
23 Astrophysics

23.1 Generating a Consistent Self-Gravitating

System

(8 units)

The project is self-contained, though some knowledge of galactic structure may be advantageous.

Introduction: distribution functions of gravitating systems

A collection of N particles moving under their mutual gravitational attraction only, can be well
described by a continuous distribution function, f(x,v, t) d3x d3v, in the limits where N is large
and the particles have some positions xi and velocities vi, i ∈ {1, . . . , N}, at time t.

In the limit where two–body interactions can be neglected (N large enough), the flow in phase
space is said to be collisionless and the distribution function satisfies the Boltzmann equation:

df

dt
= 0. (1)

The dynamics of the system are governed by the Poisson equation,

∇2Φ(x) = 4πGρ(x), (2)

where the spatial density is ρ(x, t) =
∫
fd3v, Φ is the potential and G is the gravitational

constant.

Instructions

The aim of this project is to generate a discrete particle realisation of a spherical self-gravitating
system, given a potential–density pair describing the system, and compare the results for a finite
number of particles with those from continuous distributions. Here we will consider a specific
example of a spherical, isotropic distribution, the so-called γ distribution functions ([2]). The γ
functions have density profiles that are proportional to r−γ as r → 0. Here we consider γ = 0.

For a spherical, isotropic system, f can be expressed as a function of the specific energy, E,
only. For a particle i, Ei = 1

2v
2
i + Φ(ri), where ri = |xi| and vi = |vi|.

Question 1 The γ = 0 model is specified by the density profile

ρ(r) =
3Ma

4π(r + a)4
. (3)

The associated potential is determined by solving (2). Show that in this case

Φ(r) = −GM
2a

[
(r + a)2 − r2

(r + a)2

]
(4)

where M is the total mass.
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The enclosed mass within radius r is given by

M(r) =

∫ r

0
4πρ(r′)r′

2
dr′ = M

(
r

r + a

)3

.

Without loss of generality, we take a = 1, G = 1, and M(r →∞) = 1. Additionally define the
dimensionless binding energy ε = −E × (a/GM) and potential Ψ = −Φ× (a/GM).

Given ρ(Φ), it is straightforward to derive f(ε) with an Abel transform ([1], especially page
651). For this model

f(ε) =
3

4
√

2π3

∫ ε

0

(1− y)2(2y + 4y2)

y4
√
ε−Ψ

dΨ, (5)

where y(Ψ) =
√

1− 2Ψ.

Question 2 Verify that

f(ε) =
3

2π3

[
(3− 4ε)

√
2ε

1− 2ε
− 3 sinh−1

√
2ε

1− 2ε

]
. (6)

The incremental mass of particles, dM , with binding energies in the energy interval ε to ε+ dε
is given by the differential energy distribution

dM

dε
= f(ε)g(ε), (7)

where the density of states g(ε) ([2]) is given by

g(ε) = 8π2

[√
1− 2ε

3− 14ε− 8ε2

12ε2
− π +

1− 6ε+ 16ε2

(2ε)5/2
cos−1(−

√
1− 2ε)

]
. (8)

We wish to generate a realisation of our (γ = 0) distribution, using a Monte–Carlo acceptance–
rejection algorithm, as discussed below.

Programming Task: Generate an N = 5000 particle realisation of the distribution func-
tion above. You should truncate the distribution at some finite radius rT (recommended
values are 100 or 300) and renormalise your particle mass after generating the realisation
so that M = 1.

To do this you may find the following information useful: the maximum value of the
quantity r2v2 × f(ε) is 2.884 × 10−3; the maximum binding energy εmax is 1

2 ; and the
maximum speed of a particle vmax is

√
2εmax.

One way to approach this problem is to draw a pair of uniform random numbers with
rr ∈ [0, rT ) and vr ∈ [0, vmax). Then compare the quantity (rr/a)2(v2

r/(M/a))f(ε(rr, vr))
and its maximum value with another uniform random variable ξi and accept or reject your
draw from phase space accordingly.

Comparisons with analytic results

Question 3 Compare your numerical energy distribution dM(ε)/dε with the expected
analytic differential energy distribution.
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Question 4 Given your set of N particles, ri, vi, i = 1, . . . , N , generate a uni-
form three-dimensional realisation of your distribution in Cartesian co-ordinates. That is,
form the set {xi, yi, zi, vxi, vyi, vzi} by Monte-Carlo generation of a uniform distribution
of Cartesian components of ri, vi.

What is the actual mass of your N particles and how does it compare with the mass you
expected given the choice of rT ? You may want to try different values of rT to see how
M(rT ) varies with rT .

Question 5 Write a short routine that sorts the particles into radius bins and generates
a numerical density profile of your distribution. How does your actual density profile
compare with the expected analytic density profile? How does the density profile fit
change as you vary your bin size? (Hint: use a log–log plot.)

Question 6 Show that for this distribution the dispersion σ2(r) = 〈v2〉, where angle
brackets denote the average value over the particles, is given by

σ2(r) =
GM(a+ 6r)

10(r + a)2
. (9)

Compare your numerical dispersion with the analytic estimate. Calculate the angular
momentum L(r,∆r) =

∑
r<ri<r+∆rmixi×vi, in radial bins. Does your distribution have

any net angular momentum? Should it?

Question 7 The anisotropy is defined as β(r) = 1−〈v2
t 〉/2〈v2

r 〉, where 〈v2
t 〉 = 〈v2〉−〈v2

r 〉
and 〈v2

r 〉 = 〈(v · x/r)2〉. Plot the anisotropy as a function of radius. Is your distribution
anisotropic? Should it be?

Question 8 As a function of radius, what is the potential of your realisation and how
does it compare with the analytic potential estimated? How does the 〈v2〉 compare with
the local escape speed as a function of radius? How does varying the particle number
affect your results?
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