
15 Number Theory

15.6 Computing Roots Modulo p (7 units)

Background material for this project is contained in the Part II course Number Theory.

1 Introduction

Throughout, p will be an odd prime number. An integer a coprime to p is called a quadratic
residue mod p if the congruence x2 ≡ a (mod p) is soluble, otherwise a is termed a non-residue
mod p. The Legendre symbol, (a/p), is defined (for a any integer and p an odd prime as above)
by (

a

p

)
=


0 if p|a ;
1 if a is a quadratic residue mod p ;
−1 if a is a non-residue mod p.

In Section 2 we consider the problem of distinguishing quadratic residues from non-residues.
The remainder of the project is concerned with computing square roots mod p, or more generally
finding the roots of a polynomial mod p.

2 Computing Legendre symbols

The Legendre symbol (a/p) can be computed using Euler’s criterion:(
a

p

)
≡ a(p−1)/2 (mod p).

Question 1 Write a program to compute (a/p) for p an odd prime and a any inte-
ger, using Euler’s criterion. (You should use the repeated squaring method for modular
exponentiation – see [1] if this is not familiar.) Test your program with p = 10708729 and

(i) 100 random values for a between 1 and p;
(ii) all a between 1 and 100.

For each of (i) and (ii), keep a tally of the number of values of a for which (a/p) = 1.

The Jacobi symbol is a generalisation of the Legendre symbol. For n odd and positive it is
defined by (

a

n

)
=

(
a

p1

)
. . .

(
a

pr

)
where n = p1 . . . pr is a product of (not necessarily distinct) primes, and the symbols on the
right are Legendre symbols. The Jacobi symbol satisfies the properties(

a

n

)
=

(
a mod n

n

)
,(

ab

n

)
=

(
a

n

)(
b

n

)
,

and if m and n are odd positive and coprime,(
m

n

)(
n

m

)
= (−1)(m−1)(n−1)/4.

July 2024/Part II/15.6 Page 1 of 3 ©c University of Cambridge

Question 2 Write a program to compute (a/p) for p an odd prime and a any integer,
by manipulating Jacobi symbols. You should try to make your algorithm reasonably
efficient. Make a note in your report of any properties of the Jacobi symbol you needed
in addition to those listed above.

Estimate the complexity of your algorithm and compare with Question 1.

[You should estimate the number of basic operations required, where a basic operation
could be addition or multiplication of two numbers. A more sophisticated analysis might
also take into account the time required to add and multiply large numbers on a finite
machine, but it isn’t necessary to go into such details here.]

3 Computing square roots mod p

Suppose that p is an odd prime and a is a quadratic residue mod p. How can we find x such
that x2 ≡ a (mod p)? We could simply search through all congruence classes mod p, but if p is
large then we need a better method.

Question 3 Show that if p ≡ 3 (mod 4) then the congruence x2 ≡ a (mod p) has
solution x ≡ a(p+1)/4 (mod p). Further show that if p ≡ 5 (mod 8) then the congruence
x2 ≡ a (mod p) has solution x ≡ 2k(p−1)/4a(p+3)/8 (mod p) for some k ∈ {0, 1}.

Now suppose that p− 1 is a power of 2 and let g be a primitive root mod p, i.e. a generator for
the multiplicative group of non-zero residues mod p. To solve the congruence x2 ≡ a (mod p)
we substitute x ≡ gr (mod p) where r =

∑
j>0 rj2

j with rj ∈ {0, 1}. Raising each side of the
original congruence to suitable powers it is possible to solve for the binary digits r0, r1, r2, . . .
in turn. For example the first step is

r0 =

{
0 if a(p−1)/4 ≡ 1 (mod p)

1 if a(p−1)/4 ≡ −1 (mod p).

Question 4 Use this method to solve the congruence x2 ≡ 58256 (mod 65537).

A general algorithm for computing square roots mod p is obtained by combining the methods of
Questions 3 and 4. We begin by writing p− 1 = 2αs with s odd. Then we find a non-residue n,
and compute b ≡ ns (mod p). Since s is odd it suffices to solve the congruence y2 ≡ as (mod p).
We do this by substituting y ≡ br (mod p) and solving for the binary digits of r.

Question 5 Write a program for computing square roots mod p, based on the method
described above. Test your program for p = 10708729 and all quadratic residues mod p
between 1 and 20, and for a few other values of p and a. Estimate the complexity of your
algorithm.

4 Computing roots of polynomials mod p

In this section we work with polynomials whose coefficients are integers mod p.

July 2024/Part II/15.6 Page 2 of 3 ©c University of Cambridge

Question 6 Write procedures to compute the quotient and remainder when we divide
one polynomial by another. Use them to write a procedure to find the greatest common
divisor of two polynomials. Illustrate by computing

gcd(x3 + 8x2 + 12x+ 4, x3 + 6x2 + 2x+ 10) with p = 109,
gcd(x3 + 2x2 + 6x+ 8, x3 + 11x2 + x+ 2) with p = 131,
gcd(x3 + 3x2 + 7x+ 1, x3 + 3x2 + 4x+ 12) with p = 157.

To compute the roots of a polynomial f(x) mod p we first compute gcd(f(x), xp − x). This
reduces us to the case where f(x) is a product of distinct linear factors. We then pick a
small integer v at random and attempt to factor f(x) by computing gcd(f(x), g(x)) where
g(x) = (x+ v)(p−1)/2 − 1. This will be successful unless the numbers α + v for α running over
the roots of f(x) are either all quadratic residues, or all non-residues. If unsuccessful we try
another value of v.

Question 7 Write a program for computing square roots mod p, based on the method
described above. Explain how your program avoids working with polynomials of exces-
sively large degree. Investigate how many values of v we expect to use (on average).
Compare this method with that of Question 5 and comment on the theoretical behaviour
for large p.

Question 8 Modify your program to compute the roots of any polynomial mod p,
and run it on the polynomials

f1(x) = x4 + 9x3 + 13x2 + 2x− 9,
f2(x) = x4 + x3 + x2 + x+ 25,
f3(x) = x4 + x3 − 10x2 − 749379x− 120288

with p = 10708729.

5 Programming

If you use Matlab then you may wish to use the DocPolynom class that is included as an
example in the help browser. To use this you should create a directory @DocPolynom and place
DocPolynom.m into it. This will enable you to define and display (non-zero) polynomials and to
carry out standard algebraic manipulations with them. There is no need to include the class file
in your program listings (assuming you do not modify it). [The latest version requires MATLAB
2022b or later to run.]

If you use a computer algebra package (such as MAPLE), then you may find that some of the
routines asked for in this project are included in the package. In such cases, no credit will be
given for using the packaged routines — you are expected to write your own programs.

References

[1] Koblitz, N. A Course in Number Theory and Cryptography, Graduate Texts in Mathematics
114, Springer, 1987.

July 2024/Part II/15.6 Page 3 of 3 ©c University of Cambridge

	PROJECT 15.6 Computing Roots Modulo p
	Introduction
	Computing Legendre symbols
	Computing square roots mod p
	Computing roots of polynomials mod p
	Programming

