigated by using a matrix method
to estimate eigenvalues of the Schrödinger operator. Several cases are considered and the answers
are compared with theory, including the predictions of perturbation theory and variational
methods.

2 The Schrödinger Equation

The Schrödinger equation in 1D (using units where ℏ = 1 = m) is

−1

2

d2ψi

dx2
+ V (x)ψi = Eiψi.

To obtain approximate solutions to this equation, the real-valued position x is replaced by a
discrete set of 2N points spaced by ϵ, such that −Nϵ ⩽ x < Nϵ. The eigenfunction, ψ(x), is
replaced by a 2N -dimensional vector, e, where ψ(xn) = en, with xn = (n −N)ϵ, 0 ⩽ n < 2N .
The Schrödinger equation becomes the matrix eigenvalue equation

Mei = ϵ2Eiei,

where M is a 2N × 2N symmetric tri-diagonal matrix with

diagonal entries cn = 1 + ϵ2V (xn)

off-diagonal entries bn = −1
2 ∀n

3 Given’s Procedure

Given a symmetric tri-diagonal matrix, M , with diagonal entries cn and off-diagonal entries bn,
consider the sequence qn, (0 ⩽ n < 2N), for fixed real parameter λ:

q0 = c0 − λ

qn = (cn − λ)− b2n/qn−1 n > 0. (1)

Let s(λ) be the number of the qn that are negative. Then the number of eigenvalues of
M whose values are less than λ is s(λ). That is, if the eigenvalues are ordered so that
Ei ⩽ Ei+1, then

ϵ2Ei < λ for 0 ⩽ i < s(λ).

s(λ) can be computed as a function of λ by starting with a sufficiently small value of λ, incre-
menting λ in small steps and computing the sequence {qn} for each value. When s(λ) increases
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in value from one step to the next, λ must have passed through an eigenvalue of M (or through
more than one, if s(λ) increases by more than one, in which case you should use a smaller
stepsize). An accurate value for this eigenvalue can then be determined by bisection before
going on to the next eigenvalue.

Once the eigenvalue, E, has been found sufficiently accurately, to at least 3 decimal places, the
corresponding eigenvector can be found using the equations

e0 = 1

e1 = 2(c0 − ϵ2E)

en+1 = 2(cn − ϵ2E)en − en−1 n > 0.

Note: for bound states the relevant eigenvectors are required to decay exponentially for large
|x|. It can be shown that the matrix M only has eigenvectors which satisfy this boundary
condition.

There are three cautions:

(a) In Equation (1) there is a division by qn−1. Should qn−1 become too small it is permissible
to replace it by a small default value, to avoid numerical instabilities: the results are
unaffected by this procedure. For the cases considered below this eventuality has not
been found to occur in practice.

(b) You will compute eigenvectors that are normalised as

ϵ
2N−1∑
n=0

e2n = 1

which corresponds to the physical normalisation
∫∞
−∞ |ψ|2 dx = 1. The wavefunction dies

away at least exponentially for large |x| so we expect e0 to be very small indeed. For
this reason, it is useful to continually normalise the vector e, as it is being computed.
Specifically, if the en have already been calculated for all n < m then it is recommended
to normalise them such that

ϵ

m−1∑
n=0

e2n = 1

before computing em.

(c) The wavefunction also decays exponentially for large positive x. This means that for large
n (bigger than N), the values of en will become very small. However, if you continue the
calculation to very large n, numerical (round-off) errors can lead to exponential growth
of the numerical estimates of en. The calculation is not accurate in this regime: if this
happens you should stop the calculation at some nmax < 2N , in order to obtain an accurate
estimate of the true eigenvector e. Alternatively, use the fact that all wavefunctions are
either even or odd so the en only need to be computed for 0 ⩽ n ⩽ N . (Take care with
the normalisation if you use this method).

Programming Task: Write a program to determine the eigenvalues and eigenvectors
for the four lowest bound states of a given (symmetric) potential. You should allow the
values of N and ϵ and the starting value λ to be input variables.
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4 Harmonic Oscillator

[See the Appendix for some theoretical results which may be of use here and in later sections.]

As a check of your code give the four lowest eigenenergies for the potential

V (x) =
1

2
x2.

Adjust N and ϵ to get results to at least 3 decimal places for the eigenvalues and accurate to
within 1% for the significant part of the wavefunctions. Make sure that Nϵ is not too big since
the wavefunctions are very small for x = Nϵ and so nothing is gained. However, if ϵ is too
big and/or Nϵ is too small the results will be inaccurate. A bit of trial and error will yield
good values with which to work, but in each case considered you should check that results are
insensitive to changes in N and ϵ within the accuracy required. Reasonable values to start with
are N = 50 and ϵ = 0.1 but you should be able to increase N up to 500 at least.

Question 1 State the values of N and ϵ that you have chosen, to obtain the required
accuracy. Justify these choices. For these values, include plots of the wavefunctions
corresponding to the two lowest energies and compare with the known analytic form.

Note: throughout this project, you should provide graphs that illustrate clearly the effect
of the parameters and the similarities and differences between the wavefunctions. Large
numbers of graphs are very unlikely to be effective in communicating this information.

5 Anharmonic Oscillator

Now modify the potential energy and take

V (x) =
1

2
x2 +

b

6
x4(x2 + 1) .

Question 2 Labeling the harmonic oscillator eigenstates by |n⟩, i.e. H0|n⟩ = En|n⟩
with

H0 =
p2

2
+
x2

2
= a†a+

1

2
,

explain or show that ⟨n+ k|x6|n⟩ = 0 for all k > 6.

Question 3 Using perturbation theory derive expressions for the lowest two energies
to second order in b. You may use without proof, for integer j ⩾ 0, that∫ ∞

−∞
dz z2j e−z2 = Γ(j + 1

2) ,

with Γ(12) =
√
π and Γ(σ + 1) = σΓ(σ).

Question 4 Compute (numerically) the four lowest energy eigenvalues and plot the
corresponding wavefunctions for b = 0.02. Compare the results with your perturbative
estimates for the lowest two energies. Try values b = 0.001 and 0.1, as well as any others
that you feel might be relevant. You need not plot the wavefunctions for these cases, but
you should consider tables and/or plots of the energies vs. b. How well does perturbation
theory work here? Is second order perturbation theory an improvement over first order?
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6 Double-well potential

Finally consider

V (x) =
1

9d4
(x2 − d2)2

(
d2 +

x2

8

)
(2)

This problem is not so easy to study by perturbation theory. Instead we use trial wavefunctions.
(This approach is the same as the variational method described in the Applications of Quantum
Mechanics course, but no knowledge of this method is required as full details are given below.)

Question 5 Change variable to y = x− d and show that

V =
1

2
y2 + V3y

3 +
7

24d2
y4 + V5y

5 +
1

72d4
y6 .

where V3 and V5 are constants that you should express as real numbers times d to some
(negative) power.

Observe that for small y, the potential V resembles the harmonic oscillator from question 1.
A similar result occurs if we change variable to y = x + d instead: the potential is symmetric
in x so this must happen. Based on this observation we introduce two wavefunctions that are
ground states of the relevant harmonic oscillators:

ψ+(x) =
1

π1/4
e−

1
2
(x−d)2

ψ−(x) =
1

π1/4
e−

1
2
(x+d)2 .

Define two trial wavefunctions as

ϕ± = C±(ψ+ ± ψ−)

You will investigate how close are these wavefunctions to the solutions of the Schrödinger equa-
tion.

Question 6 Determine the normalization constants C± and show that the expectation
values of the Hamiltonian, E± = ⟨ϕ±|H|ϕ±⟩ are

E± =
(A±B)

(1± e−d2)
,

where

A =
1

2
+

7

32d2
+

5

192d4
and B = e−d2

(
−7d2

18
+

7

48
+

1

16d2
+

5

192d4

)
.

Question 7 What is the physical interpretation of the situation where d ≫ 1, and
what happens to the energy in this case? We focus on large d and define β = 1/(9d4)
which is a small parameter in this situation. Use your program to compute the energies
of the two lowest eigenstates for various values of β including β = 1.0, 0.1, 0.01, and
0.001. How accurate are these numerical estimates? Compare them with the theoretical
estimates E±.
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Question 8 What are the symmetry properties of the ground state eigenvector and
the first excited state? Explain your answer. By expanding ϕ± on the complete set of
eigenstates of the Hamiltonian, show that E± are upper bounds for the energies of the
ground state and first excited state. You will need to consider the symmetries of the
wavefunctions.

Question 9 For the cases considered in question 7, how close are the bounds E± to
the true energies? For two interesting values of d, plot the potential and indicate the four
lowest lying energy levels on the same plot. Is it possible for some of the energy levels to
be lower than the height of the central peak, i.e. than V at x = 0?

Question 10 How well does the trial wavefunction method estimate the energy dif-
ference, ∆E, between the first excited state and the ground state? What happens to ∆E
as β → 0?

Appendix

You are given that the harmonic oscillator wavefunctions are

ψn(x) =
Cn

π1/4
Hn(x) e

−x2/2

where

H0 = 1 , C0 = 1

H1 = 2x , C1 =
1√
2

H2 = 2(2x2 − 1) , C2 =
1

2
√
2

H3 = 4x(2x2 − 3) , C3 =
1

4
√
3

H4 = 4(4x4 − 12x2 + 3) , C4 =
1

8
√
6

H5 = 8x(4x4 − 20x2 + 15) , C5 =
1

16
√
15

H6 = 8(8x6 − 60x4 + 90x2 − 15) , C6 =
1

96
√
5

H7 = 16x(8x6 − 84x4 + 210x2 − 105) , C7 =
1

96
√
70

and so on.
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6 Electromagnetism

6.1 Diffraction pattern due to a current strip (7 units)

Knowledge of material covered in the Part IB course Electromagnetism is useful as background.

This project investigates the magnetic field generated by an oscillating current. The field is
given in terms of an integral whose behaviour is analysed numerically.

1 Theory

Consider an infinite two-dimensional strip of conductive material in the plane y = 0 that covers
the area defined by −d < x < d and −∞ < z < ∞. A time-dependent current flows in the
z-direction, and it emits electromagnetic (radio) waves with wavelength λ. We assume that
d = nλ/2 where n is a positive integer. The time-dependent current is independent of x, z, and
is given by

jz(t) = j0e
iωt.

where j0 is a parameter and ω = 2πc/λ. In the following, all length scales are normalised so
that λ = 1, hence for example d = n/2.

Now consider the component of the magnetic field in the x-direction. It is independent of z. For
this particular form of jz(t), it can be derived from Maxwell’s equations of electromagnetism as
Hx(x, y, t) = jz(t)hx(x, y) with

hx(x, y) =
1

2π

∫ +∞

−∞
e2πiuxA(u, y)du (1)

where

A(u, y) =
sin(nπu)

u
×


exp

(
2πiy

√
1− u2

)
, |u| ⩽ 1

exp
(
−2π|y|

√
u2 − 1

)
, |u| > 1

(2)

To avoid ambiguity, it is convenient to specify A(0, y) = limu→0A(u, y).

It can be shown that for large y, the complex modulus of the magnetic field asymptotically
approaches

|hx| ≃
∣∣∣∣sinnπv2πv

∣∣∣∣
√

v(1− v2)

x
, (3)

where
v =

x√
x2 + y2

.

This project investigates numerical approximations to hx(x, y), as defined in (1).

2 Numerical method

The right-hand side of (1) is a Fourier integral. Numerical estimation of this function has some
tricky features: for example, if x is large then the integrand oscillates rapidly in u. This project
uses a specialised method for integrals of this type, called the fast Fourier transform (FFT).
It is a very efficient method, in particular it allows simultaneous estimation of hx(x, y) at N
distinct values of x.
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To apply the method, note first that A decays rapidly for large u, so it is reasonable to introduce
a (large) parameter U and approximate hx(x, y) as

hx(x, y) ≈
1

2π

∫ U

−U
e2πiuxA(u, y)du (4)

This approximation is accurate for sufficiently large U .

Now define a periodic function Aper with period 2U by taking Aper(u, y) = A(u, y) for |u| ⩽ U
and Aper(u + 2mU, y) = Aper(u, y) for any integer m. The integral in (4) is unchanged on
replacing A by Aper. The domain of integration can then be replaced by [0, 2U ], and it is
natural to estimate the integral by a (Riemann) sum. Define

ĥx(x, y) =
∆u

2π

N−1∑
k=0

e2πikx∆uAper(k∆u, y) (5)

with ∆u = 2U/N .

Under certain conditions, this allows hx(x, y) to be approximated by ĥx(x, y), but the accuracy of
this approximation requires some care. For example ĥx exhibits rapid oscillations as a function
of x, which are not present in hx. Also, the right hand side of (5) can be recognised as a
Fourier series (or discrete Fourier transform, DFT). Hence ĥx(x, y) is periodic in x, specifically
ĥx(x, y) = ĥx(x+ 2mX, y) with X = 1/(2∆u). However, hx is not periodic.

To understand the relation of ĥx to hx, define a periodic function hperx by taking hper(x, y) =
h(x, y) for |x| ⩽ X and hperx (x+2mX, y) = hperx (x, y) for any integerm. Define also ∆x = 2X/N .
Then for integer m and sufficiently large values of N and U , one has

ĥx(m∆x, y, t) ≈ hperx (m∆x, y, t) . (6)

Under these conditions, hx can be approximated by ĥx as long as |x| ⩽ X and x = m∆x. This
construction relies on the fact that ∆x∆u = 1/N so that the exponential factors in (5) are the
Nth roots of unity.

The FFT method is an efficient algorithm for computing sums of the form (5), for x = m∆x
and m = 0, 1, 2, . . . , N − 1. This allows accurate estimation of hperx (m∆x, y, t) for x ∈ [0, 2X]
and hence of hx. The method is described in the Appendix. For cases where N is an integer
power of 2, the FFT is much faster than computing the sum (5) individually for each value of
m in turn. For this project, it is not necessary to understand any of the details, you only need
to invoke an FFT routine to compute the relevant quantities. You may use a Matlab routine
such as fft or ifft, or an equivalent routine in any other language, or you may write your own
(but you should not compute (5) directly).

Finally, note that we have defined the method by taking N and U as parameters, from which
∆u,∆x,X are derived. From a practical point of view it is more natural to take N and X as
parameters, from which one may derive U and the other relevant quantities.

3 Numerical work

Programming Task: Given values of n, y,N,X, write a program to compute (5) by
FFT, for x = m∆x and m = 0, 1, . . . , N − 1. It is sufficient to restrict to N = 2p for
integer p. The program should also use (6) to estimate the real and imaginary parts of
hx for x ∈ [−X,X]. Also estimate its complex modulus |hx|. It will be necessary to plot
these estimates.
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Question 1 Take

n = 2 , y = 0.2 , X = 5 , N = 256 .

Plot your estimates of the real and imaginary parts of hx, and its modulus, for |x| < X.
Derive the relationships between hx(x, y) and hx(−x, y) and hx(x,−y). Verify that your
results are consistent with these relationships.

Question 2 Keeping n = 2 and y = 0.2, compute estimates of hx(x, y) for |x| < 5,
using different values of X and N (always with X ⩾ 5). Analyse the behaviour of your
estimates, as N and X are varied.

Note: In this question and throughout this project, you should provide graphs that il-
lustrate clearly the effect of the parameters on your results. Note that large numbers of
graphs are very unlikely to be effective in communicating this information.

Question 3 For n = 2, produce a single graph that shows |hx| as a function of x for
for y = 0.12, 0.6, 1, 6, 12. Fix N = 256 and choose suitable values of X (dependent on y).
Justify the values that you have chosen. Are there some values of y for which larger (or
smaller) values of N would be appropriate?

Compare your numerical results for large y with the asymptotic formula (3). This com-
parison must be presented in a way that illustrates clearly any differences between the
numerical estimates and the asymptotic formula. It may be useful to consider additional
values of y, as well as those listed above.

Question 4 Perform a similar analysis to question 3 but now for n = 3, 4. Justify
your choices of N,X. Combining these results with those of question 3, discuss how the
approximation of h by ĥ depends on both n, y and N,X.

Question 5 Comment on the physical significance of your results. In particular, how
do your results demonstrate the phenomenon of diffraction?

Appendix: The Fast Fourier Transform

Given a vector of complex numbers µ = (µ0, µ1, . . . , µN−1), define

λr =
N−1∑
k=0

µke
−2πikr/N . (7)

The FFT is an efficient (fast) method of evaluating the vector λ = (λ0, λ1, . . . , λN−1), which is
the discrete Fourier transform. The same algorithm can also be used to evaluate similar vectors
where the factor e−2πikr/N in the definition of λr is replaced by e2πikr/N , this is sometimes called
the inverse FFT.
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Note that (7) corresponds to multiplication of the vector µ by a particular N ×N matrix that
we denote by Ω(N). Its elements are taken from the set of Nth roots of unity. It follows that λ
can be computed using approximately N2 multiplication operations. (There would be a similar
number of addition operations, it is assumed here that the multiplication operations take the
greater part of the computational effort.) If N = 2p for integer p, the FFT can compute λ much
more quickly, it requires approximately (N/2) log2N multiplication operations.

To see this, divide µ into even and odd subsequences, that is µE = (µ0, µ2, . . . , µN−2) and
µO = (µ1, µ3, . . . , µN−1). Their Fourier transforms are given by matrix multiplication as

λE = Ω(N/2)µE, λO = Ω(N/2)µO . (8)

Then it may be shown that

λr = λE
r + e2πir/NλO

r

λr+N/2 = λE
r − e2πir/NλO

r

}
r = 0, 1, . . . , N2 − 1 (9)

Hence if λE and λO are known, it requires (N/2) multiplications to evaluate λ.

Moreover, since λE is itself the Fourier transform of a particular sequence µE, it can be esti-
mated efficiently by further splitting µE into even and odd subsequences. For N = 2p, this
decomposition is repeated p times, leading to an FFT in p stages.

In stage 1, each element µk of µ is treated as a sequence µ(k,1) of length 1. Their Fourier trans-

forms are simply λ
(k,1)
0 = µ

(k,1)
0 . These sequences are labelled as even/odd, and are combined

in pairs using a rule similar to (9), which generates N/2 sequences each of length 2. These
are denoted as λ(k,2) for k = 0, 1, 2, . . . , (N/2) − 1. In stage 2, these new sequences are again
labelled as even/odd and combined in pairs using the generalised (9), to obtain N/4 sequences
of length 4, denoted by λ(k,4) for k = 0, 1, 2, . . . , (N/4) − 1. The procedure repeats until stage
p ends with a single sequence λ(0,2p) of length 2p.

The detailed rules that explain how the sequences are combined can be found in the original
paper [1] or in standard textbooks such as [2]. These are chosen such that λ(0,2p) = λ, the
vector of interest.

For efficiency, the key point is that each step requires N/2 multiplication operations and there
are p = log2N stages. Hence the algorithm only requires (N/2) log2N multiplication operations,
as advertised above.
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7 Mathematical Methods

7.3 Minimisation Methods (8 units)

There are no prerequisites for this project.

You should write your own minimisation method programs: it is not sufficient to use routines
that are distributed as part of MATLAB, other software packages, or other programming lan-
guages. You can, however, exploit the matrix manipulation capabilities of MATLAB, other
software packages, or other progamming languages. You should use MATLAB’s 64-bit (8-byte)
double-precision floating-point values or the equivalent in other programming languages. Be-
cause we will be investigating functions of at most three parameters, your program will take
little time to complete the number of iterations that are specified in the questions. It is possible,
therefore, to carry out many more iterations than are specified in the questions but you should
answer questions based on the number of iterations that are specified. You may, of course, like
to check what happens when much larger numbers of iterations are used.

1 Introduction

There are many numerical methods for finding the least value of a function of N variables,
f(x1, x2, x3, . . .) = f(x), say, given that the first derivatives

gi =
∂f

∂xi
, i = 1, 2, . . . N , (1)

can be calculated. Most of the methods are iterative and each iteration reduces the value of
f(x) by searching along a descent direction in the space of the variables in the following way.

The iteration begins with a starting point x0, and at this point the gradient vector g is calcu-
lated. Then a search direction, s, say, is chosen, that satisfies the condition g · s < 0 (the dot
denotes a scalar product). It follows that if we move from x0 in the direction of s, then the
value of f(x) becomes smaller initially. In other words the function of one variable

ϕ (λ) = f (x0 + λs) (2)

satisfies the condition ϕ′(0) < 0 which is equivalent to g · s < 0. The next stage is to consider
the function ϕ (λ), and choose a value of λ, λ∗ say, that satisfies the inequality

f (x0 + λ∗s) < f(x0) . (3)

Usually λ∗ will be chosen * to minimise ϕ (λ). The vector x0 is replaced by x1 = x0 + λ∗s and
another iteration is begun.

The project is to investigate three well-known algorithms (Steepest Descents, the Conjugate
Gradient algorithm, and the DFP algorithm) by applying them to two functions. Using x for
x1, y for x2, etc., consider the “bedpan function”

x+ y +
x2

4
− y2 + (y2 − x

2
)2 , (4)

*In your program for this project, you should allow for manual input of estimates for λ∗, based on plots of
ϕ (λ). To speed up longer runs you will probably wish also to use MATLAB routines or other automated search
algorithms to minimise ϕ (λ), but this is not required. In either case, the values of λ∗ used should appear in the
hard copy of results.
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and the following function, which has similar properties to the Rosenbrock function,

(1− x)2 + 80(y − x2)2 . (5)

In addition the following quadratic function of three variables will be used to demonstrate some
properties of the DFP algorithm:

0.4x2 + 0.2y2 + z2 + xz . (6)

2 Steepest Descents

The Steepest Descents method simply uses the search direction s = −g. Write a program
to implement the algorithm as described above. Use a simple x–y plot of ϕ (λ) to help you
determine λ∗ at each stage (you need never determine λ∗ to more than 2 significant figures). At
each stage after the first, arrange for your program to display the current value of f(x) and the
decrease achieved over the last step. Also arrange for a plot of the iteration points x0, x1, x2,
etc., (a sequence of line segments will illustrate the methods well). The iteration point plot may
be built up as the calculation proceeds, or you can store the data and produce it on command
from your programme at a point of your choosing.

[N.B. A well-implemented fully automatic algorithm for general use will need to have checks
for special cases and exceptions built into it. For example, if a point xn is encountered for
which g ≈ 0 then a stationary point has been found and the process should quit. Likewise, if
the iteration points are not changing significantly a fully automatic algorithm ought to quit.
You may find it helpful to include such features in your program. If you wish to proceed semi-
automatically, with λ∗ being decided by eye from the plot at each stage, there is no need to
include the special checks in your code.]

Question 1 Obtain contour plots and/or surface plots of functions (4) and (5) (this
should be fairly straightforward to do using MATLAB).

Work out analytically where they have minima and find their minimum values. Suitable
axis intervals are −1.5 ⩽ x, y ⩽ 1.5.

Question 2 Using function (4) and starting from (−1.0,−1.3), run the Steepest De-
scents method for 10 iterations. Produce a plot of the progress of the iteration. On the
basis of your numerical results (i.e., imagine that you do not know the analytical an-
swer), estimate the minimum value of the function at the point to which your iteration is
converging, and estimate intervals in which the co-ordinates of the minimum lie. What
general statement can you make about the precision with which the minimum value itself
can be found, compared to the precision with which the minimum point is known? What
property of the function being minimised gives rise to this effect?

Question 3 Using function (5) and starting from (0.676, 0.443), run the Steepest De-
scents method for 9–15 iterations, and produce a plot of the progress of the iteration. To
what point do you think the iteration will eventually converge? Comment on the rate of
convergence. How sensitive is the iteration path to variations in the choice of λ∗ at each
stage? Comment on the circumstances that can make steepest descents inefficient.
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3 Conjugate Gradients

The conjugate gradients algorithm uses steepest descents for its first step and then adjusts the
search direction in an attempt to overcome the problems of steepest descents alone. Let x0,
x1 be two successive points where x1 has been obtained using steepest descents from x0, and
let g0, g1 be the corresponding gradients (the initial search direction is s0 = −g0). Take the
second search direction as

s1 = −g1 + β s0 = −g1 − β g0 where β =
g1 · g1
g0 · g0

. (7)

If f(x) is a quadratic function of N variables then the choice of directions may be continued up
to the N th search direction to give the N conjugate directions

sk = −gk + β sk−1 where β =
gk · gk

gk−1 · gk−1
.

In this case, if all the values of λ∗ had been chosen to minimise the ϕ (λ) exactly at each stage,
the algorithm would have converged. In practice of course f(x) may not be quadratic and the
values λ∗ may not be chosen exactly, and in this case it is usual in practice to restart the method
after N steps. When N = 2, as it is for functions (4) and (5), this implies that every other step
is a steepest descent.

Write a program to implement the conjugate gradients algorithm, with the same features as used
for the steepest descents method, but with the search direction determined as just described.

Question 4 For the function (4), repeat Q2 using the conjugate gradients algorithm,
and compare results.

Question 5 For the function (5), repeat Q3 using the conjugate gradients algorithm,
and compare results.

Does the conjugate gradients algorithm offer much of an improvement over steepest descents?

4 DFP Algorithm

The Taylor Series expansion of any smooth function f(x) may be written

f(a+∆x) ∼= f(a) + g · (∆x) + 1
2(∆x)TH−1(∆x) + · · ·

where the gradient vector g is evaluated at x = a and H−1 ≡ G is the Hessian matrix, i.e., the
matrix of second derivatives

Gij =
∂2f

∂xi ∂xj
.

Finding a point where g vanishes is therefore similar to the Newton–Raphson method for a
system of equations, and ifH were known and f(x) were a quadratic function, the point could be
found in a single step. However the matrix H is not available initially unless second derivatives
are calculated; this is not always easy and in any case can be time-consuming, especially for
large N . Therefore we now study a very successful technique that extends the steepest descent
method by forming a suitable H-matrix as the calculation proceeds. It is known as the DFP
algorithm and is one of the class of “variable metric methods”. It can be shown that H−1

converges to the Hessian (you are not required to prove this).
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The DFP algorithm works as follows. The search direction is taken as s = −Hg, where H is
taken initially as the identity matrix. At each stage ϕ (λ) is minimised by choosing a value λ∗

as before, but then H is modified by replacing it with

H∗ = H− HppTH

pTHp
+

qqT

pTq
, (8)

where p and q are column vectors giving the changes in g and x respectively during the step,
that is

p = g (x0 + λ∗s)− g (x0) , q = λ∗s (9)

(Note: H∗p = q which is useful when checking your program.)

Write a program to implement the DFP algorithm, with the same features as used for the
two preceding programs, but with the search direction determined as just described. Include
provision to print out H.

Question 6 A property of the DFP algorithm is that it calculates the least value of a
quadratic function in at most N iterations for any initial choice of x0 if on each iteration
the value of λ∗ is calculated to minimise exactly the function ϕ (λ). Apply the DFP
algorithm to (6) for three iterations from starting point x0 = (1, 1, 1) using the sequence
of values

λ∗ = 0.3942, 2.5522, 4.2202.

There is no need to verify these values to this precision, but your program will already
have facilities for checking that these values are appropriate. Investigate how sensitive
the result obtained after three iterations is to small changes in these values. Verify that
H does indeed tend to the inverse Hessian matrix. You may note that

 0.8 0 1
0 0.4 0
1 0 2

−1

=

 3.3333 0 −1.6667
0 2.5 0

−1.6667 0 1.3333

 (10)

Question 7 For the function (4), repeat Q2 using the DFP algorithm. Examine H
and compare with the true value.

Question 8 For the function (5), repeat Q3 using the DFP algorithm. Examine H
and compare with the true value.

Question 9 Compare the performance of the three methods for these functions.
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7 Mathematical Methods

7.4 Airy Functions and Stokes’ Phenomenon (9 units)

This project uses ideas from the Further Complex Methods course. It also covers some material
which is lectured as part of the Asymptotic Methods course, but students not taking this course
are at no disadvantage.

1 Introduction

The Airy functions Ai(z) and Bi(z), where z is a complex variable, are two linearly independent
solutions of the differential equation

d2

dz2
y(z) = zy(z) (1)

satisfying
Ai(0) = α, Ai′(0) = −β, Bi(0) =

√
3α, Bi′(0) =

√
3β

where

α =
1

32/3 Γ(23)
≈ 0.355028053887817, β =

1

31/3 Γ(13)
≈ 0.258819403792807.

Here Γ is the Gamma function, defined by

Γ(z) =

∫ ∞

0
e−ttz−1dt, (2)

but you do not need to know anything about its properties for this project. The Airy functions
are useful in many problems involving transition regions of all kinds, for example in optical
diffraction (the transition between relatively light and dark regions), wave theory, electron
tunnelling, and asymptotic analysis. Ai and Bi have Maclaurin series given by

Ai(z) = αf(z)− βg(z), Bi(z) =
√
3
(
αf(z) + βg(z)

)
where

f(z) = 1 +
1

3!
z3 +

1 · 4
6!

z6 +
1 · 4 · 7

9!
z9 + · · ·

and

g(z) = z +
2

4!
z4 +

2 · 5
7!

z7 +
2 · 5 · 8
10!

z10 + · · · .

For large |z|, any solution y(z) of (1) is given asymptotically by the relation

y(z) ∼ AF (z) +BG(z)

where A and B are complex constants, and where

F (z) =
1√
π
z−1/4 exp(−2

3
z3/2)(1− 5

48
z−3/2 + · · · )

and

G(z) =
1√
π
z−1/4 exp(

2

3
z3/2)(1 +

5

48
z−3/2 + · · · ),
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where the principal value is taken for any multi-valued function. The values of the constants
A and B depend, of course, on precisely which solution y is being considered (Ai and Bi have
different asymptotic behaviour, for instance). More surprisingly, perhaps, the values of A and B
may also depend on which region of the complex plane is under consideration. This is known as
Stokes’ phenomenon, and the rays from the origin that divide the complex plane into different
regions are known as Stokes lines. In the current case, there are three Stokes lines, two of which
are given by the rays arg z = ±π/3.
In this project, we shall concentrate to start with on the region R given by |arg z| < π/3. In
that region, the appropriate values of A and B are 1

2 and 0 respectively for Ai(z); for Bi(z),
B = 1 but A is not important and can take any value (because F (z) is negligible compared
to G(z) for large |z| in R; that is, F is subdominant). Hence Ai(z) → 0 and |Bi(z)| → ∞ as
|z| → ∞ in R.

Programming note: You should write your own programs to compute the Airy functions: it
is not sufficient simply to use the inbuilt MATLAB functions, or equivalent inbuilt functions
for other software packages or programming languages, to calculate Airy functions although
they are, of course, a convenient way to check your results. All calculations and evaluations
are to be performed for complex numbers, not just real ones. You should use MATLAB’s
64-bit (8-byte) double-precision floating-point and complex number values or the equivalent in
other programming languages. Although MATLAB handles complex numbers quite well, most
programming languages handle only real numbers, so you may have to write your own code to
perform simple complex number operations such as multiplication.

Question 1 Show that

y(z) =
1

2πi

∫
C
exp(zt− 1

3
t3) dt

is a solution of 1. Here C is any contour that starts at ∞e−2πi/3 and ends at ∞e2πi/3.
Show furthermore that this solution satisfies y(0) = α, y′(0) = −β and that it is therefore
equal to Ai(z). [Hint: deform C into two (straight) rays that meet at the origin. You may
assume without proof the reflection formula for the Gamma function, viz. Γ(z) Γ(1− z) =
π/sin(πz).]

This integral representation of Ai(z) can be used to check the asymptotic expansion given above
for large |z|, but you are not required to do this.

2 Numerical Integration of the Differential Equation

Question 2 Write a program to find Bi(z) for any z ∈ R, accurate to at least 4 signifi-
cant figures, by performing a numerical integration of the defining differential equation (1)
using any standard method. You should perform your integration along a ray joining the
origin to z, using a real variable t to denote distance along the ray: this will require you
to find a system of differential equations satisfied by Re y and Im y along the ray. Include
the derivation of this system of equations in your write-up as well as the initial conditions
(over which you are advised to take care). Also explain what checks you carried out to
ensure the accuracy of your solutions. As a very simple first check, you may find it useful
to know that Bi(1) ≈ 1.20742.

Use your program to evaluate Bi(z) at z = 2, 4, 8, 16, e±iπ/6 and one other non-real point
of your choosing. Draw a graph of the behaviour of the (modulus of the) solution along
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one particular non-real ray of your choosing and give a plausible demonstration that the
leading order asymptotic behaviour, G(z), is indeed as stated in the Introduction.

Question 3 Modify your program to instead calculate Ai(z), and try to evaluate Ai(z)
at the same points as in Question 2. You may find it useful to know that Ai(1) ≈ 0.13529.
Draw a graph of Ai(z) for real positive z. Which of your evaluations are you confident
are accurate? What goes wrong with the method? Why is this unavoidable?

One way to avoid this problem is, instead of integrating from z = 0 towards infinity, to start
from a value of z with large modulus, and step towards the origin. The asymptotic expansion for
Ai(z) (and the derivative of this expansion) can be used to approximate the initial conditions.

Question 4 Explain why this alternative approach should work. Write a program to
implement it; start from |z| = a, for some large fixed constant a, and integrate towards the
origin. Use only the zeroth order term of the asymptotic expansion (i.e., ignore 5

48z
−3/2

and higher order terms in F (z)); a more advanced implementation might take more terms
into account.

To start with you might like to use a = 20; but you should experiment with other values
and explain what difference they might make. State the value you finally settle on and
why.

Use your program to evaluate Ai(z) at the same points as in Question 2.

3 Matched expansions

Question 5 By finding series expansions about the origin, or otherwise, prove that
the given expressions for the Maclaurin series of Ai(z) and Bi(z) are correct.

A much quicker, and more accurate, approach to evaluating the Airy functions is to avoid
numerical integration altogether and instead use the analytic series expansions. In theory, the
Maclaurin series for Ai and Bi are valid for all z, but in practice they are not very helpful for
larger values of |z| because of rounding errors caused by adding together large numbers of terms.
Here we will try an approach based on using the Maclaurin series when |z| < b, for some fixed
constant b, and using the asymptotic expansion when |z| ⩾ b; we hope to achieve accuracy at
least as high as 4 significant figures, and preferably more.

Question 6 Investigate the feasibility and potential accuracy of this approach for
evaluating Ai(z) on the positive real axis. You should use only the first two terms in the
asymptotic expansion (i.e., do not attempt to find more terms in F (z) than are given
above), though you may use as many terms of the Maclaurin series as you wish. You
should try various different values of b, and experiment with the number of terms to use
from the Maclaurin series for best results. What level of accuracy is attainable?

Include a plot of your composite approximation and some sample values close to |z| = b.

How did you sum the Maclaurin series in order to minimize rounding errors?

How do you expect the time taken by this algorithm to compare with that for Question 4?

A professional implementation of this method (at least for real z) would use a selection of
Chebyshev polynomial approximations in different overlapping regions and choose the best one
automatically.
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4 Stokes lines

Question 7 Use the programs you have developed in previous questions to describe
how the behaviour of Ai and Bi with |z| changes as the rays approach the Stokes line at
arg z = π/3 from within R.

Question 8 By experimenting with rays outside R, determine the location of the third
Stokes line. How do Ai and Bi behave on this line?

Question 9 What can you say about the values of A and B in each of the three
regions which lie between each pair of Stokes lines? Can you estimate these values from
your numerical results?

What, if anything, can you say on the Stokes lines?

5 A particle in a constant force field

[Note that no knowledge of Quantum Mechanics is required for this section of the project: all
required equations are given below.]

A one-dimensional quantum-mechanical particle is confined to the region x > 0 and is subjected
to a force of constant magnitude k directed towards the origin. The governing equation for the
wavefunction ψ(x) is

− ℏ2

2m

d2ψ

dx2
+ kxψ = λψ

with boundary conditions ψ(0) = 0, ψ(x) → 0 as x→ ∞, where λ is the energy of the particle.
This is a Sturm–Liouville problem with eigenvalue λ.

Question 10 Show, using your computed results from earlier questions, that there is
a discrete set of energy eigenvalues λn. Find an approximate value for the first two of
these eigenvalues in units where ℏ2k2/2m = 1.
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9 Dynamic Programming

9.1 Policy Improvement for a Markov Decision

Process

(4 units)

This project is self-contained mathematically; background information is provided in the Part II
course on Optimisation and Control (see reference [1]).

1 A Car Replacement Problem

Car owners are haunted by the following problem. Every day, the operating cost for their car
increases, as does the probability that the car breaks down. Even worse, when trading in the
car for a different one dealers will pay less for older cars and charge more for newer ones. The
problem, then, is to find an optimal policy for trading in the car.

We model the problem as a Markov decision process. Let gj(u) be the instantaneous cost
incurred if one takes action u in state j and let pjk(u) be the probability of then moving to

state k. Define sequences γ(n), f
(n)
j , u

(n)
j by the recursions

γ(n) + f
(n)
j = gj

(
u
(n)
j

)
+
∑
k

pjk
(
u
(n)
j

)
f
(n)
k (1)

and

u
(n+1)
j is the u-value minimising gj(u) +

∑
k

pjk(u)f
(n)
k . (2)

The following exercise may help to gain some intuition.

Question 1 Consider the following stationary policy: for fixed n, whenever state j

occurs take action u
(n)
j . What is the long-term average cost of this policy? Explain.

Note that the values f
(n)
j determined by (1) are arbitrary up to an additive constant and can

be normalised, for example by letting f
(n)
1 = 0. If the matrix of transition probabilities is

irreducible in every stage, then (1) will always have a solution for f . The sequence γ(n) is
non-increasing, and will converge to a minimum value γ in a finite number of steps if u can take

only a finite number of values. The policy u
(n)
j will then have converged to an average optimal

policy.

Question 2 Instantiate the above framework for the car replacement problem. You
may want to introduce states representing the age of the car in appropriately chosen units
of time, and an additional state in which the car is written off and has a trade-in value
of zero. Describe the set of actions, and define the instantaneous costs gj(u) and the
transition probabilities pjk(u).

Question 3 Write a program to find the optimal replacement policy. You are not
required to write your own linear algebra routines, but you should describe any math-
ematical manipulations involved in bringing the equations in the desired form. Give a
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j age in purchase trade-in operating survival
years price price cost probability

1 0 5000 3500 860 0.963

2 2 3150 2170 1025 0.794

3 4 2285 1500 1225 0.568

4 6 1545 900 1430 0.255

5 8 1050 590 1815 0.001

6 10 600 330 2240 0.000

Table 1: Instance of the car replacement problem with time units of two years and N = 6

j: 1 2 3 4 5 6 7
sell/keep: keep keep keep keep keep sell sell

buy car of age: – – – – – 2 2

Table 2: Policy for the problem of Table 1

j age in purchase trade-in operating survival
years price price cost probability

1 0 5000 3500 200 0.999

2 0.5 4285 3000 210 0.995

3 1 3750 2650 220 0.990

4 1.5 3430 2375 230 0.979

5 2 3150 2170 240 0.968

6 2.5 2900 1950 250 0.956

7 3 2645 1850 260 0.936

8 3.5 2475 1625 275 0.917

9 4 2285 1500 290 0.898

10 4.5 2130 1350 300 0.879

11 5 1970 1225 315 0.860

12 5.5 1760 1060 320 0.836

13 6 1545 900 335 0.801

14 6.5 1400 780 350 0.761

15 7 1260 700 365 0.697

16 7.5 1140 625 380 0.600

17 8 1050 590 400 0.482

18 8.5 940 520 430 0.300

19 9 830 470 465 0.129

20 9.5 720 400 520 0.020

21 10 600 330 560 0.000

Table 3: Instance of the car replacement problem with time units of six months and N = 21
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clear and concise description of your algorithm; don’t forget to mention what starting
conditions you use. Run your program on the data contained in the file table1.csv avail-
able from the CATAM website and displayed in Table 1, and compare your results to the
policy in Table 2. What is the value of γ?

Question 4 Give the optimal replacement policy for the data in the file table2.csv
available from the CATAM website and displayed in Table 3. What is the value of γ?

Question 5 Suppose that purchase price, trade-in price, operating cost, and survival
probability are all monotonically increasing or decreasing in the obvious direction. Sup-
pose further that the optimal policy tells you to sell a car when it reaches a certain age,
but that you neglect to do so. Is it possible that the same policy stipulates hanging on to
the car now that it is older? Either construct an example for which the optimal policy is
of this kind, or prove that this is impossible.

References

[1] R.R.Weber, Course notes on Optimisation and Control, Section 8.4.
http://www.statslab.cam.ac.uk/~rrw1/oc/.

July 2025/Part II/9.1 Page 3 of 3 ⃝c University of Cambridge



9 Dynamic Programming

9.4 Option Pricing in Mathematical Finance (6 units)

This project is connected with material in the Stochastic Financial Models course. Students who
are not taking that course but who wish to attempt the project will find the necessary definitions
and background material in the references.

1 Black-Scholes model

A standard model used in option pricing is that the logarithm of the stock price follows a
Brownian motion. Hence, if St is the stock price at time t, we assume that log(St/S0) is
normally distributed with mean µt and variance σ2t, where σ is the volatility, µ = ρ − σ2/2,
and ρ is the continuously-compounded riskless interest rate.

The celebrated Black-Scholes formula gives the price of a call option (exercised only at expiry).
The price of the option is

S0Φ
( log(S0/c) + (ρ+ σ2/2)t0

σ
√
t0

)
− ce−ρt0Φ

( log(S0/c) + (ρ− σ2/2)t0
σ
√
t0

)
(1)

where c is the strike price and t0 is the expiry time. (See the Appendix for details of how to
calculate Φ.)

Question 1 Write a routine to evaluate the Black-Scholes price (1). Compile a table
of the price when c = 40, S0 = 52, 100 or 107, σ = 0.5, ρ = 0.035, and t0 = 2 or 3.

Question 2 How does the price vary with each of the parameters c, S0, σ, ρ, t0? Keep
your explanations brief, but support them with solid mathematics where necessary.

2 Bernoulli approximation

The most widely-used method for approximating option prices which are based on the Black-
Scholes model is to replace the Brownian motion by a discrete-time simple random walk. This
approximation breaks up the interval [0, t0] into [0, t0/n, 2t0/n, . . . , (n− 1)t0/n, t0] and assumes
that between the times it0/n and (i+ 1)t0/n, i = 0, . . . , n− 1, the increment in the logarithm
of the price is g or −g with probability p or 1− p respectively, where g and p are chosen so that
the increment has mean µt0/n and variance σ2t0/n.

This approximation is primarily of interest for cases such as the American put where exact
formulae are not available. For a European (or American) call option, the price obtained from
the random walk will approximate the true price obtained from the Black-Scholes formula, and
this can be a useful benchmark to judge the performance of the approximation.

One way to implement the approximation is to set

Vi,j =
(
pVi+1,j+1 + (1− p)Vi+1,j

)
e−ρt0/n for j = 0, . . . , i and i = n− 1, . . . , 0 (2)

with boundary conditions

Vn,j =
(
S0e

(2j−n)g − c
)+

for j = 0, . . . , n. (3)

Then V0,0 is the approximate price.
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Question 3 Calculate g and p as functions of the parameters.

Question 4 For the data in Question 1 and n = 27, compile a table of the approximate
prices. How do they compare to the prices obtained from the Black-Scholes formula?

Question 5 What is the complexity of this algorithm, as a function of n?

Question 6 Consider an at-the-money case (c = S0). Plot a graph of your approx-
imation as a function of n. Indicate on your graph the true value obtained from the
Black-Scholes formula. What do you notice? Explain this behaviour.

Question 7 Estimate the rate at which the error decreases as n increases. Explain
every step and justify your answers.

3 American Put

Consider the case of an American put; now early exercise of the option may be optimal and no
closed-form formula exists for the price.

Question 8 Modify your programs to approximate the price of the option by consid-
ering how equations (2) and (3) should be changed in this situation. Compile a table of
the approximate price of the option for the same values of the parameters used in Question
1. Comment briefly on how the approximate price varies with n in this case.

4 Extrapolation

Suppose that fn is the approximation to the option price, and we wish to find the limiting value
of fn as n → ∞. One method of extrapolation assumes that fn may be approximated by a
polynomial in 1/n:

fn ≈ g0 + g1n
−1 + g2n

−2 + · · ·+ gsn
−s.

The limiting value of fn is then approximated by g0. One way to achieve this is as follows. Let
nm = rmn0 and calculate fn at n = n0, . . . , ns. Set

am,0 = fnm for m = 0, . . . , s

and recursively calculate

am,i = am,i−1 +
am,i−1 − am−1,i−1

ri − 1
for m = i, . . . , s and i = 1, . . . , s.

Then as,s is taken as the approximation for g0.

Question 9 Experiment with this extrapolation procedure for small values of r and
s, say 2 to 4, for the at-the-money European call case studied above. How does this
extrapolation compare in accuracy with just calculating fn for a single suitably large
value of n? Try to estimate the error analytically. Does your answer depend on whether
n0 is odd or even? If so, carefully explain why.
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5 Binomial approximation

The approximation in Section 2 uses a Bernoulli (two-valued) distribution between time steps.
The method may be refined by replacing the Bernoulli distribution between times it0/n and
(i+ 1)t0/n by, say, a binomial distribution taking k + 1 equally-spaced values (for some k ⩾ 1)
with mean and variance chosen to match those of the Brownian motion.

Question 10 Implement this refinement, and explain how you calculate p and g in
this case. How do prices produced by the refined algorithm (k > 1) differ from those
produced by the Bernoulli scheme (k = 1)? Does your answer depend on whether you
are pricing the European call or American put option, and if so why? How does the
computation time for this algorithm vary with n and k?

Appendix

An easy method to approximate the standard normal distribution function is as follows. For
x ⩾ 0 set

1− Φ(x) =
t

2
exp

(
−x2

2
+

9∑
i=0

ait
i
)

where t = (1 + x/
√
8)−1 and

(a0, . . . , a9) = (−1.26551223, 1.00002368, 0.37409196,

0.09678418,−0.18628806, 0.27886807,

−1.13520398, 1.48851587,−0.82215223, 0.17087277).

For x < 0 set Φ(x) = 1− Φ(−x).

References

[1] J. Hull, Options, Futures and Other Derivative Securities. Prentice-Hall, 1989.
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10 Statistics

10.9 Markov Chain Monte Carlo (6 units)

Bayesian inference is covered in the IB Statistics course, and developed further in the II(D)
Principles of Statistics course. Knowledge of the IB Markov Chains course, whilst useful, is not
necessary, and there is no requirement to quote results from it.

Introduction

In Bayesian statistics, it is essential to be able to sample from the posterior distribution of
unknown parameters given some data. In arbitrary, high-dimensional problems, this is not
possible analytically, but in recent years Markov Chain Monte Carlo methods (MCMC) have
become a popular alternative.

Markov Chain

The key idea is quite simple. We want to sample from a distribution π(x), x ∈ Rm, but cannot
do so directly. Instead we create a discrete-time Markov chain X(n) (taking values in Rm) such
that X(n) has equilibrium distribution π. Then

X(n) → X ∼ π in distribution, as n → ∞ (1)

and
1

N

N∑
n=1

f
(
X(n)

)
→ Eπ

(
f(X)

)
as N → ∞

where f is any real-valued function on Rm for which the right-hand side above is well-defined.
The second of these limits can be used to calculate means and variances of components of X,
as well as approximations to the distribution functions. For example, f(x) = xi gives the mean
of the ith component Xi, and f(x) = I(xi ⩽ b) gives the distribution function of Xi at point b.

Gibbs sampler

Suppose we do not have a tractable closed-form expression for the equilibrium density π(x) =
π(x1, . . . , xm), but we do know the induced full conditional densities π(xi|x−i), where x−i is
the vector x omitting the ith component, x−i = (x1, . . . , xi−1, xi+1, . . . , xm).

A systematic form of the Gibbs sampler algorithm proceeds as follows. First, pick an arbi-
trary starting value x0 = (x01, . . . , x

0
m). Then successively make random drawings from the full

conditional distributions π(xi|x−i), i = 1, . . . ,m, as follows:

x11 from π(x1|x0
−1)

x12 from π(x2|x11, x03, . . . , x0m)

x13 from π(x3|x11, x12, x04, . . . , x0m)

...

x1m from π(xm|x1
−m).

This cycle completes a transition from x0 = (x01, . . . , x
0
m) to x1 = (x11, . . . , x

1
m). Repeating

the cycle produces a sequence x0,x1,x2, . . . which is a realization of a Markov chain, which is
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known as the Gibbs sampler. We call π(x,y) the transition probability density of this Markov
chain.

Question 1 Assume that the Markov chain X(n) takes values in a finite subset
S ⊂ Rm. Verify that π is an equilibrium distribution for this chain. That is, check that
for all y ∈ S, ∑

x

π(x)π(x,y) = π(y).

It can be shown that this implies that π is the equilibrium distribution of the Gibbs sampler,
in the sense of (1), but do not attempt to prove it. Thus our estimate of Eπ

(
f(X)

)
, taken over

N iterations, is

1

N

N∑
n=1

f(xn).

Football data

Data from the performance of K football teams, over T years has been scored on a scale of 0
(no wins) to 114 (win in all 38 games), with a win scoring three and a draw scoring one point.
Let us model Ykt, the score of the kth team in year t, as

Ykt|parameters ∼ N(µk, σ
2
k), for k = 1, . . . ,K and t = 1, . . . , T

with the hierarchical prior structure that the team mean µk and variance σ2
k are independently

distributed, given θ, as

µk|θ ∼ N(θ, σ2
0)

σ−2
k ∼ Γ(α0, β0),

where σ2
0, α0 and β0 are known parameters, and θ is a second-stage prior with distribution

θ ∼ N(µ0, τ
2
0 ),

where µ0 and τ20 are known parameters.

The Gibbs sampler is well suited to the analysis of hierarchical models, since the full one-
dimensional conditional distributions often have extremely simple forms. For example, in the
above model,

µk|µ−k, θ,σ
2,y ∼ N

(
σ−2
k

∑T
t=1 ykt + θσ−2

0

Tσ−2
k + σ−2

0

,
1

Tσ−2
k + σ−2

0

)

θ|σ2,µ,y ∼ N

(
σ−2
0

∑K
k=1 µk + µ0τ

−2
0

Kσ−2
0 + τ−2

0

,
1

Kσ−2
0 + τ−2

0

)

σ−2
k |σ2

−k,µ, θ,y ∼ Γ

(
α0 +

T

2
, β0 +

1

2

T∑
t=1

(ykt − µk)
2

)
.

Question 2 Verify the one-dimensional conditional distributions given above. What
is the marginal prior distribution of µk?
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Question 3 Implement the Gibbs sampler to sample from the posterior distribution
of (µ,σ2, θ) given y. You can find the data for y in the file II-10-9-2021football.csv
on the CATAM website. Take as known σ0 = 10, α0 = 10−5, β0 = 10−3, µ0 = 60, τ0 = 20.
Briefly discuss what these prior parameter values have assumed about the football data.
With reference to these priors, how did you choose the initial state of the Markov chain?

If you wish, you can use a package to simulate distributions, but you should implement the
Gibbs sampler yourself without using library routines.

Question 4 Use your Gibbs sampler to estimate the posterior mean of each parameter
θ, µk, σ2

k. Plot a histogram of the posterior distribution of θ and comment on your
histogram. Explain how you obtained it.

Question 5 Now choose a team k. Estimate the posterior probability that your chosen
team is above average, P(µk > θ|y).

Question 6 Build up an idea of how accurate your estimates for µk and P(µk >
θ|y) are, for your chosen team k, by performing independent runs of the Gibbs sampler,
computing estimates for each of the parameters on each run and then computing the
sample variances of these estimates. Comment on how fast your estimates converge by
considering sample variances at different values of N .

Question 7 Now try letting the algorithm run for an initial period of M cycles before
calculating estimates based on a further N iterations. This might allow the distribution
to settle down to equilibrium before being measured. Calculate sample variances (as the
previous question) for a few suitable values of M to see if this makes any noticeable
difference. Explain why you do or do not see a difference.

Question 8 In any MCMC procedure we must ensure that we are exploring the full
sample space. One way to check this is to run a number of chains that start from different
points. Using a few widely dispersed starting points confirm, or otherwise, that your
results are independent of the starting point. What is the effect of running an initial M
cycles in this situation?

Hint. Recall that the Gamma distribution Γ(γ, λ) has density

f(x) =
λγxγ−1e−λx

Γ(γ)
,

with mean γ/λ and variance γ/λ2. Also recall that a Gamma Γ(n/2, λ) has the same distribution
as the scaled chi-squared (2λ)−1χ2

n.

You can assume that a Γ(2.50001, λ) is approximately distributed as a χ2
5 (suitably scaled),

which in turn is exactly equal to the sum of two independent exponentials plus an independent
normal squared.
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10 Statistics

10.12 Analysis of Performance Data (8 units)

Attendance at the Part II courses Principles of Statistics and Statistical Modelling is recom-
mended. Familiarity with R may also be helpful, but is not required.

Part 1: Linking crime and unemployment

As part of a study on unemployment and crime, Farrington et al. (1986) use the data in Table 1
on 32 boys. These boys were selected from a total of nearly 400 boys in the study as those who

� committed at least one offence while in employment (Em) or in unemployment (Un), and,

� have had at least 0.25 years in each of Em and Un.

(For details on the provenance of the data see the paper by Farrington et al., who also discuss
at length the difficulties in assessing quantitatively the eventual effects unemployment might
bear on the rate of offending.)

Years in Offences Years in Offences
Boy Employment in that Time Unemployment in that Time
1 0.83 1 0.88 3
2 1.02 0 0.89 8
3 1.17 0 2.50 2
4 1.21 3 0.68 1
5 1.25 4 0.96 2
6 1.31 2 0.69 1
7 1.50 2 1.25 0
8 1.52 2 0.64 2
9 1.54 1 0.85 0
10 1.58 2 1.08 0
11 1.66 4 0.61 1
12 1.75 1 0.25 0
13 2.21 1 1.37 4
14 2.22 0 0.28 1
15 2.25 0 0.75 1
16 2.37 1 0.55 0
17 2.39 2 0.44 1
18 2.42 3 0.78 0
19 2.45 1 0.47 0
20 2.51 2 0.40 0
21 2.64 1 0.70 0
22 2.65 8 0.60 0
23 2.67 1 0.67 0
24 2.83 1 0.37 0
25 2.84 1 0.75 0
26 2.97 2 0.36 0
27 3.00 1 0.34 0
28 3.07 1 0.27 0
29 3.15 2 0.43 0
30 3.16 1 0.67 1
31 3.28 4 0.45 0
32 3.37 2 0.30 0

Table 1: Data set for Part 1. This data can be downloaded in the file
II-10-12-2020-01.csv from the CATAM website.

Let n1i and n2i be the numbers of offences committed by the ith boy in Employment and
Unemployment respectively, in times t1i and t2i years. Assume that n1i and n2i are independent
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Poisson variables, with parameters λit
α
1i and ϕλit

α
2i respectively. Here α and ϕ represent the

parameters of interest with ϕ being the additional ‘risk’ (if any) of committing an offence while
unemployed rather than while employed.

Question 1 Write down the likelihood of the data in terms of the unknown parameters
ϕ , α and (λ1 , . . . , λ32) .

Question 2 Show that the distribution of n2i conditional on n1i + n2i = mi , say, is
Binomial with parameters mi and ψi , where

log
ψi

1− ψi
= log ϕ + α log

t2i
t1i

.

Hence write down the likelihood of the data L (n2,1 , . . . , n2,32) conditional on the observed
marginal totals (m1 , . . . , m32) as a function of the unknown parameters ϕ and α .

Question 3 Find by Newton–Raphson iteration the maximum likelihood estimates
(m.l.e.) ϕ̂ and α̂ and their corresponding standard errors. Taking the m.l.e. you obtained,
plot the conditional log likelihood as a function of log ϕ . Comment on its shape.

Question 4 Do you think unemployment increases the rate of offending? Justify your
answer.

Reference: D.P. Farrington et al. (1986) Unemployment, school-leaving and crime. British
Journal of Criminology, 26, 335–356.

Part 2: Academic College Tables

A newspaper publishes every year the equivalent of a league table ranking the colleges in a
famous academic institution. It builds the table by allocating a score for the class of degree
obtained by each graduating student. A first class degree yields 5 points, a II.1 (upper second) 3
points, a II.2 (lower second) 2 points, and a third 1 point. As the proportions of firsts and other
classes vary by subject, these scores are adjusted such that the proportion of firsts become equal
across all subjects. The resultant scores are then split by college and summed up to produce
the college score in the table. This procedure is said to allow a fairer comparison between the
colleges in the institution.
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Position College Score I II.1 II.2 III
1 Agincourt 306.9 11 46 13 2
2 Resolution 305.0 27 50 33 6
3 Erin 304.8 23 75 30 4
4 Duke 304.8 25 61 26 10
5 Colingwood 299.5 25 69 45 4
6 Sovereign 296.9 18 54 26 6
7 Malaya 296.7 17 50 25 8
8 Elizabeth 296.4 22 70 37 5
9 Howe 289.5 18 62 40 4

10 Nelson 288.1 15 49 28 7
11 Fisher 286.9 9 41 18 4
12 Valiant 286.6 37 88 69 12
13 Queen Mary 286.5 29 74 55 13
14 Vanguard 284.0 16 60 40 9
15 Rodney 283.3 13 57 32 8
16 Prince 282.5 13 47 48 9
17 Anson 281.7 16 51 43 6
18 Barham 281.6 13 60 39 5
19 King George 281.1 20 53 41 8
20 Hood 280.8 12 53 32 5
21 Jellicoe 278.9 10 50 32 6
22 Beaty 274.0 17 77 49 12
23 Cunningham 270.2 4 48 32 2
24 Lord 269.6 14 34 49 6
25 Lewin 264.8 9 43 42 7
26 Mountbatten 247.1 5 35 32 5

Table 2: College Table 2007, in order of merit. This data can be downloaded
in the file II-10-12-2020-02.csv from the CATAM website.

College Score I II.1 II.2 III
Agincourt 288.7 11 31 28 1
Resolution 290.0 20 58 43 3

Erin 293.5 19 58 39 2
Duke 321.4 24 68 18 3

Colingwood 305.1 30 69 36 8
Sovereign 292.5 22 51 37 9
Malaya 303.5 15 53 24 2

Elizabeth 321.5 33 64 29 4
Howe 293.3 13 79 29 2
Nelson 287.6 11 50 22 3
Fisher 274.6 8 31 24 3
Valiant 303.5 49 97 49 16

Queen Mary 309.0 31 92 38 4
Vanguard 278.6 5 77 32 6
Rodney 299.0 22 60 32 7
Prince 295.3 20 61 45 6
Anson 285.8 15 64 34 6
Barham 289.1 13 78 26 8

King George 283.9 20 52 30 11
Hood 281.7 12 55 39 2
Jellicoe 273.3 11 43 49 2
Beaty 262.9 9 86 53 12

Cunningham 270.1 4 48 30 2
Lord 284.8 11 61 33 4
Lewin 292.8 19 57 45 7

Mountbatten 271.9 12 51 48 12

Table 3: College Table 2008, in order of merit. This data can be downloaded
in the file II-10-12-2020-03.csv from the CATAM website.
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Take xi, yi as the score per 100 students for the ith college for 2007 and 2008 respectively, for
i = 1 , . . . , 26 .

Question 5 Fit the model

yi = α+ βxi + εi , εi
iid∼ N(0, σ2) ,

where α, β and σ2 are unknown parameters. Comment on the fit thus obtained.

Question 6 Find a 95% confidence intervals for β , and α + βx̄ (i.e., the predicted
2008 score for a college with 2007 score equal to the mean of x1, . . . , x26). How does this
confidence interval change if x̄ is replaced by 305.0?

Let nij be the frequency for college i , class j for 2007 (i = 1, . . . , 26 , j = 1, . . . , 4). Assume
(nij) independent, multinomial, parameters ni and (pij), where

∑
j pij = 1 for each i and ni is

defined as
∑

j nij .

Question 7 Using the appropriate large sample result, test the hypothesis

H0 : pij = λj for each i, j

where (λj) is unknown, and
∑4

j=1 λj = 1 . Interpret H0, and then the result of your test.

Question 8 Comment critically on the presentation of these data and on the appro-
priateness of the two analyses performed above.
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11 Statistical Physics

11.3 Classical gases with a microscopic

thermometer

(8 units)

This project can be done with knowledge of the course Statistical Physics.

1 Introduction

Consider a gas of N non-interacting classical particles. The momentum of the ith particle is pi

and its kinetic energy is Ei. The energy Eg of the gas is

Eg =

N∑
i=1

Ei .

To this system we add one additional degree of freedom, which acts as a thermometer. The
thermometer stores energy, and can exchange it with the gas. The energy of the thermometer is
Ed and the total energy E = Eg + Ed is conserved (we consider the microcanonical ensemble).
We will show that measuring the average value of Ed can be used to infer the temperature of
different kinds of classical gas.

2 Algorithm

We use a stochastic (random) algorithm to calculate the statistical behaviour of this system.
This is an example of a Monte Carlo algorithm. It operates as follows:

1. As an initial configuration, set pi = e1 for all i, where e1 is a unit vector in the x-direction.
Initialise also Ed = 0.

2. Choose one of the N particles at random and compute its current energy Ecurr. Generate
a random vector ∆p and propose a change of the particle’s momentum, from pi to pi+∆p.
A good choice is to take each component of the vector ∆p to be a random number from
(−ε, ε) with ε = 0.1. Compute the energy that the particle would have if its momentum
was pi +∆p: this is the proposed energy Eprop.

3. Define ∆E ≡ Eprop − Ecurr. If ∆E ⩽ Ed then accept the change. That is, update the
momentum of particle i to a new value pi +∆p, and update Ed to a new value Ed −∆E.
If ∆E > Ed then the change is rejected and no variables are updated.

4. Whether or not the change was accepted, record the value of Ed as a new value in an
array (or list) which will later be used to plot a histogram. Also record the energy of
the particle. (This is called the single-particle energy.) If the change was accepted, you
should record these values after the update was performed.

5. Repeat steps 2-4 until the total number of attempted updates is Nupdates. Since each
update only affects one particle, it is useful to define Nsweeps = Nupdates/N so that Nsweeps

is the typical number of times that each particle has been chosen for an update.
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Question 1 In the microcanonical ensemble each microstate (of the whole system) is
equally likely. For the thermometer, suppose that every possible value of Ed corresponds
to a single microstate. Hence explain why the probability distribution for Ed behaves as

P (Ed) ∝ Ωg(Eg) .

where Ωg(Eg) gives the number of microstates of the gas.

Question 2 The temperature of the gas is related to its entropy as

1

T
=

∂Sg

∂Eg
.

Assuming that Ed ≪ Eg, use this fact to show that

P (Ed) ∝ exp

(
− Ed

kBT

)
. (1)

where kB is Boltzmann’s constant. [It is also acceptable to take kB = 1.]

3 Ideal gas

Programming Task: Write a program to simulate a gas of N particles using the Monte
Carlo algorithm outlined above. Consider a 3-dimensional gas of nonrelativistic particles,
so p = (p1, p2, p3) and

E(p) =
|p|2

2
.

You will need to keep track of the momentum vectors for the N particles in the gas. It will
be useful in later questions if your program includes a function which returns the particle
energy, given p as input.

You will also need to plot histograms of the quantities that were recorded in step 4 of
the algorithm: the value of Ed and the single-particle energy. Remember, a histogram is
a graph of the relative frequency that a quantity such as Ed lies within a particular bin.
This relative frequency is f(Ed).

Your program should also calculate the average of Ed.

Throughout this project, should compare your results with the behaviour that you would expect
from the theory of statistical physics. The results should be presented in such a way that this
comparison is clear.

Question 3 ForN = 100, plot a histogram of Ed forNsweeps = 10, 100, 1000. [You may
wish to plot log f(Ed) instead of f(Ed).] Your program should not take more than a few
minutes to run. Discuss (and explain) the results, including the dependence on Nsweeps.
Do the results depend on the parameter ε that appears in step 2 of the algorithm?

Question 4 If Nsweeps is large enough, the system should be in an equilibrium state.
For this case, compare the histogram of Ed with Equation (1), and estimate the tempera-
ture of the gas. If the distribution of Ed is consistent with (1), you can also estimate the
temperature from the average of Ed. Quantify the numerical uncertainties on these two
estimates of the temperature.
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Question 5 For the equilibrium state, plot a histogram of the single-particle energy.
Show that the result is consistent with the theory of ideal gases from statistical physics.

Programming Task: Modify your program so that each particle is initialised with a
randomly assigned momentum (instead of all starting with pi = e1). For example, assign
each component of pi independently at random from (−a, a), with a = 1.
(Note: depending on a, you may want to change the parameter ε that appears in step 2
of the algorithm.)

Question 6 How does this change in initial conditions affect the histograms of Ed

and the single-particle energy? What happens for different values of a? How does the
temperature depend on a? Explain your observations, including their consistency with
the theory of ideal gases from statistical physics.
(Note: depending on a, you may want to change the parameter ε that appears in step 2
of the algorithm.)

4 Relativistic gases

Programming Task: Continue with random initial conditions [each component of pi

chosen independently at random from (−a, a)]. Modify your program to consider ultra-
relativistic particles that move in two dimensions: this means that p is a vector with two
components and that

E = |p| .

(For the purposes of statistical physics, we still refer to this system as a classical gas,
because quantum mechanical effects have been neglected.)

Question 7 For a = 1, compute and plot histograms of Ed and of the single particle
energy. Estimate the temperature of the gas. Vary a and compute the temperature. Plot
this temperature as a function of the total energy of the system. Compare the result
with the case considered in question 5 (non-relativistic particles in three dimensions), and
discuss their consistency with the theory of ideal gases from statistical physics.

Programming Task: Consider relativistic particles in three dimensions so that p is a
vector with three components, and

E(p) =
√

1 + |p|2 − 1 .

Question 8 Consider different values of the total energy by varying a in the range
0.1 to 2.0. How does the temperature depend on the total energy? By considering the
behaviour of E(p) for large and small values of |p|, comment on the relation of this result
to the cases from previous questions. Compare the histograms of single-particle energies
for a few representative cases.
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12 Nonlinear Dynamics/Dynamical Systems

12.3 The Lorenz Equations (10 units)

Some familiarity with the Part II course Dynamical Systems would be helpful for this project,
which is concerned with bifurcations and chaos in ordinary differential equations.

1 The Lorenz equations

The Lorenz equations are named after the meteorologist who first studied them in 1963:

ẋ(t) = f1(x, y, z) = 10(y − x) ,
ẏ(t) = f2(x, y, z) = rx− y − xz ,
ż(t) = f3(x, y, z) = xy − 8z/3 .

Question 1 Integrate the equations for values of r = 0, 14, 20 and 28 Use x = y = 1,
z = r−1 as the initial conditions. You may use any standard integrating packages that are
available and enable you to choose an appropriate step-length and then fix on it; comment
however on the effect of changing the step-length and why you chose your particular value.
You should plot x(t) against z(t) to show your results. For some of the above values of r
consider plotting the solution only for t > T for some time T > 0; why can this be useful?

A stationary point is a point (x, y, z) where ẋ = ẏ = ż = 0. It is (locally) stable if all the
eigenvalues of the Jacobian matrix Df(x) = (∂fi/∂xj)1⩽i,j⩽3 evaluated at the stationary point
have negative real part.

Question 2 Investigate analytically the existence and stability of stationary points of
the flow. How do these results relate to the behaviour observed in question 1 above?

2 The strange attractor

The persistent erratic non-periodic oscillations seen when r = 28 are due to the existence of a
“strange attractor” in the flow. (The existence of this attractor was discovered numerically by
Lorenz but there is still no completely rigorous proof that it exists and has the properties we
are about to study). This attractor is stable for (approximately) r > 24.06, but for r < 24.06
some solutions spend a long time wandering about near it before eventually tending towards
a stable stationary point. (It exists, but is unstable, for approximately 13.9236 < r < 24.06.)
This phenomenon is known as intermittency.

Question 3 For various initial conditions as given in the following list, plot x(t)
against t at r-values of your choice in 23 < r < 25: in each case include in your write-up
one or two plots showing the different possible behaviours.

(i) Start very close to the origin (0, 0, 0) but not on the z-axis (why not?).

(ii) Start very close to one of the other fixed points.

(iii) Start near x = y = 1, z = r − 1.
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Which type of initial condition is best suited for deciding the r-value at which the strange
attractor becomes attracting? Which is useful to confirm your stability analysis for the
stationary points obtained in question 2 above? Which best illustrates intermittency?

Question 4 For initial conditions which produce trajectories displaying intermittent
behaviour in r < 24.06, plot the time spent wandering erratically before the trajectory
spirals steadily into one of the stationary points against (24.06 − r). You should decide
on some criterion for deciding the time tc at which the solution you are calculating starts
heading towards a stable stationary point, and calculate the average of the values of tc
obtained for 5 different initial conditions (all of which should display several “erratic”
oscillations before tc is reached) at each r-value. Explain how you determine tc.

You will find that nearby initial conditions sometimes give very different values of tc, and as r
increases towards 24.06 you may find that it becomes increasingly difficult to find tc for all of
your chosen initial conditions; you should start with r = 20 and be prepared to stop increasing
r when the amount of machine time used becomes excessive.

Question 5 Suggest a formula for the way in which the average tc value increases
with r. You will need a fairly large sample of tc values to make a reasonable estimate.

Question 6 For r = 27, write a program to record the successive z-values z1, z2,
z3, . . . at which a trajectory achieves a local maximum in z. Plot these on a scatter
diagram of zn+1 against zn; include also for reference the diagonal line zn+1 = zn. What
property do portions of the trajectory which generate high points (large values of zn+1)
on this diagram have? Does the information that the origin (0, 0, 0) is actually part of
the strange attractor help you to find a numerical method to compute (approximately)
the largest value of zn+1 that could appear on this diagram? If so, do it and add an
appropriate point to your figure.

You should not plot the first few points obtained from any given trajectory in order to give any
transient behaviour time to die out. You may generate points from many trajectories or from
one long trajectory. You will observe that the points on this scatter diagram all lie very near
to a certain curve C, which can therefore be used as a predictor for the successive zi values.

Question 7 Describe in some detail the chief features of this curve and how they
relate to your numerical solutions. In particular, consider the following points:

� The intersections of C with the diagonal.

� Does C intersect the diagonal at z = r − 1?

� On your diagram, is it possible to draw a square whose top-right and bottom-left
corners lie on the diagonal, whose top side touches the peak of C, whose bottom-right
corner lies on C, but whose bottom edge does not otherwise intersect C?

Question 8 On a copy of your diagram, draw an approximation to the curve C and use
this hand-drawn curve (which you should include in your write-up) to predict a succession
of zi values. For how many steps does your prediction agree well with an actual sequence
produced by the numerically computed trajectory? Are there any features of the curve
which would lead you to expect this result?
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3 The effect of varying r

Question 9 How does the curve C vary as r decreases? Draw the curves for = 24.4
and 23.1, extending them in a sensible way to z = r − 1. (For r = 23.1 you will need
to use initial conditions which give intermittent trajectories in order to generate much of
the curve). Describe how the features of the curve change, and explain how these changes
relate to the other aspects of behaviour studied in this project.
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12 Nonlinear Dynamics & Dynamical Systems

12.6 Chaos and Shadowing (10 units)

Familiarity with the Part II Dynamical Systems course would be very helpful for this project,
which is concerned with the behaviour of nonlinear maps and uses concepts and tools from
nonlinear dynamics.

1 Introduction: dynamical systems, chaos and shadowing

This project considers issues that arise in the numerical solution of dynamical systems which
display complicated ‘chaotic’ behaviour. We first consider the discrete-time case, defining Lya-
punov exponents which measure the rate at which nearby points separate under iteration. Then
we discuss how ‘noisy’ trajectories of an iterated map, where the ‘noise’ arises through numerical
errors, are actually close to true trajectories of the system - this property is known as ‘shad-
owing’. Finally the project considers a continous-time (ODE) example of complicated motion
motivated by celestial mechanics.

Let D be a closed bounded subset of Rm, and let F (x) be a continuously differentiable map
from D to itself. A major task in dynamical systems is to characterise the behaviour of points
under repeated iteration of the map F . We call the sequence of points x0,x1,x2, . . . constructed
by setting xn+1 = F (xn) the trajectory from the initial condition x0. The standard notation
for the repeated composition of F is to let Fn denote the n-fold composition of F with itself,
i.e. xn = F (xn−1) = F 2(xn−2) = · · · = Fn(x0).

In many situations the rate at which nearby trajectories separate from each other is of interest.
This can be characterised by the Lyapunov exponents λ(x0,v), defined to be the asymptotic
rate of divergence of trajectories with initial conditions x0 and x0 + v, where v is a small
perturbation from x0:

λ(x0,v) = lim
n→∞

lim
ϵ→0

1

n
log

∥Fn(x0 + ϵv)− Fn(x0)∥
∥ϵv∥

(1)

Under the conditions given above it can be shown that the limit exists. For a given x0 there
will in general be m (possibly non-distinct) values of λ(x0,v) as we choose different vectors v –
divergence occurs at different rates in directions corresponding to the different eigenvectors of
the Jacobian matrix DF evaluated at x0. The formula above for λ(x0,v) will give the largest
positive Lyapunov exponent of the system for almost all choices of the vector v. We denote
the largest positive Lyapunov exponent by λ(x0), or simply by λ. If x0 is a fixed point then
the Lyapunov exponents are simply the (real parts of the) Floquet multipliers, so in some sense
the idea of a Lyapunov exponent developed above is a generalisation of the idea of a Floquet
multiplier to arbitrary trajectories.

For the purposes of this project we will define a map to be chaotic if it appears that λ(x0) > 0
for almost all x0, so that in general neighbouring points will separate exponentially.
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1.1 A map on a square

Here we consider a 2-dimensional (area preserving) map on the unit square (x, y) ∈ [0, 1]2.
Given some initial condition (x0, y0), we define

xn+1 = xn +
K

2π
sin(2πyn) (mod 1) (2)

yn+1 = yn + xn+1 (mod 1) (3)

Note that here(mod 1) means that the map is restricted to the unit square.

Question 1 For K = 3, generate a set of double precision pairs (xn, yn), 1 ⩽ n ⩽ 1000,
for a range of choices of (x0, y0). Some suggested choices of initial conditions are : (0.5,0.5);
(10−8, 0); (0.1,0.5); (0.8,0.6); (0.3521,0.424).

Plot the distribution of your points (xn, yn). Describe the structure of the phase portrait.
What are the fixed points of the map? Describe how the different features of the map
change with K.

1.2 Local Chaos

In contrast to the asymptotic quantity λ(x0) as defined above, a possibly more useful quantity
is the local Lyapunov exponent, λl(x0), defined as

λl(x0) = lim
∆→0

1

N

N∑
n=0

log
∥xn+1 − x

(∆)
n+1∥

∥xn − x
(∆)
n ∥

(4)

where xn is the nth iterate of x0, x
(∆)
n is the nth iterate of x0 +∆, and N is a suitable finite

number of iterations of the map. For infinitesimal perturbations ∆, λl(x0) > 0 indicates a local
expansion of trajectories starting near x0.

Note that N should be chosen neither too small, nor too large. In practice, you might also want
to discard the first few terms of this sum in your numerical calculations.

Question 2 For K = 3, find the maximum local Lyapunov exponent for different
initial conditions (x0, y0) and small perturbation ∥∆∥ ≪ 1, using the Euclidean norm in
equation (4). What value of N did you use? How did you decide? What is your estimate
of the global maximum Lyapunov exponent?

Question 3 We can define a different “Lyapunov exponent”, λ2 = log2 e
λl . Why, when

doing binary arithmetic, might λ2 be more interesting than λ? What is your interpretation
of the information λ2 provides? Given that the calculations here are done to 16 signifi-
cant figures (or to whatever precision achieved by the code you have used), what would
you expect the number of iterations required to be before the results obtained become
meaningless? How does your answer compare with what you found numerically?
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1.3 Shadowing

Numerical calculations introduce round-off and truncation errors into iteration. For chaotic
maps, such as the 2D map above this introduces an effective error at each iteration; this is in
some sense equivalent to the explicit perturbation in the initial conditions we considered above.

Since a large class of interesting problems is reducible to iterating nonlinear, and chaotic, maps,
it is of some interest to consider whether any numerical calculation can be said to follow the
“true” trajectory of such systems.

Here we will consider the simple example used above, assuming the “true” trajectory is given
by a double precision calculation of the trajectory, while a single precision calculation provides
a “noisy” trajectory.

For some nonlinear systems it is possible to define a “shadow” trajectory to a noisy trajec-
tory (obtained by adding a small perturbation), such that the shadow trajectory is a “true”
trajectory of the system, and the “shadow distance” (initially the perturbation) of the shadow
trajectory from the noisy trajectory is bounded ([1], [2], [5]). In 2D when there exists one
unstable (expanding) direction and one stable (contracting) direction, it has been proved that,
for sufficiently small perturbations, “shadow” trajectories can exist for arbitrarily long times.
In many other systems it is still possible to define a “shadow” trajectory for a finite time.

Question 4 Let Ln be the Jacobian matrix of the map at iteration n. Construct and
write down explicitly the four elements of the Jacobian matrix of the standard map above.

Define en+1 = pn+1 − f(pn), where en is the error iterating the map, f , on the vector p by one
step. We want to construct a correction term, Φn, such that

p̃n = pn +Φn (5)

defines a “shadow” orbit of p, i.e. {p̃n} is a true orbit of the dynamical system.

Solving for Φ, we find:
Φn+1 = f(p̃n)− en+1 − f(pn). (6)

For Φn small, we can expand f(p̃n) to linear order, and

Φn+1 = LnΦn − en+1. (7)

At each iteration, small perturbations along the contracting direction will decay exponentially
forward in time, while small perturbations in the expanding direction will grow exponentially
forward in time. The reverse will happen when evolving backwards in time.

We therefore want to find basis vectors un, sn aligned with the directions defining the maximum
expansion and contraction of the local volume of phase space at step n. We can construct un,
sn by iterating the equations:

un+1 =
Lnun

||Lnun||
(8)

and

sn+1 =
Lnsn

||Lnsn||
. (9)

That is, take some initial u0, s0 (eg. (1/
√
2, 1/

√
2), (−1/

√
2, 1/

√
2)), and a vector p0 = (x0, y0).

Iterate un forwards, i.e. start with your u0 and iterate equation (8) forward until it has converged
to the local direction of expansion. To construct sn, do the same, but take the initial sN for
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some finite (not too big nor too small) number of iterations of the map, and iterate sn backwards
to find s0. You will want N ≫ 1 and N ≪ Nc, where Nc was the number of iterations at which
the sum in equation (4) needed to be truncated.

This procedure will naturally converge onto the direction of maximum expansion when going
forward in time, because the term corresponding to the maximum eigenvalue will become dom-
inant for sufficiently large n. Conversely, when going backwards in time the term corresponding
to the smaller eigenvalue will become dominant, because it will be proportional to the inverse
of a small quantity.

Clearly, since un, sn span the phase space, we can write

Φn = αnun + βnsn (10)

and
en = ηnun + ξnsn (11)

for some α, β, η, ξ.

Using equation (7) we find

αn+1un+1 + βn+1sn+1 = Ln(αnun + βnsn)− (ηn+1un+1 + ξn+1sn+1). (12)

Question 5 Substitute equations (8) and (9) into equation (12) to find a recursion
relation for αn, βn. As before, solve for the αn by forward iteration from n = 0 and for
the βn by backward iteration from n = N for some suitable, fixed N .

You now have a constructed shadow map of the trajectory.

Question 6 Integrating the standard map in double precision, from some known ini-
tial condition, with a known error, show that the shadow map of the erroneous initial
conditions follows the true trajectory within some shadow distance. If necessary, iterate
the shadowing to get a more closely shadowed orbit.

Now integrate your initial condition with single precision (introducing some, in principle
unknown) error per iteration, and construct the corresponding double precision shadow
trajectory.

Plot your trajectories and comment. (Finding and plotting such trajectories can be tricky!)

Note that shadowing does not always work. A trivial counter-example is provided by the one
dimensional logistic map f(x) = 1− 2x2, x ∈ (−1, 1).

Near x = 0, no true orbit can shadow general noisy orbits, as noise in f(x) may take the map
out of the domain and iterating the subsequent trajectory will take x to −∞.

1.4 Application: the Sitnikov Problem

It is known that the N -body problem, of N > 2 bodies moving under their own mutual gravi-
tational attraction only, is chaotic.

Here we consider a well known special case of the restricted three-body problem, where one of
the bodies has zero mass. In this particular problem, known as the Sitnikov problem ([4], [3]),
the motion of the zero mass is restricted to the z axis, defined by the normal to the plane of
motion of the two massive bodies, through the center of mass. The two massive bodies move
on Keplerian ellipses with eccentricity ϵ ∈ [0, 1] around their centre of mass.

July 2025/Part II/12.6 Page 4 of 5 ⃝c University of Cambridge



Without loss of generality, we consider the two massive bodies to have masses, M1 = M2 = 1/2.
We are interested in bound motion, with semi-major axis a = 1.

The motion of the two massive bodies is uniquely described by their elliptic orbit (the phase is
irrelevant to the dynamics we are interested in, by rotational symmetry). The separation of the
massive bodies from the center of mass is r(t) = (1− ϵ cos t) +O(ϵ2), .

We want to consider the motion of the third, zero mass body on the z-axis. Define v = dz/dt,
then

dv

dt
= − z

(z2 + 1)3/2
− 3zϵ cos(t+ t0)

(z2 + 1)5/2
. (13)

The equations of motion may be integrated numerically using a high order integrator, such as
the Runge–Kutta scheme, given some initial conditions. Without loss of generality, we choose
initial conditions t0 = 0, z(0) = 0, v(0) = v0.

Question 7 Write down the energy of the third mass, i.e. limm→0(E/m) and solve for
the critical velocity, vc, for which the energy is zero. Write down z(t) for ϵ = 0. Write
down the Jacobian matrix of this map.

It is useful to define the initial velocity as some multiple of vc. We are interested in
(initially) bound motion, so v0 ⩽ vc.

For ϵ = 0.03, 0.04, 0.05 and v0/vc = 0.92, 0.94, 0.96, plot z(t) vs t. Comment.

In continuous time we can define a (maximum) Lyapunov exponent exactly analogous to the
discrete-time case:

λ(z0) = lim
t→∞

lim
ϵ→0

1

t
log

∥ϕt(z0 + ϵw)− ϕt(z0)∥
∥ϵw∥

(14)

for almost all choices of perturbation w, where z = (z, ż) and ϕt denotes the evolution operator
defined by integrating the ODEs forwards in time.

Question 8 As before, construct a trajectory in (z, ż) space with an initial “error”, δ,
and integrate the true and erroneous trajectories for a chosen value of v0 ≈ 0.95vc.

Estimate numerically the Lyapunov exponent of the mapping for the different cases. Is
the motion chaotic?

Question 9 Using the method discussed in the previous section, construct a shadow
trajectory for the zero mass body, and compare “true” trajectories integrated with double
precision arithmetic, with the corresponding “shadow” trajectories integrated from the
same initial condition with single precision arithmetic.

Comment on the integrability of theN -body problem. Do you think numerical integrations
of N -body systems are reliable – or can be made reliable – in some sense?
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14 General Relativity

14.5 Cosmological distances (8 units)

Although this project is based on general relativistic cosmology, no detailed knowledge of General
Relativity is required. All relevant equations are defined and explained in the project itself.

1 Introduction

In cosmology there are many ways to specify the distance between two points because, in the
expanding Universe, the distances between objects are changing and Earth-bound observers look
back in time as they look out in distance. All these distances measure the separation between
events on radial null trajectories, trajectories of photons which terminate at the observer.

The metric for a homogeneous isotropic universe, in spherical polar coordinates for the spatial
part, is

ds2 = c2dt2 −R(t)2
[

dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (1)

where, by a suitable choice of radial coordinate r, k = −1, 0 or 1 for open, Euclidean or closed
geometries.

In this metric the redshift relative to an observer at the spatial origin is given by

1 + z = R(t0)/R(t1), (2)

where t0 is the coordinate time at which the photon is received and t1 that at which it was
emitted. Thus, for a given observer, the redshift depends only on the radial scale factor of the
Universe at the time the photon was emitted divided by its value at the observer’s time. The
redshift is important because it can be measured easily from the observed wavelengths of atomic
transition lines with known rest wavelengths.

When the matter density at time t is ρ and the pressure is zero one of the Einstein field equations
with the cosmological term becomes

Ṙ2

R2
+

kc2

R2
− Λc2

3
=

8πG

3
ρ, (3)

where Ṙ = dR
dt and Λ is a constant. The other field equation can be combined with this to give

the conservation of matter equation
ρR3 = const. (4)

For small distances the redshift cz = H0d, where d is the distance to the source. Then H0,
the Hubble constant, gives the local expansion rate. It is often written in the form H0 =
100h km s−1Mpc−1 = 3.2409 × 10−18h s−1, where h is dimensionless. The actual value of h
is still uncertain, and hotly debated, but most would agree on measurements of 0.72 ± 0.08.
The megaparsec is an astronomical length unit appropriate for separations between galaxies,
1Mpc = 3.0856 × 1022m. The Hubble time tH = 1/H0 = 3.0856 × 1017h−1 s and the Hubble
distance DH = c/H0 = 9.26 × 1025h−1m. Take the number of seconds in one year to be
3.1556926×107 s.

Our Universe can be described by two parameters, the matter density now ρ0 and the cosmo-
logical constant Λ, and we can express these in a dimensionless form using H0 as

Ωm ≡ 8πGρ0
3H2

0

(5)
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and

ΩΛ ≡ Λc2

3H2
0

. (6)

By means of equation (3), at time t0, the curvature value k can be parameterised by Ωk so that

Ωm +ΩΛ +Ωk = 1. (7)

Then the function
E(z) =

√
Ωm(1 + z)3 +Ωk(1 + z)2 +ΩΛ

is proportional to the time derivative of the logarithm of the scale factor, Ṙ/R, at redshift z
(see e.g. Peebles 1993, pp 310− 321).

Where specific values are required in what follows you should take H0 = 72 km s−1Mpc−1.

2 Lookback Time

The lookback time tL is the difference between the age t0 of the Universe now and the age te
when the photons were emitted

tL = tH

∫ z

0

dz′

(1 + z′)E(z′)
. (8)

Question 1 If Ωm = 1 and ΩΛ = 0, obtain an expression for the lookback time to an
object with redshift z and show that the age of the Universe is tL(z = ∞) = 2

3 tH.

Question 2 Write a program to determine the lookback time in Gyr for general H0,
Ωm and ΩΛ. If H0 = 72 km s−1Mpc−1, tabulate the lookback time to z = 0.1, 1.0, 2.0,
4.0 and 6.7 (one of the highest individual object redshifts measured so far) for

(1) an Einstein-de-Sitter universe Ωm = 1, ΩΛ = 0,

(2) a classical closed universe Ωm = 2, ΩΛ = 0,

(3) a baryon dominated low density universe Ωm = 0.04, ΩΛ = 0 and

(4) the currently popular Universe Ωm = 0.27, ΩΛ = 0.73.

What is the age of the Universe for each of these models [to the nearest 100 million years]?

Produce a graph showing lookback time against redshift for the four models and comment
on any overall trends.

3 Distance Measures

There are three useful ways to define distance.

(1) The line of sight comoving distance

DC = DH

∫ z

0

dz′

E(z′)
. (9)

(2) The angular diameter distance is the ratio of an object’s physical size to its angular size (in
radians). For an object of size ℓ at redshift z the angular size is θ = ℓ/DA, where θ is a small
angle (so sin θ ≈ tan θ ≈ θ).
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DA =


DH

1√
Ωk(1+z)

sinh
[√

ΩkDC/DH

]
, for Ωk > 0,

DC/(1 + z), for Ωk = 0,

DH
1√

|Ωk|(1+z)
sin

[√
|Ωk|DC/DH

]
, for Ωk < 0.

(10)

(3) The luminosity distance DL is defined by the relationship between the observed photon
energy flux f , integrated over all frequencies, and the intrinsic energy output from the source
L by

f =
L

4πD2
L

.

It is related to the angular diameter distance by

DL = (1 + z)2DA. (11)

Question 3 Obtain an analytic expression for the angular diameter distance DA as
a function of redshift in the case where Ωm = 1 and ΩΛ = 0 and show that it has a
maximum value when z = 1.25.

Question 4 Write a program to determine the luminosity and angular diameter dis-
tances given the redshift z and plot the dimensionless values DA/DH and DL/DH for
redshifts 0 < z < 7 for (Ωm,ΩΛ) = (1, 0), (0.04, 0) and (0.27, 0.73). For these three cases
tabulate the values at redshifts z = 1, 1.25, 2.0 and 4.0.

4 Comoving Volume

The comoving volume VC is the volume measure in which the number density of non-evolving
objects is constant with redshift. The comoving volume element in solid angle sin θdθdϕ and
redshift interval dz is

dVC = DH
(1 + z)2D2

A

E(z)
sin θ dz dθ dϕ.

Integrating this from the present to redshift z gives the total comoving volume over the whole
sky to redshift z,

V =
4π

3

D3
L

(1 + z)3
=

4π

3
D3

C for Ωk = 0. (12)

A method to test whether a sample of objects has a uniform comoving density and luminosity
which does not change with cosmic time is to use the < V/Vmax > test. It is assumed that all
objects with observed flux f > f0 are detected and the observed flux f and the redshift z are
measured for each object. For a given luminosity L there is a maximum redshift zmax(L) at
which the observed flux is f0 so that the object is just included. Corresponding to this redshift
is a maximum volume Vmax(L). Then, if we have a distribution of luminosities so that Φ(L)dL
is the number per unit comoving volume with luminosity between L and L + dL, the total
number of objects in the sample is∫ ∞

0
Φ(L)

∫ Vmax(L)

0
dV dL.

where V is the comoving volume.
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Question 5 Show that for a uniform comoving distribution of objects the expectation
value ⟨V/Vmax⟩ = 1

2 .

Question 6 Write a program to read pairs of numbers z and f/f0, determine V and
Vmax for these for Universe models for which Ωk = 0 and determine the average value
< V/Vmax > for each model.

Verify that for small values of z the program gives the Euclidean limit, for individual cases
V/Vmax ∝ (f/f0)

− 3
2 .

Apply the program to the sample, listed below, of 114 quasars from an area of sky. What
is the value of < V/Vmax > for this sample if Ωm = 0.27 and ΩΛ = 0.73? Is the value of
< V/Vmax > what you would expect from a constant comoving population? How might
you interpret the result you obtain?

Question 7 The sample in the previous question was also subject to the constraints
z > 0.20 and z < 3.0, because it is only in this range that an object be recognised as a
quasar. How would you modify the V/Vmax quantity so that for a uniform distribution
in this redshift range the average value is still 1

2? What is the result of using this on the
sample of 114 quasars?

References

[1] Peebles, P. J. E., 1993, Principles of Physical Cosmology, Princeton University Press.

Quasar data. The following may also be found in the file quasar.dat in the data directory
on the CATAM website:

z f/f0 z f/f0 z f/f0 z f/f0 z f/f0 z f/f0
0.202 1.570 0.217 3.250 0.225 2.884 0.237 3.630 0.246 1.213 0.259 1.330
0.274 1.614 0.298 1.330 0.315 2.032 0.322 1.066 0.332 1.976 0.351 1.018
0.362 1.096 0.373 1.191 0.385 2.937 0.402 2.355 0.433 1.853 0.449 4.168
0.460 5.105 0.479 1.706 0.492 1.629 0.507 1.940 0.530 1.472 0.549 1.419
0.571 2.511 0.582 2.089 0.590 1.599 0.609 1.406 0.624 1.018 0.641 1.018
0.659 3.564 0.672 2.511 0.679 2.013 0.692 1.294 0.714 1.294 0.723 1.584
0.737 1.342 0.754 1.076 0.774 1.753 0.781 2.128 0.791 2.779 0.803 2.421
0.832 1.106 0.847 1.527 0.874 1.158 0.892 1.202 0.913 2.167 0.934 1.629
0.955 1.887 0.973 2.208 0.993 2.558 1.012 1.355 1.025 1.247 1.040 1.318
1.056 1.213 1.072 1.803 1.092 1.330 1.115 1.342 1.140 1.086 1.152 1.180
1.182 1.180 1.205 1.393 1.220 1.247 1.234 1.342 1.247 2.535 1.263 1.047
1.288 1.541 1.313 1.028 1.332 1.037 1.343 1.235 1.376 2.779 1.388 1.202
1.400 1.086 1.440 1.127 1.455 1.009 1.469 1.056 1.487 1.330 1.511 1.330
1.543 1.028 1.559 1.202 1.583 1.819 1.593 1.294 1.619 1.614 1.641 3.047
1.664 1.393 1.684 1.158 1.700 1.513 1.727 1.629 1.756 1.137 1.776 1.355
1.810 2.831 1.844 1.018 1.878 2.208 1.913 2.606 1.941 1.342 1.961 1.555
1.976 2.910 2.005 1.106 2.035 1.306 2.075 1.887 2.092 1.958 2.106 1.367
2.134 1.406 2.187 2.089 2.244 1.202 2.297 1.106 2.329 1.009 2.388 1.737
2.442 1.644 2.523 1.000 2.595 1.393 2.649 1.282 2.786 1.527 2.936 1.445
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14 General Relativity

14.6 Isolating Integrals for Geodesic Motion (8 units)

This project assumes material taught in the Part II course General Relativity. Some of the
calculations may be done more simply using a Computer Algebra System (CAS) such as Math-
ematica or Maple, or the symbolic toolbox in MATLAB. Throughout we use geometrical units
with c = G = 1.

1 Geodesic Motion in Axisymmetric Spacetimes

A general axisymmetric metric can be written in the form

ds2 = gttdt
2 + 2gtϕdtdϕ+ gϕϕdϕ

2 + grrdr
2 + gθθdθ

2 (1)

where the metric components are functions of the coordinates r and θ only.

Question 1 By considering the Euler-Lagrange equations for t and ϕ of the geodesic
action

S =

∫ √
gij

dxi

dτ

dxj

dτ
dτ (2)

where the affine parameter τ is the proper time along the geodesic, or otherwise, show
that

E = gtt
dt

dτ
+ gtϕ

dϕ

dτ

Lz = −
(
gtϕ

dt

dτ
+ gϕϕ

dϕ

dτ

)
(3)

are constants of geodesic motion in any axisymmetric spacetime (1). Hence, derive the
mass conservation integral

grr

(
dr

dτ

)2

+ gθθ

(
dθ

dτ

)2

= −Veff(r, θ, E, Lz) (4)

where the effective potential, Veff , should be found in terms of E, Lz and the metric
components.

The effective potential defines the allowed regions of geodesic motion for a particular choice of
the energy, E, and angular momentum, Lz. Motion is only possible where Veff ⩾ 0.

The Kerr metric has components

gtt = 1− 2mr

Σ
, gtϕ =

2 amr sin2 θ

Σ
, gϕϕ = −

(
∆+

2mr (r2 + a2)

Σ

)
sin2 θ,

grr = − Σ

∆
, gθθ = −Σ (5)

where Σ = r2 + a2 cos2 θ, ∆ = r2 − 2mr+ a2, m is a constant (the mass of the black hole) and
a is another constant (the spin parameter of the black hole).
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Question 2 Using a CAS, or otherwise, derive expressions for the Christoffel symbols

Γi
jk =

1

2
gim (gjm,k + gkm,j − gjk,m) (6)

for the Kerr metric (5). You can present these results in your write-up in the form of a
printout from a CAS worksheet.

Programming Task: Write a program to numerically integrate the second order timelike
geodesic equations

d2xi

dτ2
= −Γi

jk

dxj

dτ

dxk

dτ
(7)

for the Kerr metric (5). Do not make use of the first integrals derived above (3)–(4), but
write the four second order equations as a set of eight coupled first order equations. We
will use the first integrals to verify the numerical accuracy of the integrations.

2 Geodesic motion in the Schwarzschild metric

The Schwarzschild metric may be obtained by setting a = 0 in the Kerr metric (5).

Question 3 What are the non-zero Christoffel symbols for the Schwarzschild metric?
Take m = 1 and find the zeros of the effective potential (4) in the equatorial plane,
θ = π/2, for the case E = 0.97, Lz = 4. Hence determine the allowed range of radii, r, of
bound orbits in the equatorial plane. Then, using your geodesic code, do the following

a Take initial conditions r = 15, θ = π/2, dr/dτ = 0 and the value of dθ/dτ determined
from the effective potential (4). Plot the coordinates, (t, r, θ, ϕ), of the particle as a
function of τ over several orbits. Check that the three conservation laws (3)–(4) are
satisfied at a reasonable level of numerical accuracy.

b For the same choice of E and Lz, take a range of initial conditions that lead to bound
motion (e.g., consider initial conditions in the equatorial plane with dr/dτ = 0 and
a range of values of r(0)). Output the values of r and dr/dτ every time the orbit
crosses the equatorial plane, θ = π/2, with dθ/dτ > 0. Plot these values on a graph,
with r on the horizontal axis, and dr/dτ on the vertical axis. What do you notice?

c Experiment with a few different values of E, Lz and initial conditions.

You have plotted a Poincaré map for these orbits. If the Poincaré map of an orbit is a closed
curve it indicates the possible existence of an extra isolating integral for the motion.

3 Geodesic motion in the Kerr metric

We now consider a ̸= 0 in the Kerr metric (5).

Question 4 Take a = 0.9, E = 0.95 and Lz = 3, and use the effective potential to find
the allowed range of r0 for which the initial conditions θ = π/2, r = r0 and dr/dτ = 0 lead
to bound motion. Plot a Poincaré map as described above for a range of initial conditions
of this type. Is the result similar to what you saw for the Schwarzschild metric?
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Question 5 Show that the quantity

Q = (aE sin θ − Lzcosecθ)
2 + (r2 + a2 cos2 θ)2

(
dθ

dτ

)2

+ δ a2 cos2 θ (8)

is conserved for geodesic motion in the Kerr metric, where δ is a numerical constant
that should be determined. You may use a CAS to help demonstrate this, but should
include evidence of the calculation. What does Q become in the limit a = 0, i.e., for the
Schwarzschild metric? Provide a physical interpretation if possible.

References

[1] Chandrasekhar, S.; The Mathematical Theory of Black Holes; Clarendon Press: Oxford;
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[2] D’Inverno, R.; Introducing Einstein’s Relativity; Clarendon Press: Oxford; 1992.

[3] Goldstein, H., Poole, C. & Safko, J.; Classical Mechanics, third edition, Pearson Education
International: New Jersey; 2002.
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15 Number Theory

15.2 Computing π(x) (7 units)

Background material for this project is contained in the Part II Number Theory course.

1 Introduction

The function π(x) is defined as the number of primes ⩽ x, so that π(11) = π(11.5) = π(12) = 5.
A simple way to compute π(x) is to form a list of all the primes ⩽ x and count. This could
be done by testing all the integers up to x for primality and one way of doing this would be
by trial division. A somewhat more efficient method of finding the primes up to N in terms
of time, but with greater requirements in terms of storage, is the sieve of Eratosthenes. List
the numbers from 2 to N . Mark all the multiples of 2 other than 2 itself. The next unmarked
number is 3, so mark all the multiples of 3 other than 3 itself. Continue in this way until no
more numbers can be marked. The unmarked numbers are now the primes up to N .

Question 1 Write programs to list the primes up to, say, 15, 000; one version should
use some form of primality test and the other a sieve. Your program should be capable of
reading in x and printing out π(x) for x in this range. Comment on the time and storage
theoretically required by each algorithm for large values of x.

2 Legendre’s formula

Listing the primes is not a very efficient way of computing π(x) so we should look for indirect
methods. One such method is Legendre’s formula which counts the primes by the inclusion-
exclusion principle.

π(x) + 1 = π(
√
x) + [x]−

∑
pi⩽

√
x

[
x

pi

]
+

∑
pi<pj⩽

√
x

[
x

pipj

]
−

∑
pi<pj<pk⩽

√
x

[
x

pipjpk

]
+ · · ·

where as usual [x] denotes the integer part of x and p1 = 2, p2 = 3, . . . is the sequence of
primes.

Question 2 Compute π(132) using Legendre’s formula by hand.

This formula is not suited to practical computation, because of the difficulty of programming
the multiple summations, because the number of terms involved increases rapidly with x and
because it requires knowledge of the list of primes up to

√
x. We need to organise the terms

more efficiently.

The multiple sums on the right-hand side of Legendre’s formula can be interpreted as counting
the number of integers ⩽ x not divisible by any of the primes ⩽

√
x. Define ψ(x, a) to be the

numbers of integers ⩽ x not divisible by any of the first a primes. Then

ψ(x, a) = [x]−
∑
i⩽a

[
x

pi

]
+

∑
i<j⩽a

[
x

pipj

]
−

∑
i<j<k⩽a

[
x

pipjpk

]
+ · · ·
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and Legendre’s formula can be written as

π(x) + 1 = π(
√
x) + ψ(x, π(

√
x)).

We have a recursion relation for ψ(x, a),

ψ(x, a) = ψ(x, a− 1)− ψ(x/pa, a− 1)

and ψ(x, 0) = [x]. This relation allows us to overcome the difficulty in programming the multiple
summations.

Question 3 Write a program to compute π(x) using Legendre’s formula and the
recursion relation for ψ(x, a) which will work for x ⩽ 106. Use your program to tabulate
π(x) for x up to 100 in steps of 10, up to 1000 in steps of 100, etc. as far as practical.
Show in detail what values of ψ(x, a) your program uses on the way to computing π(132).

This algorithm is still inefficient because we compute ψ(x, a) many times over for small values
of a. If we write

mk =
k∏

i=1

pi

then we see that the pattern of multiples of the first k primes repeats in a cycle of length mk.
In fact,

ψ(smk + t, k) = sϕ(mk) + ψ(t, k).

(Here ϕ(mk) denotes the usual Euler ϕ-function.) If we pick a suitable value for k and store
the values ψ(t, k) for 1 ⩽ t ⩽ mk then we can curtail the recursion formula for ψ(x, a) when a
is reduced to k rather than 0.

Question 4 Compute the first few values of mk and find a suitable value of k for
which you can store the values of ψ(t, k) for t up to mk. (You should be able to take k at
least 4.) Modify your previous program to use these values in the recursion relation for
ψ(x, a) and repeat your tabulations as far as practical.

3 Meissel’s formula

We modify Legendre’s formula to produce Meissel’s formula. Put b = π(
√
x), c = π(x1/3).

Then

π(x) = ψ(x, c) +
1

2
(b+ c− 2)(b− c+ 1)−

∑
c<i⩽b

π

(
x

pi

)
.

Note that it is now necessary to compute the values of π(y) for certain values of y in the range
x1/2 to x2/3, and to have a list of primes up to

√
x. We save by only having to compute

ψ(x, π(x1/3)) rather than ψ(x, π(x1/2)).

Question 5 Modify the program of questions 3 or 4 to use Meissel’s formula and
repeat your tabulations as far as practical.
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4 The Li function

The asymptotic behaviour of π(x) is given by the Prime Number Theorem

π(x) ∼ x

log x

and it is also known that a better approximation is

π(x) ∼ Li(x)

where Li is the logarithmic integral

Li(x) =

∫ x

0

dt

log t

suitably interpreted at the singular point t = 1. For computational purposes it is easier to take
the lower limit of the integral to be 2 and use the approximation Li(2) ≈ 1.045.

Question 6 Use a suitable numerical procedure to approximate Li(x) and tabulate
the values of x

log x and Li(x) for the same values of x for which you have tabulated π(x).
Tabulate the ratios π(x)

x/log x ,
π(x)
Li(x) and the differences π(x)− x

log x , π(x)−Li(x). Discuss the
accuracy of these approximations to π(x).

Question 7 Conjecture a possible order of magnitude for π(x)− Li(x).

[You may wish to consider a change of variable u = log t in the integral.]

References
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15 Number Theory

15.8 Elliptic Curves (8 units)

Background material for this project is contained in the Part IB course, Groups, Rings and
Modules, and the Part II course Number Theory. The Part II course Algebraic Geometry may
be helpful but is not necessary.

For any field k, an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with coefficients a1, a2, a3, a4, a6 in k is said to define an elliptic curve E over k if the discrim-
inant ∆(E), a certain polynomial in the coefficients (see Appendix), is nonzero in the field k.
Sometimes the notation [a1, a2, a3, a4, a6] is used as a shorthand for the above elliptic curve.
Geometrically, the condition ∆ ̸= 0 ∈ k ensures that at any solution (x, y) of the equation,
written in the form f(x, y) = 0, there is a well-defined tangent line, meaning that ∂f/∂x and
∂f/∂y are not both 0 at the point (x, y). For any elliptic curve E, let E(k) denote the set of
solutions [x, y, z] in the projective plane P2(k) to the associated homogeneous equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

(Here P2(k) is the set of triples (x, y, z) of elements of the field k which are not all 0, modulo
the equivalence relation that (x, y, z) is equivalent to (cx, cy, cz) for c ̸= 0 in k.)

Question 1 Show that the set E(k) is in one-to-one correspondence with the set of
solutions of the original equation, taking z = 1, together with the one other point [0, 1, 0].

The fundamental fact about elliptic curves is that the set E(k) forms an abelian group in a
natural way. The sum of two points a, b ∈ E(k) is given by drawing the line through a and b,
which will intersect E ⊂ P2 in exactly one other point c. The point c will have coefficients in
k, and the group structure on E(k) is defined by saying that a+ b+ c = 0 ∈ E(k). (For a line
which is tangent to E at one point a and intersects E at one other point c, we interpret the
previous equation to mean that 2a+ c = 0 ∈ E(k), because we think of the line as intersecting
E with multiplicity 2 at the point a.) Also, the identity element 0 ∈ E(k) is the point [0, 1, 0].
See any of the references on elliptic curves for more details.

Question 2 Write a program which computes the order of the finite abelian group
E(Fp) for an elliptic curve E over a finite field Fp = Z/pZ, specified by the prime number
p and the coefficients a1, a2, a3, a4, a6. Your program should check that ∆(E) ̸= 0 ∈ Fp,
so that E actually is an elliptic curve over Fp, and if so then it should output the order
of E(Fp) and the number tp := p + 1 − |E(Fp)|. The reason for mentioning tp is Hasse’s
theorem, which says that |tp| ⩽ 2

√
p for any elliptic curve E over Fp.

Later parts of the project will build upon this program, so it should be reasonably efficient:
don’t just search through all p2 pairs x, y ∈ Fp to see if they satisfy the given cubic
equation. (For a given x ∈ Fp, at most how many y’s in Fp can satisfy the given equation?
Can you find exactly how many y’s work for a given x, without actually finding them?
The case p = 2 may have to be handled separately.) Discuss the complexity of the method
used by your program.

Try your program out on some elliptic curves over different fields Fp.
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Given an elliptic curve E over the rational numbers Q, which we will assume is defined by
integers a1, a2, a3, a4, a6, we get a family of cubic curves over Fp, as the prime number p varies,
by reducing the coefficients ai modulo p. The resulting cubic curve is actually an elliptic curve
over Fp if and only if ∆(E) ̸≡ 0(mod p); in that case, we say that E has good reduction at p,
otherwise that E has bad reduction at p.

Question 3 Write a program which, given integers a1, a2, a3, a4, a6, outputs the dis-
criminant ∆(E) ∈ Z and its prime factorization (if you are using Matlab, then you may
use the factor function). Then, given integers p1 and p2, the program should print a table
showing the order of the group E(Fp) and the associated number tp (as in Question 2) for
all prime numbers p in the range p1 ⩽ p ⩽ p2. If E has bad reduction at a given prime
number p, leave the entries for |E(Fp)| and tp blank (or use asterisks).

Try your program on the following elliptic curves and the primes p < 200.

(a) y2 = x3 + 7x2 + 2x,
(b) y2 + xy + y = x3 + x2 − 5x− 7,
(c) y2 = x3 − 14x2 + 41x.

Are the answers related in any way?

It is known that if (x1, y1) is a torsion point of E(Q) (i.e. a point of finite order) then 4x1
and 8y1 are integers. For example the elliptic curve y2 + xy = x3 + 4x + 1 has torsion point
(−1/4, 1/8).

Question 4 By hand, find a nontrivial element of the group E(Q) for the elliptic curve
E over Q given by y2 + y = x3 + x2 + 2x + 4 and find the subgroup of E(Q) generated
by your element. What does this suggest about the relation between the output of your
program in Question 3 and the torsion subgroup of E(Q)? Can you prove anything in
this direction?

Question 5 Write a program which, given an elliptic curve over Q as in Question 3,
computes the numbers tp for a given range of primes p and shows the distribution of
the numbers tp/(2

√
p), which should be in the interval [−1, 1], in some understandable

graphical form. Try it for a few elliptic curves over Q, for a sufficiently large range of
primes p to get a meaningful picture, and describe the resulting probability distributions
on [−1, 1].

Elliptic curves with ‘complex multiplication’, such as those of the form y2 = x3 + bx or
y2 = x3 + c, should behave quite differently from most elliptic curves: what do you find
in these cases? On the basis of your graphs, is it likely than any of the elliptic curves in
Question 3 have complex multiplication?

Programming note

If you use a computer algebra package (such as Maple), then you may find that some routines
for elliptic curves are included in the package. In such cases, no credit will be given for using
the packaged routines — you are expected to write and analyse your own programs. You may,
however, use packaged routines for dealing with prime numbers.
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Appendix

The formula for the discriminant of the elliptic curve [a1, a2, a3, a4, a6] uses the following auxil-
iary expressions:

b2 = a21 + 4a2

b4 = a1a3 + 2a4

b6 = a23 + 4a6

b8 = a21a6 − a1a3a4 + 4a2a6 + a2a
2
3 − a24

Then the discriminant is
∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.
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16 Algebra

16.1 The Galois Group of a Polynomial (7 units)

This project is related to material in the Part II course Galois Theory.

1 Introduction

The Galois group G(f) of a polynomial f defined over a fieldK is the group ofK-automorphisms
of the field generated over K by the roots of f (the Galois group of the splitting field for f over
K).

We shall consider Galois groups over the rationals and polynomials f which are monic and have
coefficients in Z. Assume that f has no repeated factor. Let f have degree ∂f = n with Galois
group a subgroup of the symmetric group Sn acting on the roots of f . The decomposition group
of f modulo p is the Galois group Gp(f) of f regarded as a polynomial over the finite field
GF(p), provided that f modulo p does not have a repeated factor. The key result we shall use
is that the decomposition group (when defined) is always cyclic and isomorphic to a subgroup
of the Galois group of f . Furthermore, it is isomorphic in a way which preserves cycle types, so
the cycle type of the generator of the decomposition group will also occur in the Galois group.

We shall use the decomposition groups to derive information about the Galois group of a poly-
nomial f . For example, if G(f) contains a 2-cycle, a (n−1)-cycle and an n-cycle, then it must be
Sn. As the decomposition group is always cyclic, this information does not distinguish between
groups with the same abelian subgroups, but computing a sufficient number of decomposition
groups will usually determine the cyclic subgroups and hence often determine G(f), although
there is always the possibility that our answer will be too small if we do not compute enough.

2 The algorithms

To find the decomposition group of f modulo p, we need information about the factorisation
of f over GF(p). There is a repeated factor in f iff f has a factor in common with its formal
derivative f ′ and this can be determined by applying the Euclidean algorithm. Since GF(pr) is
the splitting field of any irreducible polynomial of degree r over GF(p) and the Galois group of
GF(pr) over GF(p) is the cyclic group Cr generated by x 7→ xp, it is only necessary to find the
degrees of the irreducible factors in f in order to find its Galois group over GF(p). We let fr
be the product of all the irreducible factors of degree r in f : then there are nr = ∂fr/r factors
of degree r in f and the Galois group Gp(f) of f over GF(p) is cyclic, where the generator has
nr r-cycles for each r.

We determine fr by the observation that the elements of GF(pr) all satisfy the equation ϕr(X) =
Xpr −X = 0 and hence, if we proceed by successively removing the factors f1, . . . , fr−1 then
at the rth stage we can obtain fr by taking the highest common factor of the residue with ϕr.

Question 1 Write procedures to compute the quotient and remainder from dividing
two polynomials over GF(p) and use them to write a procedure to find the highest common
factor of two polynomials over GF(p). Include in your report some test output from all
three procedures. Describe an efficient way of using your procedures to compute a large
power of one polynomial modulo another polynomial.
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Question 2 Write a procedure to compute the decomposition group of f modulo p.
You should check first that the group is defined, that is, that f and f ′ have no common
factor, and then decompose f into factors fr. You should try to make this procedure
reasonably efficient computationally. Use your procedures in a program that will read in
a monic polynomial f with integer coefficients, and print out its decomposition groups for
p up to, say, 97.

Question 3 Run your program for the polynomials

X2 +X + 41,

X3 + 2X + 1,

X3 +X2 − 2X − 1,

X4 − 2X2 + 4,

X4 −X3 − 4X + 16,

X4 − 2X3 + 5X + 5,

X4 + 7X2 + 6X + 7,

X4 + 3X3 − 6X2 − 9X + 7,

X5 + 36,

X5 − 5X + 3,

X5 +X3 − 3X2 + 3,

X5 − 11X3 + 22X − 11,

X6 +X + 1,

X7 − 2X6 + 2X + 2,

X7 +X4 − 2X2 + 8X + 4,

X7 +X5 − 4X4 −X3 + 5X + 1.

Your program should tabulate its output in columns, so that the results for this question
take only a few pages in total.

Question 4 Discuss the Galois groups of these polynomials in the light of your output,
with special reference to the reducible polynomials. Assuming, in each case, that the group
is the smallest possible, formulate a conjecture as to the relative frequencies of the various
cycle shapes for a fixed polynomial f as p varies. Do any of the polynomials (especially
those of smaller degree) appear to contradict this conjecture? If so, run your programs
for these polynomials for higher values of p and see if this rectifies the matter.

Programming note

If you use Matlab then you may wish to use the DocPolynom class that is included as an
example in the help browser. To use this you should create a directory @DocPolynom and place
DocPolynom.m into it. This will enable you to define and display (non-zero) polynomials and to
carry out standard algebraic manipulations with them. There is no need to include the class file
in your program listings (assuming you do not modify it). [The latest version requires MATLAB
2022b or later to run.]
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If you use a computer algebra package (such as Maple), then you may find that some of the
routines asked for in this project are included in the package. In such cases, no credit will be
given for using the packaged routines — you are expected to write your own programs. You
may wish to compare the answers given by your program and by the packaged routines.
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16 Algebra

16.5 Permutation Groups (7 units)

This project is self-contained, building on theory covered in the Part IA course Groups. Some
knowledge of the groups part of the Part IB course Groups, Rings and Modules would be useful.

1 Introduction

Suppose we are given a set of permutations of X = {1, . . . , n}. They generate a finite permu-
tation group G ⩽ Sn. The aim of this project is to replace the given set of generators of G
with another generating set for G which is of greater utility, hopefully allowing us to deal with
various questions. For programming purposes you do not need to go above n = 20 (although
you are welcome to if you so wish).

2 Permutations

A permutation π of X is a bijective function from X to X. If x is an element of X then the
image of x under π is written πx. If π1 and π2 are permutations then their product π1 ·π2 maps
x to π1(π2x). The set of all permutations of the set X = {1, . . . , n} is the symmetric group Sn.
If π is a permutation and y = πy then y is called a fixed point of π.

Question 1 Write procedures to compute the inverse π−1 of a permutation π and the
product π1π2 of two permutations π1 and π2. What is the complexity of your method for
computing inverses (as a function of n)?

3 Groups

Suppose the permutation group G is generated by permutations π1, . . . , πk. First we reduce
the number of generators with the Stripping Algorithm of Sims. Let A be an n × n array of
permutations which is initially empty.

Suppose we have already put the first l− 1 permutations into the array. If πl does not fix 1 and
the πl(1)th entry in the first row is still empty then put πl there. Suppose the πl(1)th entry is
the permutation g. Then modify πl to be g−1πl so the new πl fixes 1. Go to the second row.

If πl does not fix 2 and the πl(2)th entry in the second row is still empty then put πl there. If
the entry is g then modify πl to be g−1πl which hence fixes 1 and 2. Go on to the third row . . .

If we reach the last row then we must have produced the trivial permutation which can be
omitted from the generating set.

Once a permutation is placed in the array, or deemed to be the trivial permutation, we go on
to try to place the next permutation in the array.

Question 2 Show that the modified set of permutations generates the group G. Give
an upper bound for the size of the modified set of generators and for the number of
operations needed to complete the algorithm. (As a function of n and the size of the
original generating set, noting that, e.g., storing a permutation is O(n) operations.)
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Question 3 Write a procedure which computes the array of a permutation group given
by a set of generators. It should receive a set of permutations as input and give a set
of permutations as output, which generate the same group and are in the above reduced
form. (Here, as elsewhere in this project, you should give some examples to demonstrate
that your program is working correctly.)

4 Orbit and Stabilizer

Let G be a permutation group of X. If α ∈ X then the set A = {β ∈ X | ∃g ∈ G, gα = β} is
called the orbit of α (under G). If β ∈ X is in the orbit of α then an element g ∈ G is called a
witness of this if gα = β. It is easy to see that β is in the orbit of α if and only if the orbit of β
is the same as the orbit of α. Hence different orbits are disjoint and the orbits form a partition
of X.

The stabilizer of an element α in X is Gα = {g ∈ G | gα = α}. It is a subgroup of G.

Question 4 Write down a bijection between the set of left cosets of Gα in G and the
orbit of α. State the orbit-stabilizer theorem.

Question 5 Write a procedure which computes the orbit with witnesses of a given
element under a permutation group G generated by a given set of permutations. It should
receive as input a set of permutations and an element α ∈ X and should return as a
output a list of elements forming the orbit of α, together with a witness in each case.
Briefly explain how your procedure works.

5 Schreier’s Theorem and the final algorithm

Suppose G is a permutation group of X, given as a set of generators Y , α is an element of X and
T is a complete set of left coset representatives of Gα in G. Let the surjective map φ : G → T
be defined via gα = φ(g)α.

Question 6 Let x be an element of Gα. Write x = yr . . . y1 with each yi an element
of Y . Let t1 be the element of T belonging to Gα. Let ti+1 = φ(yiti) for i = 1, 2, . . . , r.
Show that tr+1 = t1. Deduce that Gα is generated by the set of elements:

{φ(yt)−1 · y · t | y ∈ Y, t ∈ T}.

This is a special case of Schreier’s Theorem.

Question 7 Write a procedure which computes a generating set of a stabilizer of a
permutation group given as a set of generators. It should receive a set of permutations
and an element α as input and give a set of permutations as output which generate the
stabilizer. Use Question 5 to obtain T , then use Schreier’s Theorem and finally reduce
the set of generators with the Stripping Algorithm. Comment on the complexity of your
algorithm.

Question 8 Write a program which computes the order of a permutation group G
given with a set of generating permutations. The program should receive a set of permu-
tations as input and give a natural number as output which is the order of G. You should
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first reduce the number of generators with the Stripping Algorithm, and recursively find
a nontrivial orbit and use the previous question until you reach a subgroup of order 1.
Use the orbit-stabilizer theorem in the recursive part to find the order of G. You should
make a note of the group order and number of generators (before and after stripping) for
each of the subgroups computed. Give some brief output from your program.

What might happen if we forgot to use the Stripping Algorithm at every stage? (For
instance, say the input was two permutations of S20.)

Question 9 For the group Sn (throughout this question you may take n ⩾ 5), we con-
sider the probability Pn that a pair of elements g, h picked uniformly at random generates
Sn. In other words we have

Pn =
|{(g, h) ∈ Sn × Sn : ⟨g, h⟩ = Sn}|

|Sn|2
.

Why do you know from IA that Pn > 0? Give a straightforward argument to show that
there is k < 1 independent of n such that Pn ⩽ k. What is your value for k? What is the
value of Pn for very small n?

For each of a few moderate values of n, generate 100 or so random pairs of permutations.
Describe how you generate a random permutation. (To do this, you may assume you have
a random number generator which, with input an integer N from 1 to say 100, will output
an integer uniformly at random between 1 and N inclusive.)

Using your previous program, what sort of estimates do you obtain for Pn?
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17 Combinatorics

17.1 Graph Colouring (7 units)

This project is based on the material found in the Part II Graph Theory course.

In this project you will need to be able to generate graphs from G(n, p) and Gk(n, p). The space
G(n, p) is that of graphs with n labelled vertices, edges appearing independently and at random
with probability p. The space Gk(n, p) differs from G(n, p) only in that ij is never an edge if
i − j ≡ 0 (mod k).

1 A simple colouring algorithm

A colouring of a graph G is an assignment of a colour to each vertex of G, so that no two
adjacent vertices receive the same colour. The chromatic number of G, denoted by χ(G), is the
smallest number of colours for which it is possible to produce a colouring. It is believed that
finding the chromatic number of a graph G is, in general, very hard. At no stage in this project
are you required to implement a procedure for the exact evaluation of χ(G). You will, however,
develop procedures for finding upper and lower bounds for χ(G).

The greedy algorithm colours a graph whose vertex set is ordered by colouring vertices one at a
time in the order given, using colours from {1, 2, 3, . . .}. The colour chosen for a vertex is the
least colour from among those not already assigned to any previously coloured neighbours.

Question 1 Write a procedure which applies the greedy algorithm to a graph with
a given ordering of the vertices. Test your program on ten members of G(70, 0.5), and
compare the number of colours used when the vertices are ordered in the following ways:
(i) by increasing degree, (ii) by decreasing degree, (iii) where vj has minimum degree in
the graph G− {vj+1, . . . , vn}, (iv) at random.

Do the same for G3(70, 0.75).

Question 2 What ordering will guarantee that the greedy algorithm uses no more
than 3 colours for G3(70, 0.75)? Why do you think the probability 0.75 was chosen here?
For each n give an example of a graph G of order 3n such that χ(G) = 3 but on which
greedy might need n+ 2 colours.

2 Cliques

A clique in a graph G is a complete subgraph of largest order in G. (This definition differs from
some in the literature.) Notice that χ(G) is at least as large as the order of a clique.

A greedy-type algorithm for finding a complete subgraph in G would start with a subgraph of
order one (a vertex) and repeatedly try to find a vertex joined to all vertices of the subgraph
selected so far, until no further such vertex could be found.

Question 3 Give an argument to suggest that it is unlikely the greedy-type algorithm
will find a complete subgraph of order 14 in a graph from G(2000, 0.5). How large do you
think a clique is likely to be in a graph from G(2000, 0.5)?
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Question 4 Write a procedure to find a clique in a graphG. [Note: this procedure may
be time-consuming but should not be excessively so on the examples here.] Compare, for
several graphs, the resulting lower bound you get on χ(G) with the upper bounds obtained
previously.

3 Colouring

An independent set in a graph is a subset of the vertex set which spans no edges. A colouring
is thus just a partition of the vertices into independent sets.

Question 5 Convert your clique procedure to find an independent set of maximum
order in a graph. Hence write a procedure to colour a graph by the following method.
First find a largest independent set I1. Then find a largest independent set I2 in G− I1,
then I3 in G − I1 − I2, and so on until nothing remains. Compare the upper bounds on
χ(G) so obtained with previous bounds. Try your program on ten members of G7(70, 0.5)
also. Is there a change in behaviour as p is increased, say from 0.4 to 0.6? If your program
can handle larger graphs in a finite time, obtain further data of interest.

None of the above methods for bounding χ(G) is guaranteed to find χ(G) exactly.

Question 6 Estimate (crudely) the theoretical running times of all the algorithms
used above as functions of n when the input is a typical member of G(n, 0.5). Describe
in outline, but do not implement, a procedure for colouring a graph with exactly χ(G)
colours, and estimate its running time.
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17 Combinatorics

17.3 Hamiltonian cycles (5 units)

This project is based on the material found in the Part II Graph Theory course.

In this project you will need to be able to generate graphs from G(n, p), the space of graphs with
n labelled vertices, edges appearing independently and at random with probability p.

A Hamiltonian cycle in a graph is a cycle which contains every vertex.

Question 1 Describe a simple algorithm to check whether a graph has a Hamiltonian
cycle, and implement it. Test your program on a few particular graphs; and then use it
on a selection of graphs from G(n, p) with n up to 21 and p firstly varying from 0.1 to 0.9
and then varying from 0.1 lnn/n to 1.9 lnn/n. Tabulate your results, showing for each n
and p the number of graphs from your selection which had a Hamiltonian cycle.

Question 2 Estimate the theoretical running time of your algorithm as best you can.
Compare the answers for the worst case and an average case.

Question 3 Find a simple property possessed by many of your non-Hamiltonian
examples that is sufficient (though maybe not necessary) to force a graph to be non-
Hamiltonian. Why do you think the second range of values of p was chosen?

You will notice that your algorithm rapidly becomes prohibitively expensive as the order of the
graph increases. In this case an “approximation algorithm” can be useful. An approximation
algorithm for the Hamiltonian cycle problem would seek to make a very good attempt at finding
a cycle in a short space of time. If it succeeds, well and good. If it fails, there may have been a
cycle it missed, but it is hoped that the probability of this will be small.

Here is a simple algorithm to search for a Hamiltonian cycle. Construct a sequence of paths
P1, P2, . . . , where P1 is just a single vertex v0. Given a path Pj from v0 to vk, proceed as
follows:

1. If Pj has length n− 1 and v0vk ∈ E(G), output a Hamiltonian cycle;

2. if Pj has length less than n− 1 and vk is joined to a vertex not in Pj , extend the path Pj

to a path Pj+1. If there are several neighbours not in Pj , pick one of them at random;

3. otherwise construct a new path of the same length as Pj in this way: select a neighbour
vi of vk in Pj at random. Then Pj+1 is the path v0 . . . vi−1vivkvk−1 . . . vi+1.

Question 4 Implement this algorithm, and try it on your earlier examples. You should
set a stopping time T for the procedure so that, if it has constructed PT and still found no
cycle, it quits. What functions work well in practice (i.e. fairly reliably find a cycle but
aren’t too expensive)?

Question 5 In general, the stopping time T = T (n, p) should be a function of both
n and p. In the case that p is fixed and n is large, what do you think would be a good
choice of T? How do you think the running time might vary with p.
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19 Communication theory

19.1 Random codes (5 units)

Background material for this project is given in the Part II course Coding and Cryptography.

The (binary) Hamming space {0, 1}n consists of all possible n-tuples of 0s and 1s. We define a
code C of length n and size r to be a subset C of the Hamming space {0, 1}n with r elements.
The Hamming distance between two elements x = (xi), y = (yi) of {0, 1}n is the number of
places in which x, y differ. The minimum distance of a code C is the minimum Hamming
distance d(C) between distinct elements of C. The information rate of C is 1

n log2 r. We define
the error-control rate to be (d− 1)/n (note: elsewhere it is often defined as d/n).

In this project we investigate how high the information rate of a randomly-generated code can
be, subject to constraints on its error-control rate. In the first study, any randomly chosen
code may be considered, whereas in the second study only randomly generated linear codes are
allowed. In each study we try two approaches: specify the information rate of the random code
and see what error-control rate can be achieved, or specify the error-control rate and see what
information rate can be achieved.

Question 1 Write a procedure to find the minimum distance of a code. Use your
procedure to write a program which generates random codes of length n and size r and
then computes the minimum distance.

Run your program several times with various values of n and r, for each choice finding
the best (i.e., largest) d that you can.

Question 2 Now generate codes of length n and minimum distance d by starting with
an initial code vector, say (0, . . . , 0) and randomly generating further vectors, adding a
new vector to the code if it has distance at least d from all the vectors already in the code.

Run your program several times for each choice of parameters n and d, finding the best
(i.e., largest) r that you can.

Question 3 Take the output from the two previous questions and plot the corre-
sponding points on a graph with information rate and error-control rate as the two axes.
Comment on your results.

We call a code linear if it forms a subspace of the Hamming space, regarded as a vector space
over the field F of 2 elements. The weight w(x) of a vector x is the number of non-zero
components, that is, the Hamming distance d(x,0). The minimum distance of a linear code is
just the minimum non-zero weight. The rank k of a linear code is the dimension of the code as
a subspace, and the size of a linear code is r = 2k.

Question 4 Write a procedure to find the minimum non-zero weight of a code gener-
ated over F by a set g1, . . . , gk of k generators. Use your procedure to find linear codes of
given length n and either given rank k or given minimum distance d by considering random
sets of generators. As before, run your programs several times to plot the information
and error-control rates and comment on the results.

Question 5 Comment on your results in relation to known constraints on the design
of codes and the Shannon coding theorems.

Comment on these methods as a way of designing effective error-control codes.
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20 Probability

20.5 Percolation and the Invasion Process (9 units)

This project requires general knowledge of probability theory, at the level of IA Probability. It
also requires competency in programming.

1 Introduction

This project concerns certain probability models for bond percolation. The book by Grimmett
[1] is a good source to learn more about percolation.

We work on a connected graph G = (V,E), that is, a collection of nodes V connected by edges
E. To each edge e ∈ E, we assign, independently, a uniform random variable Ue ∼ U [0, 1]. We
decide on a value p ∈ [0, 1]; we declare the edge e to be p-open if Ue < p, and we declare it to
be p-closed otherwise.

When p is very small, very few edges are open; but as we increase p, there appear open clusters,
i.e. sets of nodes connected by open edges.

Percolation theory is the study of the geometry of the open clusters. In particular, important
questions are whether or not there exists an infinite cluster of open edges; and if one does exist,
how many infinite clusters there are. Clearly if p = 0 there is none and if p = 1 there is one
open cluster, namely the graph G itself.

2 The binary tree

Let V , the set of nodes of the graph, consist of finite strings, as follows: V contains the
empty string ‘’ (also known as Eve), and the three strings ‘1’, ‘2’ and ‘3’ (also known as Eve’s
daughters), and also every string that is one of Eve’s daughters followed by a finite sequence
of ‘1’s and ‘2’s. Two nodes are connected by an edge if one can be obtained by appending one
digit to the other. For example, ‘3221’ is connected to ‘322’ (its mother) and to ‘32211’ and
‘32212’ (its two daughters). As before, each edge e is assigned a random variable Ue ∼ U [0, 1].

(We can use this as a crude model to describe the propagation of a defective gene in a popula-
tion.)

Question 1 Let ϕp be the probability that Eve’s daughter ‘1’ is in an infinite open
cluster consisting of her own descendents. Show that

ϕp = 2p(1− p)ϕp + p2
(
ϕ2p + 2ϕp(1− ϕp)

)
.

It can be shown that ϕp is the maximal solution to this equation. Find ϕp. (One way to
obtain a ‘merit’ mark in this project, though not the only way, is to show that ϕp is the
maximal solution.)

Now let θp be the probability that Eve is in an infinite open cluster. Find θp and draw its
graph as a function of p.

Question 2 Show that, for p ⩽ 1
2 , there are almost surely no infinite clusters.

How many infinite clusters are there if 1
2 < p < 1? Justify your answer.
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This model exhibits a property which is general to percolation models: there exists a critical
probability pc such that for p < pc there is no infinite cluster and for p > pc we find at least one
infinite cluster.

The region p > pc is called the supercritical region. We can ask questions like: what is θp, the
probability that a node chosen arbitrarily lies in an infinite open cluster? (In Question 1, in
calculating θp, we could of course have designated any node to be Eve.)

The region p < pc is called the subcritical region. We ask questions like: how likely are we to
observe an open cluster of size n? if there is an open cluster of size n, what shape is it?

Most of the interesting (unsolved) problems relate to the geometry of open clusters when p is
near pc. For example, there are many graphs (e.g. Z3) where it is not known (but strongly
conjectured) that there is no infinite pc-open cluster.

3 The square lattice

The square lattice in two dimensions L2 is a graph with V = Z2 = {(m,n) : m,n ∈ Z}. If the
distance function is

d
(
(k, l), (m,n)

)
= |k −m|+ |l − n|,

the edges of the graph are straight lines connecting nodes which are distance 1 apart.

Let us look at two techniques which will help us estimate the critical probability pc above which
there is an infinite cluster and below which there is none.

Lower bound

Let us start at the origin. Let σn be the number of self-avoiding paths (i.e., paths which traverse
each edge at most once) of length n leading away from the origin.

Question 3 Let λ = lim supn→∞ σ
1/n
n . Show that λ ⩽ 3. Show further that pc ⩾ λ−1.

The actual value of λ is an open problem.

Upper bound

The general behaviour of large clusters in the subcritical region p < pc is described in the
following result. Some notation first: We say x ↔ y if there exists an open connected path
between x and y. Define the open sphere Sn to be

Sn =
{
x ∈ Z2 : d(x, 0) ⩽ n

}
.

The boundary ∂Sn consists of the nodes where d(x, 0) = n. Let Pp(0 ↔ ∂Sn) be the probability
that there exists a p-open path connecting the origin to some node in ∂Sn. It can be shown
that, for p < pc, there exists ψp > 0 such that

Pp(0 ↔ ∂Sn) < e−nψp for all n. (1)

The proof is beyond the scope of this project but can be found in [1, Sections 5.2 and 6.1].
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Armed with the above result, we aim to show that pc ⩽ 1
2 . We do this as follows. Consider the

following subgraph Gn = (Vn, En) of the square lattice.

Vn =
{
(k, l) : 0 ⩽ k ⩽ n, 0 ⩽ l ⩽ n− 1

}
.

Let En be all the edges in E connecting these nodes. We call {(k, l) ∈ Vn : k = 0} the left
boundary, and {(k, l) ∈ Vn : k = n} the right boundary. Let A be the event that some node in
the left boundary is connected to the right boundary via a path consisting of open edges.

Question 4 Show that P1/2(A) = 1
2 . Hint. You may find it useful to consider the

dual graph Ḡn, which has nodes at

V ′
n =

{
(k + 1

2 , l −
1
2) : 0 ⩽ k ⩽ n− 1, 0 ⩽ l ⩽ n

}
,

and edges joining those nodes which are distance 1 apart, and whose edges are open or
closed depending on whether the edges of G are open or closed, in a manner which you
should specify.

Question 5 By constructing n events {Ai} such that A = ∪Ai, and using (1), prove
that pc ⩽ 1

2 .

4 The Invasion Process

We can try and use computing power to estimate pc and θp. Suppose that at time n = 0 you
are an invading force standing at the origin. We will call In the set of nodes you have invaded
by time n. At time n + 1 you invade another node by looking at the edge-boundary of your
territory and walking along the edge with the least value of Ue attached to it. Formally, we
define

∂In =
{
e ∈ E : In

e↔ Z2 \ In
}
.

We use the notation x
e↔ y to mean that the edge e connects x and y. You walk from In along

the edge en ∈ ∂In which satisfies

Uen = min{Uf : f ∈ ∂In},

so that In+1 is In with the node at the other side of en added. It can be shown that, almost
surely,

lim sup
n→∞

Uen = pc. (2)

(The proof is not hard, and is outlined at the end of this project.) The advantage of using
the sequence Uen to estimate pc is that the amount of memory required to store Uen and to
calculate Uen+1 is O(n). This is true whether we are working in L2 or L47.

Question 6 Implement the invasion process. Describe your algorithm.
Explain in particular why it only requires O(n) storage space to calculate the first n values
of Uen , and what it does to ensure it never revisits a vertex.
Comment also on the complexity of the algorithm (the number of time steps needed).

Question 7 Use your program to estimate pc for L2, and explain your method. Es-
timate pc for L3 (which is defined like L2, but using Z3 rather than Z2). Include in your
report any appropriate plots.
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It is desired to plot θp, the density of the infinite cluster.

Question 8 Explain how the invasion process can be used to estimate θp simultane-
ously for all p. Produce a plot of θp against p for L2 by running the simulation for large n
several times (at least n = 5000, at least 500 times). For what values of p do you expect
your plot to be inaccurate? Why?

Appendix

Here is an outline of the proof of (2).

Let p > pc. Then there exists an infinite p-open cluster. Let Tp be the first time that the
invasion process hits the cluster (i.e. the first time that the vertex ITp \ ITp−1 is in the infinite
p-open cluster). It can be shown that P (Tp < ∞) = 1. For all n ⩾ Tp, there will always be an
edge in ∂In with Ue ⩽ p. It follows that

lim sup
n→∞

Uen ⩽ p.

Since p > pc was arbitrary, lim supn→∞ Uen ⩽ pc.

Now let p < pc. Suppose that with some probability α > 0,

lim sup
n→∞

Uen ⩽ p < pc.

Then we have (with a positive probability) an infinite cluster, with all but finitely many of its
edges p-open. It follows that (with a positive probability) there exists an infinite p-open cluster.
This contradicts the definition of pc as the critical probability.

References

[1] G.R. Grimmett. Percolation. Springer-Verlag, Berlin 1989 and 1999
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20 Probability

20.6 Loss Networks (9 units)

This project requires knowledge of discrete- and continuous-time Markov chains, covered in the
Part IB Markov Chains and Part II Applied Probability courses respectively.

Introduction

Nearly a century ago the mathematician Erlang, working for the Copenhagen Telephone Com-
pany, devised the first mathematical theories for telecommunications networks. The technology
we have now would seem like science fiction to Erlang, yet his insight into the essential struc-
ture of networks means that his theorems are just as useful for designing an optically-routed
backbone for the Internet as they were for early Danish telephony.

In this project we will deal with certain models for telephone networks, arising from Erlang’s
work. We consider a network to be a collection of links (cables). Each telephone call occupies
a certain amount of space on certain links; for example, a telephone call from a Cambridge
college to a London house might occupy 8 kbit/sec of space on the link from the college to the
university exchange, and on the link from the university exchange to BT’s Cambridge exchange,
and on the link from there to a London exchange, and so on. This space is occupied for the
duration of the call. The links which comprise the national telephone network only have limited
capacity, and when they are full we get a busy signal. Some interesting questions are: What is
the probability of a busy signal? How does it depend on the volume of traffic? Can we reduce
this probability by strategies such as offering multiple routes for a call?

For further reading see [1].

1 The Erlang link

Consider a single link with the capacity to carry C simultaneous calls. Suppose that new calls
arrive as a Poisson process of rate ν, that each call lasts for a duration which is exponential with
mean 1, and that all call durations are independent of each other and of the arrival process. If
a new call arrives when the link is already carrying C calls, then the new call is blocked. This
system is known as the “Erlang link”.

Question 1 Set up a continuous-time Markov model for the Erlang link. Calculate
the equilibrium probability that there are i calls in progress.

Define E(ν, C) to be the equilibrium probability that there are C calls in progress.

We say that an arriving call “sees” the system in state s if the system is in state s just before
it arrives. The PASTA property (Poisson arrivals see time averages) says that the long-run
proportion of arrivals which see the system in state s is equal to the equilibrium probability
that the system is in state s.

Question 2 Show that the PASTA property holds for the Erlang link. Hint. One
approach is to consider the discrete-time Markov chain which records the state of the
system after each event, where an event is an attempted arrival or a departure, and to
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express the equilibrium distribution of this chain in terms of the equilibrium distribution
for the continuous-time chain. Deduce that the long-run proportion of calls which are
blocked is E(ν, C).

Question 3 Write a program to simulate the Erlang link and to measure the blocking
probability. Compare the empirical blocking probability to that given by E(ν, C) for a
range of values of C up to 600 and an appropriate range of values of ν.

2 Alternative Routing

Consider now a network of links. For simplicity, suppose that the network is a complete graph
on K nodes, i.e., there is a link between every pair of nodes {1, . . . ,K}, and that each link has
capacity C. Suppose that for every pair of nodes (a, b), calls between a and b arise as a Poisson
process of rate ν. It might seem reasonable, in order to reduce the blocking probability, to offer
an alternative route if the direct link is full. Specifically, suppose that calls between a and b are
routed as follows:

1. If there is spare capacity on the direct link a↔ b, route the call over that link.

2. Otherwise, pick a new node c uniformly at random from the other K − 2 nodes. If there
is spare capacity on a↔ c and on c↔ b, route the call over these two links.

3. Otherwise, the call is blocked.

We will call this the “Alternative Routing” system. One way (but not the only way) to obtain a
‘merit’ mark in this project is to prove that the Alternative Routing system satisfies the PASTA
property.

As you can see, it is possible in principle to set up a Markov process model for this system,
and thereby to calculate the equilibrium distribution; but the number of states is so large
that, even for moderate K, it is not computationally practical to do so. Instead, we can use
a famous approximation called the Erlang fixed point approximation, which is that blocking
occurs independently on different links. This leads to the formula

B = E(ν + 2νB(1−B), C) (1)

where B is the probability that an incoming call cannot be routed on its chosen direct link.

Question 4 Give a careful intuitive explanation for (1). In what sense could ν +
2νB(1−B) be called the “offered load” on a link?

Question 5 Demonstrate numerically (e.g., by plotting an appropriate graph) that
for some values of C and ν this equation has a unique solution, and that for other values
it has multiple solutions.

Now pick C = 600 and choose ν such that (1) has multiple solutions.

Question 6 Write a program to simulate the Alternative Routing system. Explain
clearly and concisely the algorithm you have used. Run your simulation, for K = 5,
and record the cumulative count of the number of calls blocked. Plot a graph which
shows this count as a function of time. Programming hint. Run your simulation for at
least a million transitions of the Markov process; this should take less than 10 minutes
on a modern computer. You may find it convenient to write a small subsample of your
simulation output to a file, then use Excel or some other program to plot the result.
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You should find, from your simulation, that the system spends some of the time in a high-
blocking regime and some of the time in a low-blocking regime, corresponding to solutions of
(1).

Question 7 Give an intuitive explanation for why there are multiple solutions. It
is a standard result from Markov chain theory that this Markov process has a unique
equilibrium distribution; comment briefly on how this result relates to the existence of
multiple solutions.

Question 8 You should observe that there is one solution to (1) which is not reflected
in your simulations. By considering fixed points of the map B ← E(ν + 2νB(1−B), C),
suggest why this is so.

Question 9 Use the Erlang fixed-point approximation to find the probabilities that
an incoming call is blocked in the high-blocking regime and in the low-blocking regime.
How do these compare to a network without alternative routing, i.e., in a network in which
a call may only be routed on the direct link?

3 Trunk reservation

A telecoms operator would be alarmed at the situation you investigated in the last section, and
would seek to control the network so that it stays in the low-blocking state. One way to do this
is with a technique called “trunk reservation”. We modify the call admission procedure, so that
calls arising between a and b are routed as follows:

1. Consider the direct link a↔ b. If this link has spare capacity, route the call over it.

2. Otherwise, pick a new node c uniformly at random from the other K − 2 nodes, and
consider the two links a ↔ c and c ↔ b. If on each of these links the number of calls in
progress is less than C − s, then route the call over these two links.

3. Otherwise, the call is blocked.

The parameter s > 0 is known as the trunk reservation parameter.

Question 10 Develop a fixed-point approximation for this system. Hint. First set
up a suitable Markov model for the number of calls in progress on a single link with two
classes of traffic.

Question 11 Compare the blocking probability to those you found in Question 9. Has
trunk reservation improved matters? How large should the trunk reservation parameter
be?

References

[1] F. P. Kelly, Network Routing, Philosophical Transactions of the Royal Society series A, 1991.
http://www.statslab.cam.ac.uk/~frank/loss/
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23 Astrophysics

23.5 Ionization of the Interstellar Gas near a

Star

(8 units)

No knowledge of Astrophysics is assumed or required: all relevant equations are defined and
explained in the project itself.

1 Introduction

The interstellar medium surrounding a hot star is ionized by the radiation from the star. In this
project we calculate the size of the ionized region, and gain some insight into how its structure
depends on the nature of the radiation from the star.

Assuming that there is a uniform, static, constant temperature gas surrounding a spherically
symmetric star provides a good approximation, which keeps the essentials of the situation
without allowing unnecessary distractions. Each gas element is assumed to be in ionization
equilibrium, so the ionization rate for each atom is balanced by recombinations. We assume
that the sole source of ionization is by absorption of radiation from the star giving a bound
electron enough energy to escape from the atom. Recombination occurs when a free electron is
captured by an ion with the creation of a photon. Since hydrogen is the most common element
in the Universe, its behaviour will dominate in most cases, so we consider only a pure hydrogen
interstellar medium.

2 Radiation from a star

The radiation from the star is specified as Lν , the total energy output from the star per unit
frequency ν per unit time, so the luminosity per unit frequency interval Lν is expressed in W
Hz−1. The total energy output radiated from the star is the integral of this quantity over all

frequencies, or L =
∞∫
0

Lνdν. In some cases a star spectrum is reasonably well approximated by

a black-body, so the radiation flux in a frequency interval dν at frequency ν emerging per unit
area from the surface of the star where the temperature is T∗ is given by

Iνdν =
2πh

c2
ν3

exp( hν
kT∗

)− 1
dν,

where h is Planck’s constant, c is the velocity of light, and k is Boltzmann’s constant (given
below). Thus for a star of radius R

Lν = 4πR2 2πh

c2
ν3

exp( hν
kT∗

)− 1
.

Question 1 The sun has radius R = 6.96 × 108 metres, and the total luminosity
L = 3.90× 1026 W. Show, using the above equation, that its surface temperature is close
to 5800 K.

A 7 solar mass star has a surface temperature T∗ = 20, 000K and a luminosity L =
4.0× 1029W. What is its radius? What is the radius of a 12 solar mass star which has a
surface temperature T∗ = 25, 000K and a luminosity L = 4.0× 1030W.
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3 Equations for ionization and recombination

An element of gas at a distance r from the (centre of the) star will receive Lν
4πr2

W m−2 Hz−1 if
the radiation is not attenuated by any material between it and the star. The number of photons
received per second per unit frequency interval is Lν divided by the energy, hν per photon. If
these photons have frequency ν ⩾ ν0 = 3.29 × 1015Hz they have enough energy to separate
a hydrogen atom into a proton and an electron. The rate at which this happens depends on
the frequency of the radiation, and is given by the photon rate per second × an absorption
coefficient aν per hydrogen atom. For an energy flux Iν(r), so photon flux Iν(r)/hν, the rate of
ionization per unit volume is

nH0

∞∫
ν0

Iν(r)

hν
aνdν,

where nH0 is the number density of neutral hydrogen atoms (i.e. number of neutral hydrogen
atoms per cubic metre). The coefficient aν depends only on the atomic species being considered,
and for neutral hydrogen

aν = aν0

(ν0
ν

)3
for ν ⩾ ν0

aν = 0 for ν < ν0,

where aν0 = 6.3× 10−22 m2. If absorption can occur at the gas element, it can also occur in all
the elements between the star and the one under consideration. As we go along a path dr the
radiation is attenuated, so at a given frequency ν,

dIν
dr

= −nH0aνIν ,

and so
Iν(r) = Iν(R)e−τν ,

where τν is defined by
dτν
dr

= nH0(r)aν

and τν(R) = 0. τν is referred to as the optical depth at the frequency ν. There is no redistri-
bution of the photons in frequency (they are effectively absorbed from the point of view of this
calculation), so we can determine τν from

dτν0
dr

= nH0(r)aν0

and

τν = τν0

(ν0
ν

)3
.

This absorption of radiation and the ionization it causes must be balanced by recombination of
protons and electrons at the same rate per unit volume. This rate depends on the number den-
sities of the protons (np) and the electrons (ne), their relative velocity and a velocity-dependent
cross-section for the interaction which has to be integrated over the velocity distribution at
whatever temperature the gas is at. These velocity-dependent terms are combined into recom-
bination coefficients αB which are tabulated for various gas temperatures T :
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T (K) αB

5 000 4.54× 10−19 m3 s−1

10 000 2.59× 10−19

20 000 2.52× 10−19

Then we are in a position to write down the ionization balance equation

nH0

∞∫
ν0

Lν

4πr2hν
aνe

−τνdν = npneαB(T ), (1)

and subsidiary equations
dτν0
dr

= nH0(r)aν0 , (2)

τν = τν0

(ν0
ν

)3
, (3)

np = ne, (4)

np + nH0 = nH , (5)

which govern the ionization balance for the hydrogen-filled interstellar medium near a star.

[We have omitted a step here, and assumed that the energy released by recombination does not give

rise to an ionizing photon. Often it does, but we assume that all this does is cause another ionization

nearby until recombination occurs to an upper level in the hydrogen atom, and then the energy is lost

from the system through radiation at frequencies less than ν0. The net result is a change in the effective

recombination coefficient, to the one quoted here. Those interested in more details will find them in

Osterbrock’s book (1989)]

4 Ionization near stars

A typical interstellar medium hydrogen number density is nH = 106 m−3, and a typical tem-
perature is T = 104K.

Question 2 Write a program to solve the ionization equations to obtain the neutral
hydrogen and proton densities as a function of distance from the centre of the star, as-
suming that the interstellar gas has a constant temperature and density. Note that the
coefficients involved have large powers of 10, so for some compilers a rescaling of variables
may be desirable. Describe any transformations used. Are there any advantages to using
τν0 instead of r as the radial coordinate?

Now apply this program to some realistic cases:

Question 3 Determine the ionization and neutral fractions of hydrogen as a function
of distance from the star with surface temperature T∗ = 20, 000K and luminosity 4×1029W
for an interstellar gas density nH = 106 m−3 and T = 104K, and plot the results. Show
in particular that at some radial distance, r1, there is quite a sharp transition from the
gas being mostly ionized to mostly neutral. What is the value of r1, the distance from the
centre of the star where np = nH0? Give your answers to two significant figures.

Repeat the calculation for gas of the same temperature and density but with the 12 solar
mass star at the centre and again with the Sun as the central star. Also, compute the
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ionization fractions for all three stars in the cases that the gas temperature is 5000K and
20, 000K. Comment on any similarities or differences between the three cases.

Provide plots of the nine cases (three stellar masses and three gas temperatures) and a
table containing the values of r1 for each case.

4.1 An approximation to r1

Equation (1) can be integrated over volume from r = 0 to r = ∞ by using the definition of τν
to replace dr and assuming that the recombination term is well approximated by np = ne = nH

for r ⩽ r1 and np = ne = 0 for r > r1. This r1 is called the Strömgren radius.

Question 4 Show that, under these circumstances,

Q(H) ≡
∞∫

ν0

Lν

hν
dν =

4π

3
r31n

2
HαB,

where Q(H) is the total number of ionizing photons emitted by the star per second.

Calculate the values of Q(H) for the cases given above and compare the r1 determined
from this approximation with the values you have computed for T = 10, 000K.

5 The effect of a quasar on the host galaxy

The energy output from a quasar is very different from that of a star, both in intensity and
frequency dependence. A bright quasar has energy output of 4 × 1039W, and resides in the
centre of a galaxy of radius 3× 1020m (= 30,000 light years).

Question 5 If the frequency dependence of the quasar luminosity at frequencies ν ⩾ ν0
is given by

Lν = 1024
(

ν

ν0

)−1.4

exp

(
− ν

10ν0

)
,

determine whether or not any of the interstellar gas in the galaxy has neutral fraction
nH0/nH > 0.5. (Assume that the gas temperature is 104K, and density 106 hydrogen
atoms per cubic metre. Assume also that there is no gas within 1018m of the quasar
position, so start the computation there.)

Tabulate the results for the hydrogen neutral fraction as a function of distance from the
quasar.

Useful constants:

velocity of light c = 2.998× 108ms−1

Planck’s constant h = 6.626× 10−34Js
Boltzmann’s constant k = 1.381× 10−23JK−1

References

[1] Osterbrock, D.E., 1989. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei Uni-
versity Science Books: Mill Valley, CA (Especially chapter 2).
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23 Astrophysics

23.6 Accretion Discs (8 units)

No knowledge of astrophysics is assumed or required in this project. All relevant equations are
defined and explained in the project.

1 Fluid Equations

Accretion discs are composed of fluid orbiting a central object. They evolve viscously so that
matter falls inwards while angular momentum drifts outwards. Accretion discs are found in
binary star systems, around forming stars and in active galactic nuclei. We use cylindrical
polar coordinates (R,ϕ, z) and assume axisymmetry for this project. When the central object
dominates the gravitational field the angular velocity of the matter in the disc is Keplerian so
that

Ω =

(
GM

R3

)1/2

, (1)

where M is the mass of the central object and G is the gravitational constant. The disc is made
up of annuli of matter lying between R and R+∆R with mass 2πR∆RΣ, where Σ(R, t) is the
surface density (with dimensions ML−2) of the disc at time t.

The equation describing conservation of mass is

R
∂Σ

∂t
+

∂

∂R
(RΣVR) = 0, (2)

where VR is the radial velocity in the disc. Conservation of angular momentum gives us

R
∂(ΣR2Ω)

∂t
+

∂

∂R
(RΣVRR

2Ω) =
1

2π

∂Γ

∂R
, (3)

where the viscous torque
Γ = 2πRνΣR2Ω′ (4)

where Ω′ = dΩ
dR and ν(R,Σ) is the viscosity in the disc.

Question 1

Show that, for Ω independent of time,

R
∂Σ

∂t
= − ∂

∂R

[
1

2π(R2Ω)′
∂Γ

∂R

]
. (5)

and hence, using equation 1, for a Keplerian disc that

∂Σ

∂t
=

1

R

∂

∂R

[
R1/2 ∂

∂R
(3νΣR1/2)

]
(6)

This is the basic equation that governs the evolution of the surface density of a Keplerian
accretion disc, which we shall assume for the rest of this project. The viscosity may be a
function of Σ, R and t and so this equation may be non-linear.
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Question 2

The mass accretion rate ṁ through the disc is

ṁ(R) = −2πRΣVR (7)

Show that

VR = − 3

ΣR1/2

∂

∂R
(νΣR1/2). (8)

In a steady state disc the accretion rate through the disc is constant. Find, analytically,
the steady state solution for νΣ from equation (6). Use the inner boundary condition
Σ = 0 at R = Rin where ν is finite at R = Rin. Plot νΣ in units of ṁ against R/Rin in
the range 1 < R/Rin < 100.

We can make the problem dimensionless by setting r = R/R0, τ = t/t0, σ(r, τ) = Σ/Σ0,
and η(r, σ) = ν/ν0. Find a condition for t0 such that equation (6) remains the same
for these dimensionless variables. Assume that the accretion rate is small enough that
M ≈ const.

Question 3

Use the substitution X = r1/2 in equation 6 to derive

∂f

∂τ
=

∂2g

∂X2
(9)

where f and g are to be determined. We consider X to be discrete with values Xi where
i = 1, 2, ...100 and X1 = ∆X where ∆X is a constant. We let Xi+1 = Xi +∆X and time
be τn where n = 1, 2, ... with τn+1 = τn +∆τ . We have τ1 = 0 and we let fn

i = f(Xi, τn)
and gni = g(Xi, τn).

Show that equation (9) can be represented by the difference equation

fn+1
i = fn

i +
∆τ

(∆X)2
(gni+1 − 2gni + gni−1). (10)

Question 4

Write a program to solve equation (9) taking η = 1 and with the boundary conditions
σ(rin, τ) = 0 and σ(rout, τ) = 0. Set rin = 0.0004 and rout = 4 and use 100 grid points
equally spaced in X between X = 0.02 and X = 2. For formal stability the timestep must
satisfy

∆τ ⩽
1

2
(∆X)2

f

g
(11)

at all points in the disc. However you may find that you need to use something smaller.
Evolve from an initial mass distribution

σ(r, 0) = exp

(
−(r1/2 − 1)2

0.001

)
. (12)

Plot the initial surface density, σ(r, 0), against r. Plot σ against r at times τ = 0.002,
0.008, 0.032, 0.128 and 0.512 on the same axes.
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Question 5

Adapt your program so that you can find the height and position of the peak in the surface
density. Make a table of the surface density at the peak and the position of the peak at
the times used in question 4. Furthermore, adapt your program to plot the time evolution
of the total angular momentum in the disc (normalised to its value at t = 0), and the
position of the peak angular momentum surface density (R2ΩΣ) as a function of time.

Comment on the difference in behaviour between the surface density and angular momen-
tum.

Question 6

The evolution of a particle in the disk is given by dR/dt = VR(R, t) where VR is given by
equation 8. Rewrite equation 8 in a form similar to equation 10 so that you can adapt the
code written for question 4 to plot radial velocity (in dimensionless units) as a function
of radius for the timesteps used in question 4 on the same figure, taking care with choice
of axis to show where this is positive and negative.

Question 7

Use the radial velocities found by your code to follow the evolution of particles’ orbits,
and plot that evolution up to τ = 1 for particles initially at r0 = 0.9, 0.95, 1.0, 1.05, 1.1.
Plot the maximum radius attained by a particle as well as the time it took to reach that
distance and, for those particles that do so, the time it takes to reach a boundary as a
function of its initial radius for the range r0 = 0.9− 1.1.

Question 8

Use the results from question 7 to work out the range of initial radii r0 that have reached
the inner boundary by τ = 0.512 and hence, using equation 12, the fraction of the initial
mass that has reached the inner boundary by this time. Also do the corresponding calcu-
lation for the outer boundary. Compare these values with the fraction of the initial mass
that remains at that time that you derive using the surface density profile from question 4.

matlab Specific Issues

Use of the matlab in-build function gradient is prohibited, as its algorithm or accuracy is
not documented.
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