15 Number Theory
15.2 Computing 7(x) (7 units)

Background material for this project is contained in the Part II Number Theory course.

1 Introduction

The function 7 (z) is defined as the number of primes < x, so that 7(11) = w(11.5) = w(12) = 5.
A simple way to compute 7(z) is to form a list of all the primes < x and count. This could
be done by testing all the integers up to x for primality and one way of doing this would be
by trial division. A somewhat more efficient method of finding the primes up to N in terms
of time, but with greater requirements in terms of storage, is the sieve of Eratosthenes. List
the numbers from 2 to N. Mark all the multiples of 2 other than 2 itself. The next unmarked
number is 3, so mark all the multiples of 3 other than 3 itself. Continue in this way until no
more numbers can be marked. The unmarked numbers are now the primes up to N.

Question 1 Write programs to list the primes up to, say, 15, 000; one version should
use some form of primality test and the other a sieve. Your program should be capable of
reading in = and printing out 7 (z) for  in this range. Comment on the time and storage
theoretically required by each algorithm for large values of z.

2 Legendre’s formula

Listing the primes is not a very efficient way of computing 7(z) so we should look for indirect
methods. One such method is Legendre’s formula which counts the primes by the inclusion-
exclusion principle.
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where as usual [z] denotes the integer part of x and p; = 2, po = 3, ... is the sequence of
primes.

Question 2 Compute 7(132) using Legendre’s formula by hand.

This formula is not suited to practical computation, because of the difficulty of programming
the multiple summations, because the number of terms involved increases rapidly with x and
because it requires knowledge of the list of primes up to /z. We need to organise the terms
more efficiently.

The multiple sums on the right-hand side of Legendre’s formula can be interpreted as counting
the number of integers < x not divisible by any of the primes < y/z. Define ¢(x,a) to be the
numbers of integers < x not divisible by any of the first ¢ primes. Then
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and Legendre’s formula can be written as
m(z) +1=7(Vz) + ¥(z, (V).

We have a recursion relation for ¥ (x, a),

P(x,a) = p(x,a = 1) = ¢(x/pa,a — 1)

and v (z,0) = [x]. This relation allows us to overcome the difficulty in programming the multiple
summations.

Question 3 Write a program to compute 7(z) using Legendre’s formula and the
recursion relation for ¢ (z,a) which will work for < 10. Use your program to tabulate
m(x) for  up to 100 in steps of 10, up to 1000 in steps of 100, etc. as far as practical.
Show in detail what values of ¢(z, a) your program uses on the way to computing w(132).

This algorithm is still inefficient because we compute ¥ (x,a) many times over for small values

of a. If we write .
my = Hpi
=1

then we see that the pattern of multiples of the first k primes repeats in a cycle of length my.
In fact,

W(smyg + t, k) = sp(my) + (¢, k).

(Here ¢(my) denotes the usual Euler ¢-function.) If we pick a suitable value for k and store
the values (¢, k) for 1 <t < my, then we can curtail the recursion formula for ¢ (z,a) when a
is reduced to k rather than 0.

Question 4 Compute the first few values of m; and find a suitable value of k for
which you can store the values of ¥ (¢, k) for ¢ up to mg. (You should be able to take k at
least 4.) Modify your previous program to use these values in the recursion relation for
¥ (x,a) and repeat your tabulations as far as practical.

3 Meissel’s formula

We modify Legendre’s formula to produce Meissel’s formula. Put b = 7(y/x), ¢ = m(x/?3).
Then

1 T
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Note that it is now necessary to compute the values of 7(y) for certain values of y in the range

/2 to 22/3, and to have a list of primes up to Vx. We save by only having to compute
Y(z, m(x'/3)) rather than v (z, 7(z/?)).

Question 5 Modify the program of questions 3 or 4 to use Meissel’s formula and
repeat your tabulations as far as practical.
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4 The Li function
The asymptotic behaviour of 7(z) is given by the Prime Number Theorem

m(x)

X

- log
and it is also known that a better approximation is

m(x) ~ Li(x)
where Li is the logarithmic integral

rodt

Li(z) = —
i(@) o logt

suitably interpreted at the singular point ¢ = 1. For computational purposes it is easier to take
the lower limit of the integral to be 2 and use the approximation Li(2) ~ 1.045.

Question 6 Use a suitable numerical procedure to approximate Li(z) and tabulate
the values of 77— and Li(z) for the same values of & for which you have tabulated 7 ().
Tabulate the ratios Jl(fg)x, fi(é)) and the differences m(x) m(x) — Li(z). Discuss the

accuracy of these approximations to 7(x).

_ .z
log x>

Question 7 Conjecture a possible order of magnitude for m(x) — Li(x).

[ You may wish to consider a change of variable uw = logt in the integral.]
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