17 Combinatorics

17.7 Graph planarity (10 units)

This project is based on material found in the Part II course Graph Theory.

A planar graph is one which can be drawn in the plane without edge crossings. Kuratowski’s
theorem gives a theoretical characterisation of planar graphs. However, it does not provide
a practical algorithm for testing whether a graph is planar, and finding such an algorithm is
not easy. This project describes one such algorithm. The focus is on simplicity rather than
efficiency, and the process is broken into several separate steps. Nonetheless, the total amount
of coding required for this project is still comparatively large.

Planar graphs are sparse, so graphs in the project are specified by means of an edge list: this
is just a list of edges, each edge being a pair of vertices. We may assume that the vertices are
labelled by integers. Note that the edge list does not identify isolated vertices: these don’t affect
planarity and you might as well assume that the number n of vertices is the largest integer label.
It is often convenient to have an adjacency list, which is a collection of n lists, the j** list giving
the neighbours of vertex j. You will find it useful to write a routine to derive an adjacency list
from an edge list.

Even though a planarity testing algorithm will tell whether a graph is planar, it might not
supply a way to actually draw the graph in the plane. Finding such a drawing is a separate
problem, and we begin with that.

1 Graph drawing

A beautiful theorem of Tutte gives a way to draw a 3-connected planar graph G in the plane.
Let C be a cycle with exactly one bridge (as defined in the next section). If C' has k vertices,
place these at the corners of a convex k-gon. Place the remaining vertices so that each is at
the centroid of its neighbours: that is, if u has d neighbours placed at positions xi,...,x4 in
the plane, then u has position x = (1/d) Zle X;. Finding these positions requires solving a
system of linear equations. Tutte proved that, under the stated conditions, there is a unique
solution, and that, by adding straight line segments between adjacent vertices, we obtain a
planar drawing in which each face is a convex polygon.

Question 1 Write a program that, given a graph and a cycle C, draws the graph with
C' at the vertices of a regular polygon. (You need not check that G is 3-connected or that
C has one bridge.)

Give your output for each of the five Platonic solids, whose edge lists can be found at
http : //www.maths.cam.ac.uk/undergrad/catam/data/Platonic_z.txt, where z is one
of 4, 6, 8, 12 or 20 (representing the Tetrahedron, Cube, Octahedron, Dodecahedron and
Icosahedron respectively). In each case you can take the vertices of the outer face C' to
be those labelled 1,2,...,k for the appropriate k.

We define the graph Ky with vertex set {1,2} and single edge 1-2, and the graph P; with
vertex set {3,4,5,6,7} and edge set {3-4,4-5,5-6,6-7}. From these, we define the graph
Ky + P5 with vertex set {1,2,3,4,5,6,7}, and edge set consisting of all edges of Ko, all
edges of P5, and all possible edges between a vertex of Ky and a vertex of P5 (thus Ko+ Ps
is a ‘complete bipartite union’ of Ky and Pj). Draw the graph Ko + Ps, using 1,2,3 as
the outer face.

July 2024 /Part 11/17.7 Page 1 of 3 © University of Cambridge

2 Bridges and components

Nowadays, a bridge is usually defined to be the same as an isthmus, that is, an edge whose
removal increases the number of components. Tutte used the word quite differently but we keep
his terminology, though with a different meaning.

Given a graph G and a cycle C in it, a bridge of C is a non-empty set of edges defined as
follows: it is the edges of a component of G[V(G) \ V(C)], together with any edges joining
that component to C. A chord of C' is also defined to be a bridge of C, having a single edge.
Therefore the bridges partition E(G) \ E(C).

Notice that isolated vertices of G do not feature in any bridge. However, an isolated vertex of
G[V(G) \ V(C)] which is joined to C by some edges will give rise to a bridge consisting of just
those edges. Hence a bridge with one edge is either a chord of C, or it is an edge joining a
vertex of C' to a vertex of degree one outside C, or it is an edge joining two vertices of degree
one both outside C.

The wertices of attachment of a bridge are the vertices of C' which are end vertices of edges in
the bridge. So a bridge might have no vertices of attachment (if it is the edges of a component
of G[V(G) \ V(C)] not joined to C), or it might have one or more.

Note that bridges can meet each other, but only at vertices of attachment.

Question 2 Write a program to find the components of a graph. (For example, pick
a vertex, find its neighbours, then their neighbours, and so on.)

Write a further program to find the bridges of a given cycle C' in a graph, together with
their vertices of attachment.

3 Interleaving

Two bridges B’ and B” of the cycle C are said to interleave if there are four distinct vertices
a,b,c,d € V(C), appearing in that order on the cycle (but not necessarily adjacent), such
that a and c are vertices of attachment of B’, and b and d are vertices of attachment of B”.
Additionally, B’ and B” are also said to interleave if they both have exactly three vertices
of attachment, these three vertices being the same for B’ as for B”. Notice that this entire
definition is symmetric in B’, B”.

If C has ¢ bridges B, ..., By, then the interleave graph H has ¢ vertices hq,. .., hy, with h;h; €
E(H) if and only if B; and Bj interleave.
Question 3 Suppose G is a graph with a cycle C that has ¢ bridges B1, . .., By. Explain
why G is planar if and only if the following holds: each of the subgraphs with edges
E(C)UB;, 1 <i </, is planar, and the interleave graph H is bipartite.

Question 4 Write a program to construct the interleave graph from a cycle C and its
bridges. Write a program to test whether a graph is bipartite.

4 The core of a graph

Suppose G has a vertex v of degree one. We can remove the edge at v without affecting planarity.
Likewise if G has a vertex v of degree two, with edges uv and vw, we can remove these two

July 2024 /Part 11/17.7 Page 2 of 3 © University of Cambridge

edges, adding the edge uw if it is not already present. This does not affect planarity either.
Repeating such operations as much as possible, we arrive at the core G* of GG, in which each
vertex has degree zero or at least three. (Possibly G* has no edges.) The labels of the vertices
in G* can depend on the order in which the operations are done but, other than that, G* is
determined by G. Hence we need not worry about the order of the operations.

Question 5 Write a program to find the core G* of a graph G.

Question 6 Describe a procedure for finding a cycle in a graph of minimum degree at
least two.

Describe a procedure for finding a cycle with a chord in a graph of minimum degree at
least three.

Write a program to find a cycle with a chord in a non-empty core G*.

5 A planarity algorithm

Here is a recursive algorithm for testing whether a graph G is planar.

Find the core G* of G.

If G* is empty, G is planar.

Else find a cycle C' in G* with a chord e.

Find the bridges of C in G* and the interleave graph H.
If H is not bipartite then GG is not planar.

Else (G is planar if and only if G* —e is planar.

Question 7 Explain why this algorithm works correctly.

Question 8 Write a program to determine whether a graph is planar.

Test your program on various examples. You might use the graphs in Question 1, and the
same graphs with one or two edges removed or added.

Question 9 As a further test, write a program to build a random maximal planar
graph with n vertices, by starting with the empty graph, and testing each of the (g)
possible edges in a random order: if the addition of an edge maintains planarity, keep it
in the graph, but if it violates planarity, throw it away. For extra interest, your program
should tell you how many edges were added before the first violation.

How many edges should your graph have at the end?

Generate 30 random maximal planar graphs with 45 vertices. In each case, show how
many edges were added before the first violation.

Draw one of the graphs, using your program from Question 1.

Question 10 Estimate the complexity of the planarity algorithm from Question 8.

References

[1] Bollobas, B., Modern Graph Theory, Springer, 1998.

July 2024 /Part 11/17.7 Page 3 of 3 © University of Cambridge

	PROJECT 17.7 Graph planarity
	Graph drawing
	Bridges and components
	Interleaving
	The core of a graph
	A planarity algorithm

