2 Waves

2.2 Dispersion

This project assumes only the elementary properties of dispersive waves, covered in the Part II Waves course (but the relevant material can be found in the references).

1 Introduction

This project illustrates the way in which a disturbance in a 'dispersive-wave' system can change shape as it travels. In order to fix ideas we shall consider one-dimensional waves, depending on a single spatial coordinate x and time t, which are modelled by a system of linear constantcoefficient partial differential equations that is (i) second-order in time and (ii) time-reversible. Such a system has single-Fourier-mode (aka 'plane-harmonic-wave') solutions proportional to

$$
\begin{equation*}
\mathrm{e}^{i k x \mp i \omega(k) t} \tag{1}
\end{equation*}
$$

for any real '[angular] wavenumber' k, where the [angular] frequency' ω is real and related to k by a system-dependent 'dispersion relation'. The waves are 'dispersive' if ω is not proportional to k (and so 'group velocity' $d \omega / d k$ and 'phase velocity' ω / k vary with k, and are unequal). As an example, one-dimensional 'capillary-gravity' waves on the free surface of incompressible fluid of uniform depth h have dispersion relation

$$
\begin{equation*}
\omega^{2}=\left(g k+\rho^{-1} \gamma k^{3}\right) \tanh (k h) \tag{2}
\end{equation*}
$$

where g is gravitational acceleration, ρ the fluid density and γ the coefficient of surface tension. If the disturbance is described by a function $F(x, t)$, representing say the [non-dimensionalised] vertical displacement of the fluid surface, the general solution for F will be a superposition of all Fourier modes of the form (1):

$$
\begin{equation*}
F(x, t)=\int_{-\infty}^{\infty}\left(a_{+}(k) \mathrm{e}^{i k x-i \omega(k) t}+a_{-}(k) \mathrm{e}^{i k x+i \omega(k) t}\right) d k, \tag{3}
\end{equation*}
$$

where the amplitudes $a_{+}(k)$ and $a_{-}(k)$ are fixed by the initial conditions. For simplicity we shall take these to be

$$
\begin{equation*}
F(x, 0)=\exp \left(-\frac{x^{2}}{\sigma^{2}}\right) \cos \left(k_{0} x\right) \quad \text { and } \quad \frac{\partial F}{\partial t}(x, 0)=0 \tag{4}
\end{equation*}
$$

where σ and k_{0} are constants.
Question 1 Show that (3) then becomes

$$
\begin{equation*}
F(x, t)=\int_{-\infty}^{\infty} A(k) \cos [\omega(k) t] \mathrm{e}^{i k x} d k \tag{5}
\end{equation*}
$$

where $A(k)$ is to be determined.
In order to plot the solution some method is needed for evaluating the Fourier integral (5).

2 The Discrete Fourier Transform

The Fourier Transform $\hat{G}(k)$ of a function $G(x)$ may be defined by*

$$
\begin{equation*}
\hat{G}(k)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(x) \mathrm{e}^{-i k x} d x \tag{6}
\end{equation*}
$$

with inverse

$$
\begin{equation*}
G(x)=\int_{-\infty}^{\infty} \hat{G}(k) \mathrm{e}^{i k x} d k \tag{7}
\end{equation*}
$$

The integral (7) can be approximated by the discretisation

$$
\begin{equation*}
\Delta k \sum_{n=-N / 2+1}^{N / 2} \hat{G}_{n} \mathrm{e}^{i n \Delta k x}, \quad \hat{G}_{n}=\hat{G}(n \Delta k) \tag{8}
\end{equation*}
$$

provided that Δk is small enough to resolve the variation of the integrand with k, and that $\hat{G}(k)$ is only significant for $|k|<\frac{1}{2} N \Delta k$. With $\Delta k=2 \pi / L$ and $\Delta x=L / N$, this approximates $G(m \Delta x)$ by

$$
\begin{equation*}
g_{m} \equiv \frac{2 \pi}{L} \sum_{n=-N / 2+1}^{N / 2} \hat{G}_{n} \mathrm{e}^{2 \pi i m n / N} \quad \text { for }-N / 2+1 \leqslant m \leqslant N / 2 \tag{9}
\end{equation*}
$$

[note that g_{m} is periodic in m with period N, and cannot be expected to give a useful approximation to $G(m \Delta x)$ for $|m|>N / 2$, i.e. for $|x|>L / 2$, since the $\mathrm{e}^{i k x}$-factor in the integrand would be chronically under-resolved].
(9) is the exact inverse of

$$
\begin{equation*}
\hat{G}_{n}=\frac{L}{2 \pi N} \sum_{m=-N / 2+1}^{N / 2} g_{m} \mathrm{e}^{-2 \pi i m n / N} \text { for }-N / 2+1 \leqslant n \leqslant N / 2 \tag{10}
\end{equation*}
$$

the right-hand side is a discretisation of the integral (6) with $k=n \Delta k$, but that will not be required in this project. The so-called Discrete Fourier Transform (10) and its inverse (9) converge to the Fourier Transform (6) and its inverse (7) in the double limit $L \rightarrow \infty, N / L \rightarrow \infty$.

3 The Fast Fourier Transform

The Fast Fourier Transform (FFT) technique is a quick method of evaluating sums of the form

$$
\begin{equation*}
\lambda_{m}=\sum_{n=0}^{N-1} \mu_{n}\left(\zeta_{N}\right)^{s m n}, \quad m=0, \ldots, N-1, \quad \zeta_{N}=\mathrm{e}^{2 \pi i / N}, \quad s= \pm 1 \tag{11}
\end{equation*}
$$

where the μ_{n} are a known sequence, and N is a product of small primes, preferably a power of 2. A brief outline of the FFT is given in the appendix for reference, but it is not necessary to understand the details of the algorithm in order to complete the project - indeed, you are strongly advised to use a black-box FFT procedure such as Matlab's fft/ifft. Note that since

$$
\begin{equation*}
\left(\zeta_{N}\right)^{s m n}=\left(\zeta_{N}\right)^{s(m \pm N) n}=\left(\zeta_{N}\right)^{s m(n \pm N)} \tag{12}
\end{equation*}
$$

[^0]the sums in (9) and (10) can be converted to the form (11) by repositioning part of the series (and Matlab arrays are indexed from 1 to N rather than 0 to $N-1$). Similar considerations also apply to available routines in other languages, and you may also need to take special care regarding sign conventions and scaling.

Programming Task: Write a program to compute a DFT approximation to $F(x, t)$.

4 No Dispersion

Question 2

In the limit of 'shallow water' $(|k| h \ll 1 \Rightarrow \tanh (k h) \approx k h)$ and negligible surface tension $\left(\rho^{-1} \gamma|k|^{3} \ll g|k|\right)$, the dispersion relation (2) can be approximated by the 'dispersionless'

$$
\begin{equation*}
\omega^{2}=c_{0}^{2} k^{2} \tag{13}
\end{equation*}
$$

with $c_{0}=\sqrt{g h}$. The integral (5) can then be evaluated analytically.
Use this to test the program for t up to 10 s , taking $\sigma=0.5 \mathrm{~m}, k_{0}=0 \mathrm{~m}^{-1}$ and $c_{0}=1 \mathrm{~m} \mathrm{~s}^{-1}$ [so $h \approx 0.1 \mathrm{~m}$ if $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$]. Choose appropriate values for the parameters L and N so that your plots are correct to 'graphical accuracy'; present evidence of this accuracy in your write-up. Comment on your results [e.g. on the appropriateness of the 'shallow-water' approximation for these parameter values].

5 Gravity Waves

The 'deep-water' $(|k| h \gg 1 \Rightarrow \tanh (k h) \approx \operatorname{sign}(k))$ and negligible-surface-tension limit of the dispersion relation (2) is

$$
\begin{equation*}
\omega^{2}=g|k| \tag{14}
\end{equation*}
$$

Question 3 Take $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$ and in the first instance use initial condition (4) with $\sigma=1 \mathrm{~m}, k_{0}=0 \mathrm{~m}^{-1}$.

- For $t=2 \mathrm{~s}$ investigate the effects of changing the values of L and N (maybe start with $L=32 \mathrm{~m}$ and $N=32$). Report the results of this investigation in your writeup, especially with regard to the errors in the solution, using both numerical values and plots.
Note: The behaviour of the solution for large $|x|$ can be understood asymptotically by performing integrations-by-parts on (5), but is not of primary interest here [and does not apply for waves on fluid of finite depth] the main concern should be locating the crests and troughs with reasonable accuracy.
- Display graphical results to illustrate how the solution for this initial condition evolves for t up to at least 6 s , giving justification for your choices of L and N. Do likewise for the initial condition (4) with $\sigma=6 \mathrm{~m}$ and $k_{0}=1 \mathrm{~m}^{-1}$, for $t \mathrm{up}$ to at least 20 s . Comment on the solutions, particularly in the light of group and phase velocity.

6 Capillary Waves

Consider now the dispersion relation for 'deep-water' surface waves when surface-tension effects dominate over gravitational:

$$
\begin{equation*}
\omega^{2}=\rho^{-1} \gamma|k|^{3} \tag{15}
\end{equation*}
$$

Question 4 Perform similar calculations to those in Q3 for water with $\rho=10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ and $\gamma=0.074 \mathrm{~kg} \mathrm{~s}^{-2}$, using the initial condition (4) with $\sigma=0.002 \mathrm{~m}, k_{0}=0 \mathrm{~m}^{-1}$ and with $\sigma=0.005 \mathrm{~m}, k_{0}=1250 \mathrm{~m}^{-1}$, for t up to at least 0.1 s . Compare and contrast your results with those in Q3. You will want to use different value(s) for L (and maybe N): can the concept of group velocity help in choosing a suitable L for given time?

How much difference would it make to these results if the exact 'deep-water' dispersion relation

$$
\begin{equation*}
\omega^{2}=g|k|+\rho^{-1} \gamma|k|^{3} \tag{16}
\end{equation*}
$$

were used, with $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$?

References

Billingham, J. \& King, A. C., Wave Motion: Theory and Applications, CUP.
Lighthill, M. J., Waves in Fluids, CUP.
Whitham, G. B., Linear and Nonlinear Waves, Wiley.

Appendix: The Fast Fourier Transform

For simplicity restrict to the optimal case $N=2^{M}$. Then the DFT (11) can be split into its even and odd terms

$$
\begin{equation*}
\lambda_{m}=\underbrace{\sum_{n^{\prime}=0}^{N / 2-1} \mu_{2 n^{\prime}}\left(\zeta_{N / 2}\right)^{s m n^{\prime}}}_{\lambda_{m}^{E}}+\left(\zeta_{N}\right)^{s m} \underbrace{\sum_{n^{\prime}=0}^{N / 2-1} \mu_{2 n^{\prime}+1}\left(\zeta_{N / 2}\right)^{s m n^{\prime}}}_{\lambda_{m}^{O}} \tag{17}
\end{equation*}
$$

and since λ_{m}^{E} and λ_{m}^{O} are periodic in m with period $N / 2$, and $\left(\zeta_{N}\right)^{s N / 2}=-1$,

$$
\begin{equation*}
\lambda_{m+N / 2}=\lambda_{m}^{E}-\left(\zeta_{N}\right)^{s m} \lambda_{m}^{O} \tag{18}
\end{equation*}
$$

Thus if the half-length transforms $\lambda_{m}^{E}, \lambda_{m}^{O}$ are known for $0 \leqslant m \leqslant N / 2-1$, the λ_{m} for $0 \leqslant m \leqslant N-1$ can be evaluated at a 'cost' of computing $\frac{1}{2} N$ products [additions require relatively little computational effort]. The process can be performed recursively M times, giving a decomposition in terms of N transforms of length one - which are just the original μ_{n} $(0 \leqslant n \leqslant N-1)$.
To execute an FFT, start with these length-one transforms; at the k-th stage, $k=1,2, \ldots, M$, assemble 2^{M-k} transform of length 2^{k} from transforms of length 2^{k-1}, at a 'cost' of $2^{M-1}=\frac{1}{2} N$ products. The complete DFT is formed after M stages, i.e. after $\frac{1}{2} N \log _{2} N$ products, as opposed to N^{2} products in naive matrix multiplication - so for $N=1024=2^{10}$ the 'cost' is 5×10^{3} products as opposed to 10^{6} products!
For more details, see for example Press et al., Numerical Recipes, CUP.

[^0]: *There are various conventions regarding the sign of the exponent and the placement of the 2π-factor.

