2 Waves
2.10 Phase and Group Velocity (8 units)

Part IT Waves is helpful but not essential. The main prerequisite is an elementary knowledge of
the method of stationary phase, as taught in Part Il Waves and Part II Asymptotic Methods.
However, all the required material can be found in [1], or any of the books listed in the Asymp-
totic Methods schedule, or those by Billingham & King, Lighthill and Whitham in the Waves
schedule.

The Klein-Gordon equation,
u(z,t) : uy — cgum = —¢*u  with ¢o > 0 and ¢ > 0 constants , (1)

arises, for example, when looking for solutions of ‘the’ wave equation p; — C%VQp = 0* in the
form p = u(z,t) cos (mmy/a) cos (nmz/b) to describe the propagation of, say, sound waves in a
rectangular tube (‘waveguide’) occupying 0 < y < a, 0 < z < b. It is a simple example of a
wave equation which is both hyperbolic (there is an upper bound on the speed at which waves
can propagate) and dispersive (different Fourier components propagate at different speeds).

1 Initial-value problem

The goal of this part of the project is to solve (1) for z € (—o0, 00) with initial conditions

u(z,0) = f(z), w(x,0)=0, (2)

where f(x) is some specified (real) function with f(z) — 0 as |z| — oo, and which for simplicity
we shall assume to be even in z, in which case the solution u(x,t) will be even in z for all ¢.
Without loss of generality we set ¢g = 1. (Why?)

When g = 0, (1) reduces to ‘the’ one-dimensional wave equation familiar from IB Methods, and
the solution subject to (2) is

u(@,t) =3 [fle—t) + flz+1)] . (3)

Question 1 Show that for general ¢, (1)-(2) may be solved by a Fourier transform in

z to give
1 . S
u(z,t) = 4/ F(k)eFe =Rtk 4 complex conjugate (4)
™ —00
where -
fo = [ fwpe s (5)
and

Q(k) = v/¢*>+ k? (the ‘dispersion relation’). (6)
Note that if f(z) is even in z, f(k) is real (and even in k).

Sketch graphs' of ‘phase velocity’ Q(k)/k, and ‘group velocity’ (k) against k (on the
same axes). Give a physical interpretation of phase velocity.

*More properly, this should be called ‘the linear non-dispersive wave equation’, for there are many other
equations which describe wave propagation, the Klein-Gordon equation being one such.

T Whereas almost all graphs, including labels, annotations, etc., need to be computer-generated, this is one
of the relatively few cases where a scanned hand-drawing is acceptable for electronic submission.
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An alternative representation of the solution, which you are not asked to verify?, is

/2

u(z,t) =3 [flx—t)+ flz+1) qt/_ P J1(gtcos@) f (z+tsind)dé (7)

where Ji(z) is the Bessel function of the first kind [which could be computed by using the
MATLAB function besselj(1,x)]. Neither analytic form is particularly suitable for calculating
u(z,t) at a large number of points. Nevertheless, the Fourier representation is convenient in
allowing a simple approximation for large ¢ to be obtained by the method of stationary phase.

Question 2 Giving only a brief outline of the theory, show by the method of stationary
phase applied to the integral (4) that for ¢ > 0, in the limit ¢ — oo with V' = 2/t fixed
and |[V] <1

u(w, t) ~ 20" (ko)t] ? | F(ko)| cos | kox — Q(ko)t + arg f(ko) — (8)

where kq is specified by
V(ko)=V, (9)

and hence (assuming that f(k) is real)

g%t F < gz
(2ﬂ)1/2 (t2 — x2)3/4 V2 — 2

Explain how this provides a physical interpretation of group velocity.

u(x,t) ~

) cos (q 2 — 22 + %’R’) for |z| <t. (10)

Question 3  Write a program to solve (1)—(2) numerically as follows: take a uniform
grid with steplengths At in ¢ and Ax in z, and use the centred-difference approximation

u(z, t + At) — 2u(z, t) + u(z, t — At)
(At)?

Ut (33‘, t) =

+O«AN>, (11)

and a similar one for u,,, to generate the finite-difference scheme

» . - ' ) , . ,
(At)2 (Aaz)2 2

g is an approximation to u (iAx, jAt). (It is possible to use the more natural —qzug

on the right-hand side, but then a smaller At may be required for numerical stability: see
[2], p.588.) The solution at t-level j + 1 can thus be found from those at j and j — 1.
Clearly the first ¢-level needs special treatment: for the initial conditions (2) it is sufficient,
to the order of accuracy of the scheme, to set u;l = u}. (Why?) Further, since we are
restricting attention to solutions even in x, we need only solve in 0 < z < L = NAx
with the additional boundary condition u,(0,%) = 0, which can be implemented in the

finite-difference scheme by setting u’ ; = u]. Note that the u) are determined as part of

the solution, but the outer-boundary values uw}; need to be specified.

where u

#The derivation is indicated in [3]
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Run the program with

(1-2%)? |z| <1
ra={ 4 N (13)
for both ¢ = 0 and ¢ = 1, at least up to t = 50. The z-range should be sufficiently
large that the outer-boundary values ug\, can safely be set equal to zero. Experiment with
different values of Ax and At/Az, and comment on the accuracy and stability of the
numerical scheme; you may wish to compare with the exact solutions (3) and/or (7) at
selected points.

Find f(k) and plot its graph.

Plot the finite-difference solutions against x at various representative values of ¢, using
steplengths which are sufficiently small for graphical accuracy; for the case ¢ = 1, su-
perpose the stationary-phase approximation (10). Comment on the solutions, mentioning
similarities and differences between those for ¢ = 0 and ¢ = 1. What would you expect to
happen if ¢ were non-zero but very small?

2 Signalling Problem

Question 4 Modify your program to solve (1) for z > 0, ¢ > 0 with the initial
conditions
u(z,0) = uy(z,0) =0
and the boundary condition
u(0,t) = sin (wot) .

Physically, this describes a system which is undisturbed (u = 0) for ¢t < 0, but excited for
t > 0 by a time-harmonic forcing applied at x = 0. As before, there is no loss of generality
in taking ¢p = 1. (Why?)

For ¢ = 0, find the solution analytically, and use it as a check on the program.

Run the program with ¢ = 1 and wg = 0.9, 1.1 and 1.5, at least as far as t = 150, with
suitable steplengths and domain size (give brief justification for your choice). For each
case, present selected results to illustrate the key features. Comment on the solutions,
particularly in the light of phase and group velocities (see Question 1).
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