
4 Dynamics

4.5 Euler’s Equations (8 units)

This project is self-contained, though material from the Part II(C) course Classical Dynamics
is relevant.

1 Introduction

The angular velocity with respect to principal axes of inertia in a rigid body is taken to be

ω = (ω1, ω2, ω3). (1)

If the principal moments of inertia are A, B, C with respect to these axes, then the angular
momentum is

h = (Aω1, Bω2, Cω3). (2)

These axes are fixed in the body and have angular velocity ω with respect to an inertial frame
instantaneously coincident with the principal axes. The rate of change of angular momentum
with respect to such an inertial frame is

dh

dt
+ ω ∧ h. (3)

In the case when there is no net moment of external forces acting on the body, the law “rate of
change of angular momentum = moment of external forces” gives:

dh

dt
+ ω ∧ h = 0. (4)

Expanding this equation into components gives:

Adω1
dt + (C −B)ω2ω3 = 0

B dω2
dt + (A− C)ω3ω1 = 0

C dω3
dt + (B −A)ω1ω2 = 0

 (5)

It can be shown analytically that these equations have two first integrals, which say that the
energy and the magnitude of the angular momentum remain constant, as follows:

1
2Aω

2
1 + 1

2Bω2
2 + 1

2Cω2
3 = E (6)

A2ω2
1 + B2ω2

2 + C2ω2
3 = H2 (7)

Since the moment of external forces is zero, we also know that the angular momentum vector
h is constant when measured in an inertial frame.

2 Project work

2.1 Program requirements

Write a program to solve Euler’s equations (5) numerically and plot the results. You should
use MATLAB’s 64-bit (8-byte) double-precision floating-point values or the equivalent in other
programming languages. Output from your program should include:
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1. Graphs of ω1(t), ω2(t) and ω3(t) against t;

2. 3-D phase space plots of ω1, ω2 and ω3. Choose the OX axis for ω1, etc.

Equations (6) and (7) can be used to check the accuracy of your numerical results by calculating
and displaying the values of these expressions at the beginning and end of runs.

The objective of the project is to investigate and classify all possible types of motion. The
following questions provide some guidelines for the investigation.

Question 1 Since A, B, C, ω1(0), ω2(0) and ω3(0) may all in principle take arbitrary
values, the parameter space to be explored may seem very large. If A, B and C take
distinct values, explain how the results from taking

A > B > C (8)

can be generalised. Briefly explain what happens if any two (or all three) of A, B, C are
equal. For given values of A/B and C/B, explain why we may take B = 1 without loss
of generality.

Show further that choosing E = 1 is equivalent to re-scaling the time variable t, and give
the scaling factor.

2.2 Results requirements

From this point on, take B = 1 and E = 1 and build these values into your program. Your
program should allow you to set and change the values of A/B and C/B. Assume that A/B > 1
and C/B < 1, and work with A = 1.4, B = 1 and C = 0.7 unless other values are suggested.
You may find it convenient to accept arbitrary input for ω1(0), ω2(0) and ω3(0) and then scale
the input values so that E = 1.

Question 2 Use your program to demonstrate that solutions are possible in which the
vector ω(t) rotates around the OX axis with small amplitude deviation from (

√
2/A, 0, 0)

(i.e., (1, 0, 0) before scaling), and that similar stable solutions exist near the OZ axis.
Include copies of your results.

Question 3 Approximate Euler’s Equations (5) by linearising them for the cases where
(i) ω1 ≈

√
2/A and ω2, ω3 are small, and (ii) ω3 ≈

√
2/C and ω1, ω2 are small. Describe

the analytic solutions. Are your solutions consistent with the results obtained for ques-
tion 2 above? Give analytic expressions for the period of the motion in each case and
compare with your results. (You need not compute the periods; an estimate by eye from
your graphs of ω vs t is sufficient.)

Question 4 Are your numerical results consistent with equations (6) and (7)? To
what extent are further checks on numerical accuracy needed?

Question 5 What solutions do you obtain if starting conditions are chosen so that
ω(0) lies very close to the OY axis? Describe the motion physically.

Question 6 Make a plausible case based on your computed results that there exists a
solution ω(t) which begins away from the OY axis but which tends towards the steady
(but unstable) solution parallel to the OY axis as t→∞. What happens if you attempt
to simulate such a solution numerically? What value must H take for such a solution?
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Question 7 Using the following scheme, classify all the possible qualitative types of
motion of the system assuming A, B and C take distinct values. Take the solution
discussed in question 6 as a type of its own, and use it to separate the remaining solutions
into two types. Describe the range of behaviour observable for each type. Explain clearly
how the solution discussed in question 6 divides the solution space into regions (can you
find the equations of the boundaries of these regions?) and how solutions behave physically
as the boundaries are approached.

Try different values of A/B and C/B. How does the choice of these parameters affect
your results?

Question 8 The rigid body is now subjected to slow friction via a retarding couple
−kω, where k is a very small parameter. How does this affect equations (5), (6) and (7)?
Alter your program to incorporate the couple and investigate a few types of solutions for
the original values of A, B and C. You may find it useful to consider 3D phase plots of a
suitably normalised ω(t), as well as your normal plots.

Question 9 Is your classification in question 7 still of any use or has it become irrele-
vant? Is there still a division of the solution space into regions?
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