20 Probability

20.5 Percolation and the Invasion Process (9 units)

This project requires general knowledge of probability theory, at the level of IA Probability. It
also requires competency in programming.

1 Introduction

This project concerns certain probability models for bond percolation. The book by Grimmett
[1] is a good source to learn more about percolation.

We work on a connected graph G = (V| E), that is, a collection of nodes V' connected by edges
E. To each edge e € E, we assign, independently, a uniform random variable U, ~ U[0, 1]. We
decide on a value p € [0, 1]; we declare the edge e to be p-open if U, < p, and we declare it to
be p-closed otherwise.

When p is very small, very few edges are open; but as we increase p, there appear open clusters,
i.e. sets of nodes connected by open edges.

Percolation theory is the study of the geometry of the open clusters. In particular, important
questions are whether or not there exists an infinite cluster of open edges; and if one does exist,
how many infinite clusters there are. Clearly if p = 0 there is none and if p = 1 there is one
open cluster, namely the graph G itself.

2 The binary tree

Let V, the set of nodes of the graph, consist of finite strings, as follows: V contains the
empty string *’ (also known as Ewve), and the three strings ‘1’, ‘2" and ‘3’ (also known as Fuve’s
daughters), and also every string that is one of Eve’s daughters followed by a finite sequence
of ‘1’s and ‘2’s. Two nodes are connected by an edge if one can be obtained by appending one
digit to the other. For example, ‘3221 is connected to ‘322’ (its mother) and to ‘32211 and
‘32212’ (its two daughters). As before, each edge e is assigned a random variable U, ~ U|[0, 1].

(We can use this as a crude model to describe the propagation of a defective gene in a popula-
tion.)

Question 1 Let ¢, be the probability that Eve’s daughter ‘1’ is in an infinite open
cluster consisting of her own descendents. Show that

bp = 2p(1 — p)op + 0* (7 + 20p(1 — ¢p)).

It can be shown that ¢, is the maximal solution to this equation. Find ¢,. (One way to
obtain a ‘merit’ mark in this project, though not the only way, is to show that ¢, is the
maximal solution.)

Now let 6, be the probability that Eve is in an infinite open cluster. Find 6, and draw its
graph as a function of p.

Question 2 Show that, for p < %, there are almost surely no infinite clusters.
How many infinite clusters are there if % < p < 17 Justify your answer.
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This model exhibits a property which is general to percolation models: there exists a critical
probability p. such that for p < p. there is no infinite cluster and for p > p. we find at least one
infinite cluster.

The region p > p. is called the supercritical region. We can ask questions like: what is 0, the
probability that a node chosen arbitrarily lies in an infinite open cluster? (In Question 1, in
calculating 6, we could of course have designated any node to be Eve.)

The region p < p is called the subcritical region. We ask questions like: how likely are we to
observe an open cluster of size n? if there is an open cluster of size n, what shape is it?

Most of the interesting (unsolved) problems relate to the geometry of open clusters when p is
near p.. For example, there are many graphs (e.g. Z3) where it is not known (but strongly
conjectured) that there is no infinite p.-open cluster.

3 The square lattice

The square lattice in two dimensions L2 is a graph with V = Z? = {(m,n) : m,n € Z}. If the
distance function is

d((ka l)7 (m)n)) = |k - m‘ + ’l - n‘v
the edges of the graph are straight lines connecting nodes which are distance 1 apart.

Let us look at two techniques which will help us estimate the critical probability p. above which
there is an infinite cluster and below which there is none.

Lower bound

Let us start at the origin. Let o, be the number of self-avoiding paths (i.e., paths which traverse
each edge at most once) of length n leading away from the origin.

Question 3  Let A = limsup,,_, o/™. Show that A < 3. Show further that pe > AL

The actual value of A is an open problem.

Upper bound

The general behaviour of large clusters in the subcritical region p < p. is described in the
following result. Some notation first: We say x <> y if there exists an open connected path
between = and y. Define the open sphere S, to be

Sn={z €Z®:d(z,0) < n}.

The boundary 05,, consists of the nodes where d(x,0) = n. Let P,(0 <> 05,,) be the probability
that there exists a p-open path connecting the origin to some node in 95,. It can be shown
that, for p < p, there exists v, > 0 such that

P,(0 < 9S,) < e ™r for all n. (1)

The proof is beyond the scope of this project but can be found in [1, Sections 5.2 and 6.1].
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Armed with the above result, we aim to show that p. < % We do this as follows. Consider the
following subgraph G,, = (V,,, E,) of the square lattice.

Vo={(k1) : 0<k<n, 0<I<n—1}.

Let E, be all the edges in F connecting these nodes. We call {(k,l) € V,, : k = 0} the left
boundary, and {(k,l) € V;, : k = n} the right boundary. Let A be the event that some node in
the left boundary is connected to the right boundary via a path consisting of open edges.

Question 4 Show that Pyp(A) = % Hint. You may find it useful to consider the
dual graph G, which has nodes at

Vi={(k+i1-1):0<k<n-1,0<I<n},

and edges joining those nodes which are distance 1 apart, and whose edges are open or
closed depending on whether the edges of G are open or closed, in a manner which you
should specify.

Question 5 By constructing n events {4;} such that A = UA;, and using (1), prove
that p. < 3.

4 The Invasion Process

We can try and use computing power to estimate p. and 6,. Suppose that at time n = 0 you
are an invading force standing at the origin. We will call I, the set of nodes you have invaded
by time n. At time n 4+ 1 you invade another node by looking at the edge-boundary of your
territory and walking along the edge with the least value of U, attached to it. Formally, we
define

ol,={e€ E:1, & 77\ 1,}.

We use the notation z < y to mean that the edge e connects z and y. You walk from I,, along
the edge e, € 0I, which satisfies

Ue, = min{U; : f € 0I,},

so that I,,+1 is I, with the node at the other side of e, added. It can be shown that, almost
surely,
limsup Ue,, = pe. (2)
n—oo
(The proof is not hard, and is outlined at the end of this project.) The advantage of using
the sequence U,, to estimate p. is that the amount of memory required to store U., and to
calculate U, ,, is O(n). This is true whether we are working in L? or L.

Question 6 Implement the invasion process. Describe your algorithm.

Explain in particular why it only requires O(n) storage space to calculate the first n values
of U, , and what it does to ensure it never revisits a vertex.

Comment also on the complexity of the algorithm (the number of time steps needed).

Question 7 Use your program to estimate p. for L2, and explain your method. Es-
timate p, for L3 (which is defined like I.2, but using Z3 rather than Z?). Include in your

report any appropriate plots.
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It is desired to plot 0,, the density of the infinite cluster.

Question 8 Explain how the invasion process can be used to estimate 6, simultane-
ously for all p. Produce a plot of 8, against p for L2 by running the simulation for large n
several times (at least n = 5000, at least 500 times). For what values of p do you expect
your plot to be inaccurate? Why?

Appendix

Here is an outline of the proof of (2).

Let p > p.. Then there exists an infinite p-open cluster. Let T}, be the first time that the
invasion process hits the cluster (i.e. the first time that the vertex I, \ I1,—1 is in the infinite
p-open cluster). It can be shown that P(T}, < co) = 1. For all n > T),, there will always be an
edge in 91, with U, < p. It follows that

limsup U, < p.

n—oo
Since p > p. was arbitrary, limsup,,_,., Ue, < pe.

Now let p < p.. Suppose that with some probability a > 0,

limsup U, < p < pe.

n—00

Then we have (with a positive probability) an infinite cluster, with all but finitely many of its
edges p-open. It follows that (with a positive probability) there exists an infinite p-open cluster.
This contradicts the definition of p. as the critical probability.
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