
15 Number Theory

15.8 Elliptic Curves (8 units)

Background material for this project is contained in the Part IB course, Groups, Rings and
Modules, and the Part II course Number Theory. The Part II course Algebraic Geometry may
be helpful but is not necessary.

For any field k, an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with coefficients a1, a2, a3, a4, a6 in k is said to define an elliptic curve E over k if the discrim-
inant ∆(E), a certain polynomial in the coefficients (see Appendix), is nonzero in the field k.
Sometimes the notation [a1, a2, a3, a4, a6] is used as a shorthand for the above elliptic curve.
Geometrically, the condition ∆ ̸= 0 ∈ k ensures that at any solution (x, y) of the equation,
written in the form f(x, y) = 0, there is a well-defined tangent line, meaning that ∂f/∂x and
∂f/∂y are not both 0 at the point (x, y). For any elliptic curve E, let E(k) denote the set of
solutions [x, y, z] in the projective plane P2(k) to the associated homogeneous equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

(Here P2(k) is the set of triples (x, y, z) of elements of the field k which are not all 0, modulo
the equivalence relation that (x, y, z) is equivalent to (cx, cy, cz) for c ̸= 0 in k.)

Question 1 Show that the set E(k) is in one-to-one correspondence with the set of
solutions of the original equation, taking z = 1, together with the one other point [0, 1, 0].

The fundamental fact about elliptic curves is that the set E(k) forms an abelian group in a
natural way. The sum of two points a, b ∈ E(k) is given by drawing the line through a and b,
which will intersect E ⊂ P2 in exactly one other point c. The point c will have coefficients in
k, and the group structure on E(k) is defined by saying that a+ b+ c = 0 ∈ E(k). (For a line
which is tangent to E at one point a and intersects E at one other point c, we interpret the
previous equation to mean that 2a+ c = 0 ∈ E(k), because we think of the line as intersecting
E with multiplicity 2 at the point a.) Also, the identity element 0 ∈ E(k) is the point [0, 1, 0].
See any of the references on elliptic curves for more details.

Question 2 Write a program which computes the order of the finite abelian group
E(Fp) for an elliptic curve E over a finite field Fp = Z/pZ, specified by the prime number
p and the coefficients a1, a2, a3, a4, a6. Your program should check that ∆(E) ̸= 0 ∈ Fp,
so that E actually is an elliptic curve over Fp, and if so then it should output the order
of E(Fp) and the number tp := p + 1 − |E(Fp)|. The reason for mentioning tp is Hasse’s
theorem, which says that |tp| ⩽ 2

√
p for any elliptic curve E over Fp.

Later parts of the project will build upon this program, so it should be reasonably efficient:
don’t just search through all p2 pairs x, y ∈ Fp to see if they satisfy the given cubic
equation. (For a given x ∈ Fp, at most how many y’s in Fp can satisfy the given equation?
Can you find exactly how many y’s work for a given x, without actually finding them?
The case p = 2 may have to be handled separately.) Discuss the complexity of the method
used by your program.

Try your program out on some elliptic curves over different fields Fp.
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Given an elliptic curve E over the rational numbers Q, which we will assume is defined by
integers a1, a2, a3, a4, a6, we get a family of cubic curves over Fp, as the prime number p varies,
by reducing the coefficients ai modulo p. The resulting cubic curve is actually an elliptic curve
over Fp if and only if ∆(E) ̸≡ 0(mod p); in that case, we say that E has good reduction at p,
otherwise that E has bad reduction at p.

Question 3 Write a program which, given integers a1, a2, a3, a4, a6, outputs the dis-
criminant ∆(E) ∈ Z and its prime factorization (if you are using Matlab, then you may
use the factor function). Then, given integers p1 and p2, the program should print a table
showing the order of the group E(Fp) and the associated number tp (as in Question 2) for
all prime numbers p in the range p1 ⩽ p ⩽ p2. If E has bad reduction at a given prime
number p, leave the entries for |E(Fp)| and tp blank (or use asterisks).

Try your program on the following elliptic curves and the primes p < 200.

(a) y2 = x3 + 7x2 + 2x,
(b) y2 + xy + y = x3 + x2 − 5x− 7,
(c) y2 = x3 − 14x2 + 41x.

Are the answers related in any way?

It is known that if (x1, y1) is a torsion point of E(Q) (i.e. a point of finite order) then 4x1
and 8y1 are integers. For example the elliptic curve y2 + xy = x3 + 4x + 1 has torsion point
(−1/4, 1/8).

Question 4 By hand, find a nontrivial element of the group E(Q) for the elliptic curve
E over Q given by y2 + y = x3 + x2 + 2x + 4 and find the subgroup of E(Q) generated
by your element. What does this suggest about the relation between the output of your
program in Question 3 and the torsion subgroup of E(Q)? Can you prove anything in
this direction?

Question 5 Write a program which, given an elliptic curve over Q as in Question 3,
computes the numbers tp for a given range of primes p and shows the distribution of
the numbers tp/(2

√
p), which should be in the interval [−1, 1], in some understandable

graphical form. Try it for a few elliptic curves over Q, for a sufficiently large range of
primes p to get a meaningful picture, and describe the resulting probability distributions
on [−1, 1].

Elliptic curves with ‘complex multiplication’, such as those of the form y2 = x3 + bx or
y2 = x3 + c, should behave quite differently from most elliptic curves: what do you find
in these cases? On the basis of your graphs, is it likely than any of the elliptic curves in
Question 3 have complex multiplication?

Programming note

If you use a computer algebra package (such as Maple), then you may find that some routines
for elliptic curves are included in the package. In such cases, no credit will be given for using
the packaged routines — you are expected to write and analyse your own programs. You may,
however, use packaged routines for dealing with prime numbers.
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Appendix

The formula for the discriminant of the elliptic curve [a1, a2, a3, a4, a6] uses the following auxil-
iary expressions:

b2 = a21 + 4a2

b4 = a1a3 + 2a4

b6 = a23 + 4a6

b8 = a21a6 − a1a3a4 + 4a2a6 + a2a
2
3 − a24

Then the discriminant is
∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.
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