
20 Probability

20.1 The Percolation Model (7 units)

This project does not presuppose attendance at any particular Part IB or Part II course.

1 Introduction

The percolation process is a standard model for a random medium. Such a process possesses
a singularity about which it is hard to prove much rigorous mathematics. The purpose of this
project is to explore such a singularity by numerical methods.

Take as (directed) graph G the first quadrant of the square lattice, with northerly and easterly
orientations. The vertices are the points x = (x1, x2) with x1, x2 ∈ {0, 1, 2, . . .}. We set
|x−y| = |x1−y1|+ |x2−y2| for two such x, y, and we join x to y by an edge 〈x, y〉 if |x−y| = 1;
this edge is directed upwards or rightwards as appropriate.

Let p satisfy 0 6 p 6 1. Each edge of G is designated open with probability p, different
edges having independent designations. Edges not designated open are called closed . Water
is supplied at the origin (0,0), and is allowed to flow along open edges in the directions given.
The problem is to study the geometry of the random set C containing all wetted points. In
particular, for what values of p is there strictly positive probability that C is infinite?

Writing ‘Pp’ for the probability function when p is the parameter given above, we define θ(p) =
Pp(|C| =∞). It may be shown that θ is a non-decreasing function, and the critical probability
is defined by

pc = sup{p : θ(p) = 0}.

It may be shown that 0 < pc < 1 (and better bounds are known), but the true value of pc is
unknown.

You are required to investigate this percolation numerically and to comment on various aspects
of the behaviour as described below. You are only expected to comment on results that you can
obtain using a reasonable amount of computer time, and sensible discussions of the limitations
of your methods will receive more credit than reports of excessive computations. You should,
however, give some thought to how you design your programs in order to achieve larger values
of n and m (defined below) than otherwise might be the case. You should comment on any
such special features of your programs in each section of your write-up.

2 Estimating θ(p)

One method for estimating θ(p) is as follows. Let Qn be the set of all points x = (x1, x2) with
x1 +x2 = n. Define the sequence C0, C1, C2, . . . of sets in the following inductive manner. First,
C0 = {(0, 0)}. Having found C0, C1, . . . , CK , we next define CK+1. For y = (y1, y2) ∈ QK+1,
we place y in CK+1 if and only if

either: y′ = (y1 − 1, y2) ∈ CK , and 〈y′, y〉 is open,
and/or: y′′ = (y1, y2 − 1) ∈ CK , and 〈y′′, y〉 is open.

(1)

By generating pseudo-random numbers, we may obtain a realization of the model, and an
associated sequence C0, C1, . . . ; for each such realization, define In to be 0 or 1 depending on
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whether Cn is empty or non-empty (respectively). If In(1), In(2), . . . , In(m) are the values of In
obtained in m independent realizations of the model, then

θ̂m,n(p) =
1

m

m∑
j=1

In(j)

may be used to estimate θn(p) = Pp(Cn 6= ∅). If n is sufficiently large, then θ̂m,n(p) may be
used to estimate θ(p) = limn→∞ θn(p).

Question 1 Give an explanation of why θ is non-decreasing in p, that is θ(p1) 6 θ(p2)
if p1 6 p2. Show also that θn(p) is decreasing in n. Give an estimate for the likely size of
the error θ̂m,n(p)− θn(p).

Question 2 Use the scheme described above (but see the notes below) to plot θ̂m,n(p)
for p ∈ [0.5, 0.75] for suitable n and m. How would you expect a graph of the true value
θ(p) to look like in relation to your graph?

3 Estimating pc

For fixed n and m an estimate of pc may be obtained by finding sup{p : θ̂m,n(p) = 0} . Denote
this estimate by p̂c = p̂c(m,n).

Question 3 Investigate the dependence of the estimate p̂c on the values of n and m.
For fixed m, describe how the estimate varies with n, and explain why this should be so.
How does the estimate vary with m for fixed n?

4 Subcritical behaviour

As above, let Cn be the set of points x = (x1, x2) which satisfy x ∈ C, x1 + x2 = n. When
p < pc, it may be shown that there is a constant γ > 0 (depending on p) for which Pp(Cn 6=
∅) 6 exp (−γn) and

1

n
logPp(Cn 6= ∅)→ −γ as n→∞.

Question 4 Estimate γ for p = 0.3, 0.4, 0.5 and 0.6, choosing appropriate values of n
and m for each case. Describe briefly how you chose n and m in each case and why you
did so. What behaviour do you expect as p ↑ pc?

5 Notes

(i) You may find it helpful to know that we believe pc ≈ 0.644 (though you may obtain a
different estimate).

(ii) At first sight, the scheme described above appears to require m realizations of the model
for each value of p. The following construction enables the same realizations to be used
for all values of p simultaneously . For each edge e, we choose a pseudo-random number
Re which is uniformly distributed on [0, 1]; different edges receive independent numbers.
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To each vertex x we assign a real number Z(x) defined as follows. First, Z(0) = 0, where
0 = (0, 0) is the origin. Having calculated Z(x) for x ∈ Q0∪Q1∪ . . .∪QK , we define Z(y)
for y ∈ QK+1 by

Z(y) = min{A′, A′′}

where
A′ = max{Z(y′), R〈y′,y〉}, A′′ = max{Z(y′′), R〈y′′,y〉} ,

where y′ and y′′ are given in (1). For given p, we may obtain a percolation realization as
follows. Call an edge e open if Re 6 p (an event having probability p). It may now be
seen that the set {y : Z(y) 6 p} has the same distribution as the set C of wetted points
given above. Much computational time may be saved by this device.

(iii) In practice, you may find that much of the computation time is spent in generating the
pseudo-random numbers. Time may be saved if they are not calculated to excessive
precision.

(iv) There are many interesting features of the super-critical behaviour (p > pc); in particular
the ‘shape’ of the infinite cluster when it exists. You are not asked to comment on these
features for this project.

(v) Further details about percolation in general may be found in: Percolation, G R Grimmett,
Springer, Berlin 1999. Further details about the particular percolation used in this project
(two-dimensional oriented bond percolation) can be found in, for example, R. Durrett,
The Annals of Probability 12:999-1040 (1984). It is not necessary (nor even particularly
desirable) to consult either of these references before attempting this project.
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