
7 Mathematical Methods

7.3 Minimisation Methods (8 units)

There are no prerequisites for this project.

You should write your own minimisation method programs: it is not sufficient to use routines
that are distributed as part of MATLAB, other software packages, or other programming lan-
guages. You can, however, exploit the matrix manipulation capabilities of MATLAB, other
software packages, or other progamming languages. You should use MATLAB’s 64-bit (8-byte)
double-precision floating-point values or the equivalent in other programming languages. Be-
cause we will be investigating functions of at most three parameters, your program will take
little time to complete the number of iterations that are specified in the questions. It is possible,
therefore, to carry out many more iterations than are specified in the questions but you should
answer questions based on the number of iterations that are specified. You may, of course, like
to check what happens when much larger numbers of iterations are used.

1 Introduction

There are many numerical methods for finding the least value of a function of N variables,
f(x1, x2, x3, . . .) = f(x), say, given that the first derivatives

gi =
∂f

∂xi
, i = 1, 2, . . . N , (1)

can be calculated. Most of the methods are iterative and each iteration reduces the value of
f(x) by searching along a descent direction in the space of the variables in the following way.

The iteration begins with a starting point x0, and at this point the gradient vector g is calcu-
lated. Then a search direction, s, say, is chosen, that satisfies the condition g · s < 0 (the dot
denotes a scalar product). It follows that if we move from x0 in the direction of s, then the
value of f(x) becomes smaller initially. In other words the function of one variable

ϕ (λ) = f (x0 + λs) (2)

satisfies the condition ϕ′(0) < 0 which is equivalent to g · s < 0. The next stage is to consider
the function ϕ (λ), and choose a value of λ, λ∗ say, that satisfies the inequality

f (x0 + λ∗s) < f(x0) . (3)

Usually λ∗ will be chosen * to minimise ϕ (λ). The vector x0 is replaced by x1 = x0 + λ∗s and
another iteration is begun.

The project is to investigate three well-known algorithms (Steepest Descents, the Conjugate
Gradient algorithm, and the DFP algorithm) by applying them to two functions. Using x for
x1, y for x2, etc., consider the “bedpan function”

x+ y +
x2

4
− y2 + (y2 − x

2
)2 , (4)

*In your program for this project, you should allow for manual input of estimates for λ∗, based on plots of
ϕ (λ). To speed up longer runs you will probably wish also to use MATLAB routines or other automated search
algorithms to minimise ϕ (λ), but this is not required. In either case, the values of λ∗ used should appear in the
hard copy of results.

July 2025/Part II/7.3 Page 1 of 4 ⃝c University of Cambridge



and the following function, which has similar properties to the Rosenbrock function,

(1− x)2 + 80(y − x2)2 . (5)

In addition the following quadratic function of three variables will be used to demonstrate some
properties of the DFP algorithm:

0.4x2 + 0.2y2 + z2 + xz . (6)

2 Steepest Descents

The Steepest Descents method simply uses the search direction s = −g. Write a program
to implement the algorithm as described above. Use a simple x–y plot of ϕ (λ) to help you
determine λ∗ at each stage (you need never determine λ∗ to more than 2 significant figures). At
each stage after the first, arrange for your program to display the current value of f(x) and the
decrease achieved over the last step. Also arrange for a plot of the iteration points x0, x1, x2,
etc., (a sequence of line segments will illustrate the methods well). The iteration point plot may
be built up as the calculation proceeds, or you can store the data and produce it on command
from your programme at a point of your choosing.

[N.B. A well-implemented fully automatic algorithm for general use will need to have checks
for special cases and exceptions built into it. For example, if a point xn is encountered for
which g ≈ 0 then a stationary point has been found and the process should quit. Likewise, if
the iteration points are not changing significantly a fully automatic algorithm ought to quit.
You may find it helpful to include such features in your program. If you wish to proceed semi-
automatically, with λ∗ being decided by eye from the plot at each stage, there is no need to
include the special checks in your code.]

Question 1 Obtain contour plots and/or surface plots of functions (4) and (5) (this
should be fairly straightforward to do using MATLAB).

Work out analytically where they have minima and find their minimum values. Suitable
axis intervals are −1.5 ⩽ x, y ⩽ 1.5.

Question 2 Using function (4) and starting from (−1.0,−1.3), run the Steepest De-
scents method for 10 iterations. Produce a plot of the progress of the iteration. On the
basis of your numerical results (i.e., imagine that you do not know the analytical an-
swer), estimate the minimum value of the function at the point to which your iteration is
converging, and estimate intervals in which the co-ordinates of the minimum lie. What
general statement can you make about the precision with which the minimum value itself
can be found, compared to the precision with which the minimum point is known? What
property of the function being minimised gives rise to this effect?

Question 3 Using function (5) and starting from (0.676, 0.443), run the Steepest De-
scents method for 9–15 iterations, and produce a plot of the progress of the iteration. To
what point do you think the iteration will eventually converge? Comment on the rate of
convergence. How sensitive is the iteration path to variations in the choice of λ∗ at each
stage? Comment on the circumstances that can make steepest descents inefficient.

July 2025/Part II/7.3 Page 2 of 4 ⃝c University of Cambridge



3 Conjugate Gradients

The conjugate gradients algorithm uses steepest descents for its first step and then adjusts the
search direction in an attempt to overcome the problems of steepest descents alone. Let x0,
x1 be two successive points where x1 has been obtained using steepest descents from x0, and
let g0, g1 be the corresponding gradients (the initial search direction is s0 = −g0). Take the
second search direction as

s1 = −g1 + β s0 = −g1 − β g0 where β =
g1 · g1
g0 · g0

. (7)

If f(x) is a quadratic function of N variables then the choice of directions may be continued up
to the N th search direction to give the N conjugate directions

sk = −gk + β sk−1 where β =
gk · gk

gk−1 · gk−1
.

In this case, if all the values of λ∗ had been chosen to minimise the ϕ (λ) exactly at each stage,
the algorithm would have converged. In practice of course f(x) may not be quadratic and the
values λ∗ may not be chosen exactly, and in this case it is usual in practice to restart the method
after N steps. When N = 2, as it is for functions (4) and (5), this implies that every other step
is a steepest descent.

Write a program to implement the conjugate gradients algorithm, with the same features as used
for the steepest descents method, but with the search direction determined as just described.

Question 4 For the function (4), repeat Q2 using the conjugate gradients algorithm,
and compare results.

Question 5 For the function (5), repeat Q3 using the conjugate gradients algorithm,
and compare results.

Does the conjugate gradients algorithm offer much of an improvement over steepest descents?

4 DFP Algorithm

The Taylor Series expansion of any smooth function f(x) may be written

f(a+∆x) ∼= f(a) + g · (∆x) + 1
2(∆x)TH−1(∆x) + · · ·

where the gradient vector g is evaluated at x = a and H−1 ≡ G is the Hessian matrix, i.e., the
matrix of second derivatives

Gij =
∂2f

∂xi ∂xj
.

Finding a point where g vanishes is therefore similar to the Newton–Raphson method for a
system of equations, and ifH were known and f(x) were a quadratic function, the point could be
found in a single step. However the matrix H is not available initially unless second derivatives
are calculated; this is not always easy and in any case can be time-consuming, especially for
large N . Therefore we now study a very successful technique that extends the steepest descent
method by forming a suitable H-matrix as the calculation proceeds. It is known as the DFP
algorithm and is one of the class of “variable metric methods”. It can be shown that H−1

converges to the Hessian (you are not required to prove this).

July 2025/Part II/7.3 Page 3 of 4 ⃝c University of Cambridge



The DFP algorithm works as follows. The search direction is taken as s = −Hg, where H is
taken initially as the identity matrix. At each stage ϕ (λ) is minimised by choosing a value λ∗

as before, but then H is modified by replacing it with

H∗ = H− HppTH

pTHp
+

qqT

pTq
, (8)

where p and q are column vectors giving the changes in g and x respectively during the step,
that is

p = g (x0 + λ∗s)− g (x0) , q = λ∗s (9)

(Note: H∗p = q which is useful when checking your program.)

Write a program to implement the DFP algorithm, with the same features as used for the
two preceding programs, but with the search direction determined as just described. Include
provision to print out H.

Question 6 A property of the DFP algorithm is that it calculates the least value of a
quadratic function in at most N iterations for any initial choice of x0 if on each iteration
the value of λ∗ is calculated to minimise exactly the function ϕ (λ). Apply the DFP
algorithm to (6) for three iterations from starting point x0 = (1, 1, 1) using the sequence
of values

λ∗ = 0.3942, 2.5522, 4.2202.

There is no need to verify these values to this precision, but your program will already
have facilities for checking that these values are appropriate. Investigate how sensitive
the result obtained after three iterations is to small changes in these values. Verify that
H does indeed tend to the inverse Hessian matrix. You may note that

 0.8 0 1
0 0.4 0
1 0 2

−1

=

 3.3333 0 −1.6667
0 2.5 0

−1.6667 0 1.3333

 (10)

Question 7 For the function (4), repeat Q2 using the DFP algorithm. Examine H
and compare with the true value.

Question 8 For the function (5), repeat Q3 using the DFP algorithm. Examine H
and compare with the true value.

Question 9 Compare the performance of the three methods for these functions.

References

[1] Fletcher, R. and Powell, M.J.D. Rapidly convergent descent method for minimisation, Com-
puter Journal, 7 (1963).

[2] McKeown, J.J., Meegan, D., and Sprevak, D. An Introduction to Unconstrained Optimi-
sation - A Computer Illustrated Text, IOP Publishing (1990). Although references to the
computer programs (designed for BBC micro) are best ignored, the text is still relevant.

July 2025/Part II/7.3 Page 4 of 4 ⃝c University of Cambridge


