
2 Waves

2.11 Fisher’s Equation for Population Dispersal

Problems

(9 units)

This project is essentially self-contained, and does not directly rely on any Part II lecture course.
However, attendance at a Part II Numerical Analysis course may be of some help, as may
attendance at the Part II course, Mathematical Biology.

Problem Formulation

An equation commonly encountered in population genetics is the one-dimensional diffusion
equation

∂ρ̂

∂t̂
= − ∂j

∂x̂
+ F (ρ̂). (1)

Here, x̂ denotes the spatial position, t̂ the time, ρ̂(x̂, t̂) the population density, j the population
flux, and F (ρ̂) is a local source term that describes the net rate of growth in the population
density.

A typical model for local population growth is given by the Pearl-Verhulst law

F (ρ̂) =

{
γρ̂(1− ρ̂/ρ̂s) 0 < ρ̂ < ρ̂s;

0 ρ̂ ⩽ 0 ρ̂ ⩾ ρ̂s.
(2)

This describes how a homogeneous population would grow, initially in an exponential manner,
until the population saturated at some density ρ̂s.

The flux j is the source of the diffusive behaviour and is given by,

j = −D
∂ρ̂

∂x̂
. (3)

If it is assumed that dispersal is due to random motion of individuals, then the diffusion coeffi-
cient D is constant and Fisher’s equation is obtained. However, as a remedy to overcrowding,
dispersal would be much more effective if the diffusion coefficient were population density-
dependent. In fact this has been observed in populations of small animals. Here we consider
the case D = D0ρ̂. With suitable non-dimensionalisation, we obtain the modified Fisher equa-
tion,

∂ρ

∂t
=

∂

∂x

(
ρ
∂ρ

∂x

)
+ ρ(1− ρ). (4)

A similar equation also arises in combustion dynamics.

Travelling wave solutions to this equation are the subject of project 2.11(a). A situation of
more practical interest is when the population density is known at some initial time, and the
subsequent evolution of the population is required. In projects 2.11(b) and 2.11(c) the expansion
of a population which is initially limited to a finite spatial range is considered. Thus solutions
to (4) are required subject to the following boundary conditions:

ρ(x, 0) =

{
ρ0(x), 0 ⩽ x ⩽ 1,

0, x > 1,
(5)

∂ρ

∂x
(0, t) = 0, t > 0,

ρ(x, t) → 0 as x → ∞.
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The form of the initial data leads us to consider a solution which is piecewise continuous with
a single jump across x = s(t), where conditions given by conservation laws must be satisfied.
The initial boundary-value problem can now be reformulated as follows:

0 ⩽ x ⩽ s(t) :

ρt = (ρρx)x + ρ(1− ρ),

ρ(x, 0) = ρ0(x),

ρx(0, t) = 0, (6)

ρ(s(t), t) = 0, ρx(s(t), t) = −ṡ(t).

s(t) < x :

ρ(x, t) ≡ 0

We refer to x = s(t) as the population front. From the initial population distribution (5) we
see that s(0) = 1.

In project 2.11(b), solutions of (4) are obtained for a particular initial distribution, and the
behaviour as t → ∞ is examined. In project 2.11(c), the code developed in project 2.11(b) is
used to examine the propagation of the population front.

Project 2.11(a): Travelling Wave Solutions

Here we consider solutions of (4) corresponding to steady expansion of a saturated population.

Question 1 By writing ρ(x, t) = ϕ(ξ), where ξ = x− ct−x0, show that ϕ is governed
by the nonlinear ODE,

ϕϕ′′ + (ϕ′)2 + cϕ′ + ϕ(1− ϕ) = 0 (7)

This is to be solved subject to the boundary conditions ϕ → 1 as ξ → −∞, ϕ → 0 as
ξ → ∞. General analytic solutions to (7) are not available and hence numerical solutions
are required. Such solutions could be obtained by shooting, but here it is preferable to
consider the asymptotic form of ϕ as ξ → −∞.

Question 2 By linearising (7) about ϕ = 1, show that as ξ → −∞,

ϕ ∼ 1−Aeλξ (8)

where A is an arbitrary constant, due to the translational invariance of (7), and λ is to be
determined as a function of c. This then provides suitable initial conditions for a forward
integration in ξ, ie.,

ϕ(ξ0) = 1− δ, ϕ′(ξ0) = −λδ, δ ≪ 1, (9)

for arbitrary ξ0.

Question 3 Obtain solutions for c = 2.25, 1.5, 1 and 0.75 using a suitable integration
method. These travelling wave solutions should be plotted on the same graph on axes
with the origin chosen such that ϕ(ξ = 0) = 1

2 (to within graphical accuracy).
Investigate the change in the wave profile as the wave speed c is decreased still further.
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Question 4 Show that

ϕ(ξ) =

{
1− e(ξ−ξ1)/

√
2, −∞ < ξ < ξ1;

0 ξ1 ⩽ ξ.
(10)

is an exact solution for a particular value of c to be determined. Comment on this solution,
and plot the waveform, with ξ1 chosen so that ϕ(ξ = 0) = 1

2 , as before.

Project 2.11(b): Large-Time Limit for the Initial Value Problem

Travelling wave solutions often give clues to the general behaviour of solutions of a nonlinear
wave equation. However, a more commonly encountered problem is when the population density
is known at some initial time, and the subsequent evolution of the population is required. In this
exercise we obtain solutions to (6). For numerical efficiency, renormalise the domain [0, s(t)], to
[0, 1], by introducing a new spatial coordinate y = x/s(t).

Question 5 Show that the evolution of ρ(y, t) is given by

∂ρ

∂t
=

1

2s2
∂2(ρ2)

∂y2
+

ṡy

s

∂ρ

∂y
+ ρ(1− ρ) (11)

ρy(0, t) = 0, ρ(1, t) = 0, ρy(1, t) = −sṡ. (12)

The equation (11) is to be solved subject to the boundary conditions (12), and initial conditions

ρ(y, 0) = ρ0(y). (13)

The final condition in (12) then determines the motion of the population front, with s(0) = 1.

Many methods exist for the numerical solution of parabolic equations. Here we consider a very
simple finite-difference method, where spatial derivatives are expressed using centred differences
and the solution is advanced in time using forward Euler. Writing tj = j(∆t), yn = n/N ,
(n = 0, 1, . . . , N), and using the notation ρj,n ≡ ρ(tj , yn), sj ≡ s(tj) we discretise (11) in the
form,

ρj+1,n − ρj,n
∆t

=
1

2s2j

ρ2j,n+1 − 2ρ2j,n + ρ2j,n−1

(∆y)2
+

ṡjyn
sj

ρj,n+1 − ρj,n−1

2(∆y)
+ ρj,n(1− ρj,n),

n = 1, 2, . . . , N − 1

ρj,0 = ρj,1,

ρj,N = 0,

sj+1 − sj
∆t

= ṡj = −s−1
j

ρj,N−2 − 4ρj,N−1

2∆y
,

where ∆y = 1/N . The expression for ṡj is obtained by using the final condition in (12) with a
three-point backward difference expression for ρy(y = 1).

There are several more sophisticated numerical methods of solving this system of equations, but
the method described is very simple to implement and proves sufficient for the current purposes.
The main drawback is that ∆t must be chosen very small to ensure numerical stability.

Question 6 Write your own program to solve (11) using the discretisation given above.
Obtain solutions for initial distribution ρ0(x) = 0.3ex(1 − x). Start with N = 100 and
∆t = 0.0001, but confirm that your code produces solutions that are independent of mesh-
size. Plot the solution as a function of the original spatial variable x at t = 0, 2, 4, 6, 8
and 10. Also plot the velocity of the wave front, ṡ(t), as a function of time. Compare the
large-time wave profile with the travelling wave solutions obtained in project 2.11(a).
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Project 2.11(c): Motion of the Wave Front

Using the same program written for project 2.11(b), we now investigate the early evolution of
the wave front for different classes of initial population distribution.

Consider three different initial profiles:

(i) ρ0(x) = A1e
x(1− x);

(ii) ρ0(x) = A2e
2x(1− x)2;

(iii) ρ0(x) = A3e
3x(1− x)3;

where Ai are numerical constants characterising the total initial population.

Question 7 Using the same mesh-size as above, obtain solutions for 0 < t ⩽ 0.5,
for initial distribution (i). Consider various values of the coefficient A1, in the range
0.1 ⩽ A1 ⩽ 0.9. For some values of A1 (which?) it may be necessary to reduce the time
step-size. Do not include plots of ρ(x, t) in your report, but concentrate on the motion of
the wave front. Write down a relationship between the initial velocity of the wave front
and the initial profile and show that this is in agreement with your numerical results.

Question 8 Calculate solutions for initial distribution (ii) with A2 = 0.2 for 0 < t ⩽ 1.
As before plot ṡ(t) as a function of time. Repeat these calculations with the spatial mesh-
size reduced to ∆y = 0.002 and then ∆y = 0.001, adjusting ∆t as necessary. Describe the
movement of the wave front. Repeat these calculations with A2 = 0.05, for 0 < t ⩽ 0.75.

Analysis suggests that for some classes of initial distributions, the population front is fixed until
a certain waiting time tw has elapsed, after which the population expands.

Question 9 For initial distributions which are locally quadratic in the vicinity of the
wavefront, it can be shown that the waiting time is given by

tw = log

(
1 +

1

6g2

)
(14)

where ρ0(x) ∼ g2 (1−x)2, as x → 1. Are the numerical results you have obtained in broad
agreement with this result? With reference to the shape and properties of the wavefront
and of the initial profile, discuss why such a phenomenon may occur in the evolution of a
population.

Question 10 Calculate the motion of the population front for initial distribution (iii)
with A3 = 0.2. As with case (ii), reduce the mesh-size. Compare your results with the
results of (ii).
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