
17 Combinatorics

17.3 Hamiltonian cycles (5 units)

This project is based on the material found in the Part II Graph Theory course.

In this project you will need to be able to generate graphs from G(n, p), the space of graphs with
n labelled vertices, edges appearing independently and at random with probability p.

A Hamiltonian cycle in a graph is a cycle which contains every vertex.

Question 1 Describe a simple algorithm to check whether a graph has a Hamiltonian
cycle, and implement it. Test your program on a few particular graphs; and then use it
on a selection of graphs from G(n, p) with n up to 21 and p firstly varying from 0.1 to 0.9
and then varying from 0.1 lnn/n to 1.9 lnn/n. Tabulate your results, showing for each n
and p the number of graphs from your selection which had a Hamiltonian cycle.

Question 2 Estimate the theoretical running time of your algorithm as best you can.
Compare the answers for the worst case and an average case.

Question 3 Find a simple property possessed by many of your non-Hamiltonian
examples that is sufficient (though maybe not necessary) to force a graph to be non-
Hamiltonian. Why do you think the second range of values of p was chosen?

You will notice that your algorithm rapidly becomes prohibitively expensive as the order of the
graph increases. In this case an “approximation algorithm” can be useful. An approximation
algorithm for the Hamiltonian cycle problem would seek to make a very good attempt at finding
a cycle in a short space of time. If it succeeds, well and good. If it fails, there may have been a
cycle it missed, but it is hoped that the probability of this will be small.

Here is a simple algorithm to search for a Hamiltonian cycle. Construct a sequence of paths
P1, P2, . . . , where P1 is just a single vertex v0. Given a path Pj from v0 to vk, proceed as
follows:

1. If Pj has length n− 1 and v0vk ∈ E(G), output a Hamiltonian cycle;

2. if Pj has length less than n− 1 and vk is joined to a vertex not in Pj , extend the path Pj

to a path Pj+1. If there are several neighbours not in Pj , pick one of them at random;

3. otherwise construct a new path of the same length as Pj in this way: select a neighbour
vi of vk in Pj at random. Then Pj+1 is the path v0 . . . vi−1vivkvk−1 . . . vi+1.

Question 4 Implement this algorithm, and try it on your earlier examples. You should
set a stopping time T for the procedure so that, if it has constructed PT and still found no
cycle, it quits. What functions work well in practice (i.e. fairly reliably find a cycle but
aren’t too expensive)?

Question 5 In general, the stopping time T = T (n, p) should be a function of both
n and p. In the case that p is fixed and n is large, what do you think would be a good
choice of T? How do you think the running time might vary with p.

References

[1] Bollobas, B., Modern Graph Theory, Springer 1998.

July 2025/Part II/17.3 Page 1 of 1 ⃝c University of Cambridge


