
16 Algebra

16.5 Permutation Groups (7 units)

This project is self-contained, building on theory covered in the Part IA course Groups. Some
knowledge of the groups part of the Part IB course Groups, Rings and Modules would be useful.

1 Introduction

Suppose we are given a set of permutations of X = {1, . . . , n}. They generate a finite permu-
tation group G ⩽ Sn. The aim of this project is to replace the given set of generators of G
with another generating set for G which is of greater utility, hopefully allowing us to deal with
various questions. For programming purposes you do not need to go above n = 20 (although
you are welcome to if you so wish).

2 Permutations

A permutation π of X is a bijective function from X to X. If x is an element of X then the
image of x under π is written πx. If π1 and π2 are permutations then their product π1 ·π2 maps
x to π1(π2x). The set of all permutations of the set X = {1, . . . , n} is the symmetric group Sn.
If π is a permutation and y = πy then y is called a fixed point of π.

Question 1 Write procedures to compute the inverse π−1 of a permutation π and the
product π1π2 of two permutations π1 and π2. What is the complexity of your method for
computing inverses (as a function of n)?

3 Groups

Suppose the permutation group G is generated by permutations π1, . . . , πk. First we reduce
the number of generators with the Stripping Algorithm of Sims. Let A be an n × n array of
permutations which is initially empty.

Suppose we have already put the first l− 1 permutations into the array. If πl does not fix 1 and
the πl(1)th entry in the first row is still empty then put πl there. Suppose the πl(1)th entry is
the permutation g. Then modify πl to be g−1πl so the new πl fixes 1. Go to the second row.

If πl does not fix 2 and the πl(2)th entry in the second row is still empty then put πl there. If
the entry is g then modify πl to be g−1πl which hence fixes 1 and 2. Go on to the third row . . .

If we reach the last row then we must have produced the trivial permutation which can be
omitted from the generating set.

Once a permutation is placed in the array, or deemed to be the trivial permutation, we go on
to try to place the next permutation in the array.

Question 2 Show that the modified set of permutations generates the group G. Give
an upper bound for the size of the modified set of generators and for the number of
operations needed to complete the algorithm. (As a function of n and the size of the
original generating set, noting that, e.g., storing a permutation is O(n) operations.)

July 2025/Part II/16.5 Page 1 of 3 ⃝c University of Cambridge

Question 3 Write a procedure which computes the array of a permutation group given
by a set of generators. It should receive a set of permutations as input and give a set
of permutations as output, which generate the same group and are in the above reduced
form. (Here, as elsewhere in this project, you should give some examples to demonstrate
that your program is working correctly.)

4 Orbit and Stabilizer

Let G be a permutation group of X. If α ∈ X then the set A = {β ∈ X | ∃g ∈ G, gα = β} is
called the orbit of α (under G). If β ∈ X is in the orbit of α then an element g ∈ G is called a
witness of this if gα = β. It is easy to see that β is in the orbit of α if and only if the orbit of β
is the same as the orbit of α. Hence different orbits are disjoint and the orbits form a partition
of X.

The stabilizer of an element α in X is Gα = {g ∈ G | gα = α}. It is a subgroup of G.

Question 4 Write down a bijection between the set of left cosets of Gα in G and the
orbit of α. State the orbit-stabilizer theorem.

Question 5 Write a procedure which computes the orbit with witnesses of a given
element under a permutation group G generated by a given set of permutations. It should
receive as input a set of permutations and an element α ∈ X and should return as a
output a list of elements forming the orbit of α, together with a witness in each case.
Briefly explain how your procedure works.

5 Schreier’s Theorem and the final algorithm

Suppose G is a permutation group of X, given as a set of generators Y , α is an element of X and
T is a complete set of left coset representatives of Gα in G. Let the surjective map φ : G → T
be defined via gα = φ(g)α.

Question 6 Let x be an element of Gα. Write x = yr . . . y1 with each yi an element
of Y . Let t1 be the element of T belonging to Gα. Let ti+1 = φ(yiti) for i = 1, 2, . . . , r.
Show that tr+1 = t1. Deduce that Gα is generated by the set of elements:

{φ(yt)−1 · y · t | y ∈ Y, t ∈ T}.

This is a special case of Schreier’s Theorem.

Question 7 Write a procedure which computes a generating set of a stabilizer of a
permutation group given as a set of generators. It should receive a set of permutations
and an element α as input and give a set of permutations as output which generate the
stabilizer. Use Question 5 to obtain T , then use Schreier’s Theorem and finally reduce
the set of generators with the Stripping Algorithm. Comment on the complexity of your
algorithm.

Question 8 Write a program which computes the order of a permutation group G
given with a set of generating permutations. The program should receive a set of permu-
tations as input and give a natural number as output which is the order of G. You should

July 2025/Part II/16.5 Page 2 of 3 ⃝c University of Cambridge

first reduce the number of generators with the Stripping Algorithm, and recursively find
a nontrivial orbit and use the previous question until you reach a subgroup of order 1.
Use the orbit-stabilizer theorem in the recursive part to find the order of G. You should
make a note of the group order and number of generators (before and after stripping) for
each of the subgroups computed. Give some brief output from your program.

What might happen if we forgot to use the Stripping Algorithm at every stage? (For
instance, say the input was two permutations of S20.)

Question 9 For the group Sn (throughout this question you may take n ⩾ 5), we con-
sider the probability Pn that a pair of elements g, h picked uniformly at random generates
Sn. In other words we have

Pn =
|{(g, h) ∈ Sn × Sn : ⟨g, h⟩ = Sn}|

|Sn|2
.

Why do you know from IA that Pn > 0? Give a straightforward argument to show that
there is k < 1 independent of n such that Pn ⩽ k. What is your value for k? What is the
value of Pn for very small n?

For each of a few moderate values of n, generate 100 or so random pairs of permutations.
Describe how you generate a random permutation. (To do this, you may assume you have
a random number generator which, with input an integer N from 1 to say 100, will output
an integer uniformly at random between 1 and N inclusive.)

Using your previous program, what sort of estimates do you obtain for Pn?

July 2025/Part II/16.5 Page 3 of 3 ⃝c University of Cambridge

