
2 Waves

2.2 Dispersion (7 units)

This project assumes only the elementary properties of dispersive waves, covered in the Part II
Waves course (but the relevant material can be found in the references).

1 Introduction

This project illustrates the way in which a disturbance in a ‘dispersive-wave’ system can change
shape as it travels. In order to fix ideas we shall consider one-dimensional waves, depending
on a single spatial coordinate x and time t, which are modelled by a system of linear constant-
coefficient partial differential equations that is (i) second-order in time and (ii) time-reversible.
Such a system has single-Fourier-mode (aka ‘plane-harmonic-wave’) solutions proportional to

eikx∓iω(k)t (1)

for any real ‘[angular] wavenumber’ k, where the [angular] frequency’ ω is real and related to k
by a system-dependent ‘dispersion relation’. The waves are ‘dispersive’ if ω is not proportional
to k (and so ‘group velocity’ dω/dk and ‘phase velocity’ ω/k vary with k, and are unequal).
As an example, one-dimensional ‘capillary-gravity’ waves on the free surface of incompressible
fluid of uniform depth h have dispersion relation

ω2 =
(
gk + ρ−1γk3

)
tanh (kh) (2)

where g is gravitational acceleration, ρ the fluid density and γ the coefficient of surface tension.

If the disturbance is described by a function F (x, t), representing say the [non-dimensionalised]
vertical displacement of the fluid surface, the general solution for F will be a superposition of
all Fourier modes of the form (1):

F (x, t) =

∫ ∞
−∞

(
a+(k) eikx−iω(k)t + a−(k) eikx+iω(k)t

)
dk , (3)

where the amplitudes a+(k) and a−(k) are fixed by the initial conditions. For simplicity we
shall take these to be

F (x, 0) = exp

(
−x

2

σ2

)
cos (k0x) and

∂F

∂t
(x, 0) = 0 . (4)

where σ and k0 are constants.

Question 1 Show that (3) then becomes

F (x, t) =

∫ ∞
−∞

A(k) cos[ω(k)t] eikx dk , (5)

where A(k) is to be determined.

In order to plot the solution some method is needed for evaluating the Fourier integral (5).
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2 The Discrete Fourier Transform

The Fourier Transform Ĝ(k) of a function G(x) may be defined by∗

Ĝ(k) =
1

2π

∫ ∞
−∞

G(x) e−ikx dx , (6)

with inverse

G(x) =

∫ ∞
−∞

Ĝ(k) eikxdk . (7)

The integral (7) can be approximated by the discretisation

∆k

N/2∑
n=−N/2+1

Ĝnein∆kx , Ĝn = Ĝ(n∆k) (8)

provided that ∆k is small enough to resolve the variation of the integrand with k, and that
Ĝ(k) is only significant for |k| < 1

2N∆k. With ∆k = 2π/L and ∆x = L/N , this approximates
G(m∆x) by

gm ≡
2π

L

N/2∑
n=−N/2+1

Ĝne2πimn/N for −N/2 + 1 6 m 6 N/2 (9)

[note that gm is periodic in m with period N , and cannot be expected to give a useful approx-
imation to G(m∆x) for |m| > N/2, i.e. for |x| > L/2, since the eikx-factor in the integrand
would be chronically under-resolved].

(9) is the exact inverse of

Ĝn =
L

2πN

N/2∑
m=−N/2+1

gme−2πimn/N for −N/2 + 1 6 n 6 N/2 ; (10)

the right-hand side is a discretisation of the integral (6) with k = n∆k, but that will not
be required in this project. The so-called Discrete Fourier Transform (10) and its inverse (9)
converge to the Fourier Transform (6) and its inverse (7) in the double limit L→∞, N/L→∞.

3 The Fast Fourier Transform

The Fast Fourier Transform (FFT) technique is a quick method of evaluating sums of the form

λm =

N−1∑
n=0

µn (ζN )smn , m = 0, . . . , N − 1 , ζN = e2πi/N , s = ±1 (11)

where the µn are a known sequence, and N is a product of small primes, preferably a power
of 2. A brief outline of the FFT is given in the appendix for reference, but it is not necessary
to understand the details of the algorithm in order to complete the project – indeed, you are
strongly advised to use a black-box FFT procedure such as Matlab’s fft/ifft. Note that since

(ζN )smn = (ζN )s(m±N)n = (ζN )sm(n±N) (12)

∗There are various conventions regarding the sign of the exponent and the placement of the 2π-factor.
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the sums in (9) and (10) can be converted to the form (11) by repositioning part of the series
(and Matlab arrays are indexed from 1 to N rather than 0 to N − 1). Similar considerations
also apply to available routines in other languages, and you may also need to take special care
regarding sign conventions and scaling.

Programming Task: Write a program to compute a DFT approximation to F (x, t).

4 No Dispersion

Question 2

In the limit of ‘shallow water’ (|k|h� 1⇒ tanh (kh) ≈ kh) and negligible surface tension
(ρ−1γ|k|3 � g|k|), the dispersion relation (2) can be approximated by the ‘dispersionless’

ω2 = c2
0k

2 (13)

with c0 =
√
gh. The integral (5) can then be evaluated analytically.

Use this to test the program for t up to 10 s, taking σ = 0.5 m, k0 = 0 m−1 and c0 = 1 m s−1

[so h ≈ 0.1 m if g = 9.81 m s−2]. Choose appropriate values for the parameters L and N
so that your plots are correct to ‘graphical accuracy’; present evidence of this accuracy in
your write-up. Comment on your results [e.g. on the appropriateness of the ‘shallow-water’
approximation for these parameter values].

5 Gravity Waves

The ‘deep-water’ (|k|h � 1 ⇒ tanh (kh) ≈ sign(k)) and negligible-surface-tension limit of the
dispersion relation (2) is

ω2 = g|k|. (14)

Question 3 Take g = 9.81 m s−2 and in the first instance use initial condition (4) with
σ = 1 m, k0 = 0 m−1.

• For t = 2 s investigate the effects of changing the values of L and N (maybe start
with L = 32 m and N = 32). Report the results of this investigation in your write-
up, especially with regard to the errors in the solution, using both numerical values
and plots.

Note: The behaviour of the solution for large |x| can be understood asymptotically
by performing integrations-by-parts on (5), but is not of primary interest here [and
does not apply for waves on fluid of finite depth] the main concern should be locating
the crests and troughs with reasonable accuracy.

• Display graphical results to illustrate how the solution for this initial condition evolves
for t up to at least 6 s, giving justification for your choices of L and N . Do likewise
for the initial condition (4) with σ = 6 m and k0 = 1 m−1, for t up to at least 20 s.

Comment on the solutions, particularly in the light of group and phase velocity.
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6 Capillary Waves

Consider now the dispersion relation for ‘deep-water’ surface waves when surface-tension effects
dominate over gravitational:

ω2 = ρ−1γ|k|3 . (15)

Question 4 Perform similar calculations to those in Q3 for water with ρ = 103 kg m−3

and γ = 0.074 kg s−2, using the initial condition (4) with σ = 0.002 m, k0 = 0 m−1 and
with σ = 0.005 m, k0 = 1250 m−1, for t up to at least 0.1 s. Compare and contrast your
results with those in Q3. You will want to use different value(s) for L (and maybe N):
can the concept of group velocity help in choosing a suitable L for given time?

How much difference would it make to these results if the exact ‘deep-water’ dispersion
relation

ω2 = g|k|+ ρ−1γ|k|3 (16)

were used, with g = 9.81m s−2?
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Appendix: The Fast Fourier Transform

For simplicity restrict to the optimal case N = 2M . Then the DFT (11) can be split into its
even and odd terms

λm =

N/2−1∑
n′=0

µ2n′
(
ζN/2

)smn′

︸ ︷︷ ︸
λEm

+ (ζN )sm
N/2−1∑
n′=0

µ2n′+1

(
ζN/2

)smn′

︸ ︷︷ ︸
λOm

(17)

and since λEm and λOm are periodic in m with period N/2, and (ζN )sN/2 = −1,

λm+N/2 = λEm − (ζN )sm λOm . (18)

Thus if the half-length transforms λEm, λOm are known for 0 6 m 6 N/2 − 1, the λm for
0 6 m 6 N − 1 can be evaluated at a ‘cost’ of computing 1

2N products [additions require
relatively little computational effort]. The process can be performed recursively M times,
giving a decomposition in terms of N transforms of length one – which are just the original µn
(0 6 n 6 N − 1).

To execute an FFT, start with these length-one transforms; at the k-th stage, k = 1, 2, . . . , M ,
assemble 2M−k transform of length 2k from transforms of length 2k−1, at a ‘cost’ of 2M−1 = 1

2N
products. The complete DFT is formed after M stages, i.e. after 1

2N log2N products, as opposed
to N2 products in naive matrix multiplication – so for N = 1024 = 210 the ‘cost’ is 5 × 103

products as opposed to 106 products!

For more details, see for example Press et al., Numerical Recipes, CUP.
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