
15 Number Theory

15.1 Primality Tests (9 units)

This project is related to material in the Part II course Number Theory.

A primality test is an algorithm used to determine whether or not a given integer is prime.
In this project we consider several different primality tests, and apply them to numbers in the
range from 3 up to 1010.

1 Trial division

The simplest primality test is trial division: N is prime if and only if it is not divisible by any
integer t with 1 < t 6

√
N .

Question 1 Write a program to test for primality using trial division. Use your pro-
gram to list the primes in the intervals [188000, 188200] and [109, 109 + 200].

2 The Fermat test

Fermat’s Little Theorem states that if p is prime then ap−1 ≡ 1 mod p for any a coprime to p.
The Fermat test base a for N , if 1 < a < N , is to compute aN−1 mod N : if this is not ≡ 1 mod N
then N is certainly composite. A Fermat pseudoprime base a is a composite N which passes
the Fermat test base a.

Question 2 Write a program to carry out the Fermat test base a, capable of working
for N up to 1010. Run it on the intervals in Question 1, say for a up to 13. Check
that the output is consistent with your earlier answer, and make a note of any Fermat
pseudoprimes that you find.

You should take care to devise a good algorithm for computing ab mod N , ensuring that
there is no possibility of integer overflow during the calculation, in view of the possibility
that the integers in your chosen language may be limited to 1015 or similar. (See the note
on programming at the end of the project.) If the integers in your language are large
enough for there to be no chance of overflows, then you should still comment briefly on
how you might manage if you were limited to 1015. (Hint : A multiplication modulo N
can be done in two pieces.)

Briefly discuss the complexity of your algorithm, i.e. the time theoretically taken. To do
this, you should consider (without coding it) how your program might extend to arbitrarily
large N , and work out roughly how many basic operations are needed as N →∞, where
a basic operation could be addition or multiplication of two numbers of similar size to N .
(A more sophisticated analysis might also take into account the time required to add and
multiply large numbers on a finite machine, but it isn’t necessary to go into such details
here.)

An absolute Fermat pseudoprime, also called a Carmichael number, is a composite number
which passes the Fermat test for any base a with (a,N) = 1.

July 2023/Part II/15.1 Page 1 of 4 ©c University of Cambridge

Question 3 Find the Fermat pseudoprimes base 2 and the absolute Fermat pseudo-
primes up to 106. Can you think of any very simple methods (not involving any elaborate
theory) to speed up the checking of the absolute pseudoprimes?

How many values of a, starting from a = 2, are necessary to determine the primality or
compositeness of those N in this range which are not absolute Fermat pseudoprimes? Note
that if a has a non-trivial common factor with N then we regard a as having determined
that N is composite.

The existence of infinitely many absolute Fermat pseudoprimes (proven in 1994) means that
the Fermat test cannot be relied on to prove the primality of N any faster than trial division,
although it can usually detect compositeness quickly.

3 The Euler test

We can improve the Fermat test by using Euler’s theorem, that if p is an odd prime then
a(p−1)/2 ≡ (a/p) mod p where (a/p) is the Legendre symbol. The Euler test base a, for an odd
integer N , is to compute a(N−1)/2 mod N and check if this is ±1 and equal to the Jacobi symbol
(a/N): for N odd and positive this satisfies the properties(a

N

)
=

(
a mod N

N

)
,(

ab

N

)
=

(a

N

)(
b

N

)
,(

−1

N

)
= (−1)(N−1)/2,(

2

N

)
= (−1)(N

2−1)/8,

and, if M and N are odd positive and coprime,(
M

N

)(
N

M

)
= (−1)(M−1)(N−1)/4.

If N is prime then (a/N) is just the Legendre symbol. As before, an Euler pseudoprime base
a is a composite N which passes the Euler test base a, and an absolute Euler pseudoprime is a
composite number which passes the Euler test for any base a with (a,N) = 1.

Question 4 Write a procedure to evaluate the Jacobi symbol and modify your previous
program to carry out the Euler test. Find the Euler pseudoprimes base 2 and the absolute
Euler pseudoprimes up to 106. How many values of a are necessary to determine the
primality or otherwise of those N in this range which are not absolute Euler pseudoprimes?

4 The strong test

If p is prime then the multiplicative group (Z/pZ)∗ is cyclic and so −1 is the only element of
order 2. If we put p− 1 = 2rs where s is odd then either as ≡ 1 mod p or there is j, 0 6 j < r
such that a2

js ≡ −1 mod p. The strong, or Miller–Rabin test base a is to put N − 1 = 2rs
with s odd and to compute the sequence as, a2s, . . . , a2

r−1s: if the sequence begins with 1 or
contains −1 then N passes the strong test.

July 2023/Part II/15.1 Page 2 of 4 ©c University of Cambridge

Question 5 Modify your program to carry out the strong test. As before, find the
strong pseudoprimes base 2 and the absolute strong pseudoprimes up to 106. How many
values of a are required to determine the character of the integers N in this range?

Question 6 Use your programs to tabulate the number of Fermat/Euler/strong pseu-
doprimes base 2 in the intervals [10k, 10k + 105] for 5 6 k 6 9. For comparison you should
also list the numbers of primes in these intervals. Repeat for base a = 3, and also for
numbers passing the corresponding tests for both a = 2 and a = 3.

Briefly comment on the relation between the Fermat, Euler and strong tests.

Question 7 Combining all your previous results, devise the most efficient algorithm
you can for determining the primality or otherwise of a number N in the range from 3 up
to 1010. (This may be a mixture of the above methods.)

Experiment on a suitable number of random numbers, say 10000, in the range to compare
the time taken by your algorithm and trial division. Comment also on the time required
theoretically for these algorithms for large N , making clear any assumptions you are
making.

An important question in applications is the reliability of these tests for determining the pri-
mality of randomly chosen numbers in some range.

Question 8 Fix a value of k and suppose that N is chosen uniformly at random from
all odd integers of exactly k bits, that is, between 2k−1 and 2k − 1. (You should be able
to take k at least 15.) Investigate the probability that if N passes t rounds of the strong
test with randomly chosen a, then N is in fact composite.

Programming note

The quantities of interest in this project are natural numbers. You might be aware that computer
languages typically like to be told if a number is an integer rather than a general real, because
it means there is no need to save a fractional part, and it avoids concerns over rounding errors.

Matlab, though, is incorrigibly real-minded. Hence, although Matlab allows you to tell it a
number is an integer with the int32 command (see the CATAM manual), it is better for this
project if you don’t do so. In other words, you need not worry about distinguishing between
reals and integers.

You should, however, be aware that Matlab can handle integers in this way only up to about
15 digits. (Try eps(10^15) and eps(10^16). Try also 10^8 * 10^8 - (10^16-1).) So you
must avoid calculations involving integers exceeding 1015.

You may use the Matlab functions conv and deconv to multiply and divide polynomials.

Obviously no credit can be given in this project for using inbuilt functions such as isprime or
factor — you are expected to write and analyse your own programs. You may however use
the inbuilt Matlab function gcd.

July 2023/Part II/15.1 Page 3 of 4 ©c University of Cambridge

References

[1] Riesel, H., Prime numbers and computer methods for factorisation, 2nd edition, Progress in
Mathematics 126, Birkhauser, 1994

[2] Koblitz, N., A Course in Number Theory and Cryptography, Graduate Texts in Mathematics
114, Springer, 1987.

July 2023/Part II/15.1 Page 4 of 4 ©c University of Cambridge

