14 General Relativity

14.6 Isolating Integrals for Geodesic Motion

This project assumes material taught in the Part II course General Relativity. Some of the calculations may be done more simply using a Computer Algebra System (CAS) such as Mathematica or Maple, or the symbolic toolbox in MATLAB. Throughout we use geometrical units with $c=G=1$.

1 Geodesic Motion in Axisymmetric Spacetimes

A general axisymmetric metric can be written in the form

$$
\begin{equation*}
\mathrm{d} s^{2}=g_{t t} \mathrm{~d} t^{2}+2 g_{t \phi} \mathrm{~d} t \mathrm{~d} \phi+g_{\phi \phi} \mathrm{d} \phi^{2}+g_{r r} \mathrm{~d} r^{2}+g_{\theta \theta} \mathrm{d} \theta^{2} \tag{1}
\end{equation*}
$$

where the metric components are functions of the coordinates r and θ only.

Question 1 By considering the Euler-Lagrange equations for t and ϕ of the geodesic action

$$
\begin{equation*}
\mathcal{S}=\int \sqrt{g_{i j} \frac{\mathrm{~d} x^{i}}{\mathrm{~d} \tau} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \tau}} \mathrm{~d} \tau \tag{2}
\end{equation*}
$$

where the affine parameter τ is the proper time along the geodesic, or otherwise, show that

$$
\begin{align*}
E & =g_{t t} \frac{\mathrm{~d} t}{\mathrm{~d} \tau}+g_{t \phi} \frac{\mathrm{~d} \phi}{\mathrm{~d} \tau} \\
L_{z} & =-\left(g_{t \phi} \frac{\mathrm{~d} t}{\mathrm{~d} \tau}+g_{\phi \phi} \frac{\mathrm{d} \phi}{\mathrm{~d} \tau}\right) \tag{3}
\end{align*}
$$

are constants of geodesic motion in any axisymmetric spacetime (1). Hence, derive the mass conservation integral

$$
\begin{equation*}
g_{r r}\left(\frac{\mathrm{~d} r}{\mathrm{~d} \tau}\right)^{2}+g_{\theta \theta}\left(\frac{\mathrm{d} \theta}{\mathrm{~d} \tau}\right)^{2}=-V_{\mathrm{eff}}\left(r, \theta, E, L_{z}\right) \tag{4}
\end{equation*}
$$

where the effective potential, $V_{\text {eff }}$, should be found in terms of E, L_{z} and the metric components.

The effective potential defines the allowed regions of geodesic motion for a particular choice of the energy, E, and angular momentum, L_{z}. Motion is only possible where $V_{\text {eff }} \geqslant 0$.
The Kerr metric has components

$$
\begin{align*}
& g_{t t}=1-\frac{2 m r}{\Sigma}, \quad g_{t \phi}=\frac{2 a m r \sin ^{2} \theta}{\Sigma}, \quad g_{\phi \phi}=-\left(\Delta+\frac{2 m r\left(r^{2}+a^{2}\right)}{\Sigma}\right) \sin ^{2} \theta, \\
& g_{r r}=-\frac{\Sigma}{\Delta}, \quad g_{\theta \theta}=-\Sigma \tag{5}
\end{align*}
$$

where $\Sigma=r^{2}+a^{2} \cos ^{2} \theta, \Delta=r^{2}-2 m r+a^{2}, m$ is a constant (the mass of the black hole) and a is another constant (the spin parameter of the black hole).

Question 2 Using a CAS, or otherwise, derive expressions for the Christoffel symbols

$$
\begin{equation*}
\Gamma_{j k}^{i}=\frac{1}{2} g^{i m}\left(g_{j m, k}+g_{k m, j}-g_{j k, m}\right) \tag{6}
\end{equation*}
$$

for the Kerr metric (5). You can present these results in your write-up in the form of a printout from a CAS worksheet.

Programming Task: Write a program to numerically integrate the second order timelike geodesic equations

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x^{i}}{\mathrm{~d} \tau^{2}}=-\Gamma_{j k}^{i} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \tau} \frac{\mathrm{~d} x^{k}}{\mathrm{~d} \tau} \tag{7}
\end{equation*}
$$

for the Kerr metric (5). Do not make use of the first integrals derived above (3)-(4), but write the four second order equations as a set of eight coupled first order equations. We will use the first integrals to verify the numerical accuracy of the integrations.

2 Geodesic motion in the Schwarzschild metric

The Schwarzschild metric may be obtained by setting $a=0$ in the Kerr metric (5).

Question 3 What are the non-zero Christoffel symbols for the Schwarzschild metric? Take $m=1$ and find the zeros of the effective potential (4) in the equatorial plane, $\theta=\pi / 2$, for the case $E=0.97, L_{z}=4$. Hence determine the allowed range of radii, r, of bound orbits in the equatorial plane. Then, using your geodesic code, do the following
a Take initial conditions $r=15, \theta=\pi / 2, \mathrm{~d} r / \mathrm{d} \tau=0$ and the value of $\mathrm{d} \theta / \mathrm{d} \tau$ determined from the effective potential (4). Plot the coordinates, (t, r, θ, ϕ), of the particle as a function of τ over several orbits. Check that the three conservation laws (3)-(4) are satisfied at a reasonable level of numerical accuracy.
b For the same choice of E and L_{z}, take a range of initial conditions that lead to bound motion (e.g., consider initial conditions in the equatorial plane with $\mathrm{d} r / \mathrm{d} \tau=0$ and a range of values of $r(0))$. Output the values of r and $\mathrm{d} r / \mathrm{d} \tau$ every time the orbit crosses the equatorial plane, $\theta=\pi / 2$, with $\mathrm{d} \theta / \mathrm{d} \tau>0$. Plot these values on a graph, with r on the horizontal axis, and $\mathrm{d} r / \mathrm{d} \tau$ on the vertical axis. What do you notice?
c Experiment with a few different values of E, L_{z} and initial conditions.

You have plotted a Poincaré map for these orbits. If the Poincaré map of an orbit is a closed curve it indicates the possible existence of an extra isolating integral for the motion.

3 Geodesic motion in the Kerr metric

We now consider $a \neq 0$ in the Kerr metric (5).

Question 4 Take $a=0.9, E=0.95$ and $L_{z}=3$, and use the effective potential to find the allowed range of r_{0} for which the initial conditions $\theta=\pi / 2, r=r_{0}$ and $\mathrm{d} r / \mathrm{d} \tau=0$ lead to bound motion. Plot a Poincaré map as described above for a range of initial conditions of this type. Is the result similar to what you saw for the Schwarzschild metric?

Question 5 Show that the quantity

$$
\begin{equation*}
Q=\left(a E \sin \theta-L_{z} \operatorname{cosec} \theta\right)^{2}+\left(r^{2}+a^{2} \cos ^{2} \theta\right)^{2}\left(\frac{\mathrm{~d} \theta}{\mathrm{~d} \tau}\right)^{2}+\delta a^{2} \cos ^{2} \theta \tag{8}
\end{equation*}
$$

is conserved for geodesic motion in the Kerr metric, where δ is a numerical constant that should be determined. You may use a CAS to help demonstrate this, but should include evidence of the calculation. What does Q become in the limit $a=0$, i.e., for the Schwarzschild metric? Provide a physical interpretation if possible.

References

[1] Chandrasekhar, S.; The Mathematical Theory of Black Holes; Clarendon Press: Oxford; 1992.
[2] D'Inverno, R.; Introducing Einstein's Relativity; Clarendon Press: Oxford; 1992.
[3] Goldstein, H., Poole, C. \& Safko, J.; Classical Mechanics, third edition, Pearson Education International: New Jersey; 2002.

