
5 Quantum Mechanics

5.2 Electron Scattering (7 units)

This project relies on knowledge of material from the course Applications of Quantum Mechan-
ics.

1 Introduction

Scattering theory can be used to compute what happens when a beam of electrons is fired
towards a target object. The electrons collide with the object and are scattered off in new
directions. The angular distribution of the outgoing electrons is described by a sum of contri-
butions, in which the simplest term corresponds to an isotropic distribution. If the energy of
the incoming electron is not too large, this isotropic contribution dominates the distribution.
This situation is called s-wave scattering.

2 Theory

The electrons are incident on a target that is located at the origin and is decribed by an isotropic
interaction potential U(r). The time-independent Schrodinger equation for the outgoing elec-
trons has a general solution

ψ(r, θ) =
∞∑
l=0

χ`(r)

r
P`(cos θ) (1)

where ψ is the wave-function, P` is the Legendre Polynomial of order `, and χ` satisfies

d2χ`
dr2

+

[
k2 − U(r)− `(`+ 1)

r2

]
χ` = 0 (2)

with boundary condition χ`(0) = 0. The constant k is determined by the energy E of the
incoming electrons, with E proportional to k2.

Suppose that the target has radius r0 and that U(r) = 0 for r > r0. Then for large r one has
asymptotically χ`(r) ≈ A` sin(kr − 1

2 lπ + δ`), where δ` is the (k-dependent) phase shift of the
`th partial wave. The total scattering cross-section σ is given by

σ =
4π

k2

∞∑
`=0

(2`+ 1) sin2 δ` . (3)

The s-wave contribution to (1) is the term with ` = 0. The associated (k-dependent) cross
section is therefore σ0 = (4π/k2) sin2 δ0. To characterise the low-energy behaviour, a useful
quantity is the scattering length a, which is defined by (1/a) = limk→0[−k cot δ0(k)].

For further information on this theory, see for example

1. L.I. Schiff, Quantum Mechanics, §19. Scattering by spherically symmetric potentials.

2. S. Gasiorowicz, Quantum Physics, Ch. 24. Collision theory.
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3 Computation

You will write a program to investigate numerically the relation between the phase shift δ0 and
k. We consider the potential

U(r) =

{
−U0

(
1− r

π

)3
r 6 π

0 r > π
. (4)

Programming Task: Numerically solve (2) for χ0(r) (i.e. the case ` = 0) taking χ0(0) =
0 and χ′

0(0) an arbitrary value. (You should verify that this arbitrary value only affects
the normalisation of the wavefunction.)

Question 1 Explain your choice of numerical method and discuss the accuracy of the
solutions you obtain.

Question 2 Investigate the solutions for χ0 as you vary k in the range 0 to 5 and U0

from 0 to 10. Discuss the dependence of the wavefunction on U0 for a few different values
of k. Your report should include a few plots to support your observations, which should
include the case U0 = 0.

Note: throughout this project, you should provide graphs that illustrate clearly the sim-
ilarities and differences between the various cases. Large numbers of graphs are very
unlikely to be effective in communicating this information.

Programming Task: Modify your program to calculate δ0, using the formula

tan δ0 =
χ0(r2) sin kr1 − χ0(r1) sin kr2

χ0(r1) cos kr2 − χ0(r2) cos kr1
(5)

where r1 and r2 are two r-values in r > π. (This formula can be derived from the
asymptotic expression for χ` given in the Theory section.) It is conventional that δ0
depends continuously on k and that δ0 → 0 as k → ∞, you should explain how you
ensured that your results are consistent with this convention.

Question 3 Explain how a poor choice of r1 and r2 in Equation (5) can lead to a large
error in δ0. How did you avoid this? Note also that Equation (5) has multiple solutions
for δ0: explain which solution you have taken.

Question 4 For a few values of U0, compute the phase shift and the cross-section as
functions of k, with 0 < k < 5. Plot graphs of these quantities. Take care to resolve the
behaviour near k = 0.

Question 5 For the results of Question 4, plot the phase shift δ0 as a function of U0,
for some small value(s) of k. Give a physical (quantum-mechanical) interpretation of the
observed behaviour.

Question 6 Still for the results of Question 4, plot the cross section σ as a function
of U0 (always for small k). How are the features of this curve (extrema, etc) related to
physical properties of the the scatterer?

Question 7 Using again the results of Question 6, determine (numerically) the scat-
tering length a from the small-k behaviour of δ0. Is the result consistent with your results
for the cross section σ in question 5?
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