
1 Numerical Methods

1.1 Fourier Transforms of Bessel Functions (6 units)

This project assumes only material contained in Part IA and Part IB core courses. Other
than that, the project is self contained (although the Part II courses on Numerical Analysis,
Further Complex Methods and Asymptotic Methods may provide relevant but non-essential
background).

1 Introduction

Bessel’s equation of order n is the linear second-order equation

x2y′′ + xy′ + (x2 − n2)y = 0. (1)

Bessel functions of the first kind are solutions of (1) which are finite at x = 0. They are usually
written Jn(x).

Question 1 Investigate (1) for n = 0, 1, 4 using a Runge–Kutta (or similar) method
commencing the integration for a strictly positive value of x and a number of different
values of y and y′ of your choice. You may employ a library routine to solve (1); for
example if using Matlab you can employ the built-in ode45 routine. Integrate forwards
and backwards in x for a few such initial conditions, plotting y. Describe what you
observe, and illustrate any notable behaviour using appropriate plots.

Now try starting at x = 0. What happens, and why?

Question 2 The series solution for Jn(x) is

Jn(x) =
∞∑
r=0

(−1)r(12x)2r+n

r!(n+ r)!
. (2)

Write a program to sum a truncation of this series. Plot Jn(x) for n = 0, 1, 4 for a range
of x, e.g., for 0 6 x 6 100. Discuss your choice of truncation, and identify a range of x
for which this summation method is not accurate and explain why.

2 The Discrete Fourier Transform

The Fourier Transform F̂ (k) of a function F (x) may be defined as

F̂ (k) =

∫ +∞

−∞
F (x) exp(−2πikx) dx. (3)

If F (x) is a function which is only appreciably non-zero over a limited range of x, say 0 < x < X,
then it is possible to approximate F̂ (k) by means of finite sums. Suppose

Fr = F (r∆x) for r = 0, . . . , (N − 1) , where ∆x = X/N . (4)

An approximation to (3), known as the Discrete Fourier Transform (DFT), is

F̂s =
X

N

N−1∑
r=0

Fr ω
−rs
N , where ωN = e2πi/N . (5)

July 2023/Part II/1.1 Page 1 of 4 ©c University of Cambridge

The exact inverse of (5) is

Fr =
1

X

N−1∑
s=0

F̂s ωrsN . (6)

In order to deduce the relationship between the F̂s and F̂ (k), we first note from (5) that F̂s
represents values of the Fourier Transform spaced by the “wavenumber” interval ∆k, where

∆k = 1/X . (7)

Also F̂s is periodic in s with period N ; this corresponds to a “wavenumber” periodicity

K = N∆k = N/X = 1/∆x. (8)

Now it is to be expected that (5) will fail to approximate to (3) when the exponential function
oscillates significantly between sample points, that is when

|k| & 1

2∆x
= 1

2K. (9)

This, together with its periodicity, suggests that F̂s will be related to F̂ (k) by

F̂s ∼=

{
F̂ (s∆k) s = 0, . . . , 12N − 1,

F̂ (s∆k −K) s = 1
2N, . . . , N − 1.

(10)

Thus (6) is an approximation to

F (x) ∼=
∫ +K/2

−K/2
F̂ (k) exp(2πikx) dk. (11)

Because of the periodicity, the F̂s are usually thought of as a series with s = 0, . . . , N − 1, the
upper half being mentally re-positioned to correspond to negative “wavenumber”. Note that if
F (x) is real, and ∗ denotes a complex conjugate, then

F̂ (k) = F̂ ∗(−k). (12)

Question 3 Carefully discuss under what limiting conditions for both N and X (pos-
sibly after a suitable change in origin in x), does the DFT tend to the Fourier Transform?

3 The Fast Fourier Transform

The Fast Fourier Transform (FFT) method provides an efficient way to evaluate the DFT. This
method involves effcient evaluation of sums of the form

λs =

N−1∑
r=0

µr ω
σrs
N , s = 0, . . . , N − 1 , σ = ±1 , (13)

where N is an integer and the µr are a known sequence. The “fast” in FFT requires N to be
a power of a small prime, or combination of small primes; for simplicity we will assume that
N = 2M .

A brief outline of the FFT method is given in the Appendix. However, it is not necessary to
understand the implementation details, since you may use the Matlab one-dimensional Fast

July 2023/Part II/1.1 Page 2 of 4 ©c University of Cambridge

Fourier Transform function fft (which has inverse ifft), or an equivalent routine in any other
package. Alternatively you may write your own routine (however do not simply compute the
series (5) and (6) simplemindedly∗).

Note that Matlab’s fft function will work for any value of N although it works best when N
is a power of 2. Further details can be found on the fft Matlab help page.

4 Fourier Transforms of Bessel Functions

Question 4 Show analytically that if F (x) is a real even function and

I1 =

∫ X

0
F (x) exp(−2πikx) dx , I2 =

∫ +X

−X
F (x) exp(−2πikx) dx, (14a)

then

Im(I2) = 0 , Re(I2) = 2Re(I1). (14b)

With the definitions of §2 and §3, the FFT algorithm is ideally suited to approximating
I1 rather than I2. Hence if an approximation to I2 is desired, an approximation to I1
could first be calculated, and then the relations (14b) could be used. If this procedure for
calculating I2 is adopted, and FN 6= F0, explain why F0 should be replaced by 1

2(F0 +FN)
before calculating the DFT. What is the equivalent result to (14b) if F (x) is a real odd
function?

Question 5 Using a FFT code, and the results of question 4, find numerically the
Fourier Transform of Jn(x):

Ĵn(k) =

∫ +∞

−∞
Jn(x) exp (−2πikx) dx . (15)

Compare it with the theoretical formula

Ĵn(k) = 2(−i)n(1− 4π2k2)−1/2 Tn(2πk), (16)

where Tn(µ) is the Chebyshev polynomial of order n defined by

Tn(µ) =

{
cosnθ, µ = cos θ ;

0, |µ| > 1 .
(17)

To obtain Jn(x), you may either devise a method of your own (e.g., a combination of
questions 1 and 2), or you may use the Matlab procedure besselj.

You should obtain results for n = 0, 1, 2, 4, and 8. Choose sufficient points in the
transform to adequately resolve the functions.

Plots of Jn(x) for a few representative values of n should be included in your write-up.
You should also include plots of Ĵn and Ĵn on the same graph. Choose a range of k which
allows you to see the detailed behaviour in the interval −1 6 πk 6 1.

Comment on your results and discuss their accuracy. Discuss how the FFT deals with
any values of k which might be expected from the theoretical result to give problems. You

∗ You will not receive credit if you do not use the FFT method.

July 2023/Part II/1.1 Page 3 of 4 ©c University of Cambridge

should also describe the effects of varying N and X; in particular you should systemat-
ically examine how the numerical errors change as N and/or X are varied, e.g. in the
light of your answer to question 3.

You should also find a way to demonstrate from your computational results how the
execution time necessary to calculate the transform varies with N , and how this compares
with the theoretical prediction. To do this accurately you should use in-built timing
subroutines in Matlab, Python or similar. Hint: given the speed of current computers,
timing a single run of your program is likely to be dominated by start/end overheads.

Appendix: The Fast Fourier Transform

The Fast Fourier Transform (FFT) technique is a quick method of evaluating sums of the form

λr =

N−1∑
s=0

µs ω
σrs
N , r = 0, . . . , N − 1, σ = ±1, (18)

where N is an integer, µs is a known sequence and ωN = e2πi/N . The “fast” in FFT depends
on N being a power of a small prime, or combination of small primes; for simplicity we will
assume that N = 2M . Write

λr ←→ µs, r, s = 0, . . . , N − 1 (19)

to denote that (18) is satisfied. Introduce the half-length transforms

λEr ←→ µ2s

λOr ←→ µ2s+1

}
r, s = 0, . . . , 12N − 1; (20)

then it may be shown that

λr = λEr + ωσrN λ
O
r

λr+N/2 = λEr − ωσrN λOr

}
r = 0, . . . , 12N − 1. (21)

Hence if the half-length transforms are known, it costs 1
2N products to evaluate the λr.

To execute an FFT, start from N vectors of unit length (i.e., the original µs). At the sth stage,
s = 1, 2, . . . ,M , assemble 2M−s vectors of length 2s from vectors of length 2s−1 – this “costs”
2M−s × 1

2(2s) = 2M−1 = 1
2N products for each stage. The complete discrete Fourier transform

has been formed after M stages, i.e., after O(12N log2N) products. For N = 1024 = 210, say,
the cost is ≈ 5× 103 products, compared to ≈ 106 products in naive matrix multiplication.

A description and short history of the FFT are given in Chapter 12 of the book Numerical
Recipes by Press et al.

July 2023/Part II/1.1 Page 4 of 4 ©c University of Cambridge

