14 General Relativity

14.6 Isolating Integrals for Geodesic Motion (8 units)

This project assumes material taught in the Part Il course General Relativity. Some of the
calculations may be done more simply using a Computer Algebra System (CAS) such as Math-
ematica or Maple, or the symbolic toolbox in MATLAB. Throughout we use geometrical units
with c =G = 1.

1 Geodesic Motion in Axisymmetric Spacetimes

A general axisymmetric metric can be written in the form
ds* = gudt” + 2g19dtde + gsdd” + grrdr® + gppdd” (1)

where the metric components are functions of the coordinates » and 6 only.

Question 1 By considering the Euler-Lagrange equations for ¢t and ¢ of the geodesic
action
dat dad
g d 2
Jij dr dr ’ 2)
where the affine parameter 7 is the proper time along the geodesic, or otherwise, show
that
dt do
E=gy— —
Git - + Gt¢ ar
dt d¢
L,= — — — 3
. <gt¢ 4 90 dr) (3)

are constants of geodesic motion in any axisymmetric spacetime (1). Hence, derive the
mass conservation integral

dr\? do\?
9rr (dT> +999 <dT> __‘/;eff(r797EaLz) (4)

where the effective potential, Vig, should be found in terms of F, L, and the metric
components.

The effective potential defines the allowed regions of geodesic motion for a particular choice of
the energy, F, and angular momentum, L,. Motion is only possible where Vg > 0.

The Kerr metric has components

2 2 in? 6 2 2 +a?
gp=1- 20T g, = 2amr sl g¢¢:<A+W<;H>>Sin2(,,
b))
grr:_Za 990:_2 (5)

where ¥ = r2 4+ a? cos?, A =12 —2mr +a?, m is a constant (the mass of the black hole) and
a is another constant (the spin parameter of the black hole).
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Question 2 Using a CAS, or otherwise, derive expressions for the Christoffel symbols

1
;’k = 9 g (gjm,k + Gkm,j — gjk,m) (6)

for the Kerr metric (5). You can present these results in your write-up in the form of a
printout from a CAS worksheet.

Programming Task: Write a program to numerically integrate the second order timelike

geodesic equations
d2 7 . d j d k
Loty dad det )
dr2? Fdr dr
for the Kerr metric (5). Do not make use of the first integrals derived above (3)—-(4), but
write the four second order equations as a set of eight coupled first order equations. We

will use the first integrals to verify the numerical accuracy of the integrations.

2 Geodesic motion in the Schwarzschild metric
The Schwarzschild metric may be obtained by setting a = 0 in the Kerr metric (5).

Question 3 What are the non-zero Christoffel symbols for the Schwarzschild metric?
Take m = 1 and find the zeros of the effective potential (4) in the equatorial plane,
0 = /2, for the case E = 0.97, L, = 4. Hence determine the allowed range of radii, r, of
bound orbits in the equatorial plane. Then, using your geodesic code, do the following

a Take initial conditions r = 15, § = 7/2, dr/dr = 0 and the value of df/dr determined
from the effective potential (4). Plot the coordinates, (¢, r, 6, ¢), of the particle as a
function of 7 over several orbits. Check that the three conservation laws (3)—(4) are
satisfied at a reasonable level of numerical accuracy.

b For the same choice of E and L, take a range of initial conditions that lead to bound
motion (e.g., consider initial conditions in the equatorial plane with dr/dr = 0 and
a range of values of 7(0)). Output the values of r and dr/dr every time the orbit
crosses the equatorial plane, § = 7/2, with df/dr > 0. Plot these values on a graph,
with 7 on the horizontal axis, and dr/d7 on the vertical axis. What do you notice?

¢ Experiment with a few different values of E, L, and initial conditions.

You have plotted a Poincaré map for these orbits. If the Poincaré map of an orbit is a closed
curve it indicates the possible existence of an extra isolating integral for the motion.

3 Geodesic motion in the Kerr metric
We now consider a # 0 in the Kerr metric (5).

Question 4 Take a = 0.9, £ = 0.95 and L, = 3, and use the effective potential to find
the allowed range of 7o for which the initial conditions § = 7/2, r = r¢ and dr/dr = 0 lead
to bound motion. Plot a Poincaré map as described above for a range of initial conditions
of this type. Is the result similar to what you saw for the Schwarzschild metric?
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Question 5 Show that the quantity

Q = (aEsinf — chosecﬁ)2 + (7“2 + a? cos? 0)2 <d€

2
2 .2
dT) +da” cos”™ 6 (8)

is conserved for geodesic motion in the Kerr metric, where § is a numerical constant
that should be determined. You may use a CAS to help demonstrate this, but should
include evidence of the calculation. What does @) become in the limit a = 0, i.e., for the
Schwarzschild metric? Provide a physical interpretation if possible.
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