
14 General Relativity

14.5 Cosmological distances (8 units)

Although this project is based on general relativistic cosmology, no detailed knowledge of General
Relativity is required. All relevant equations are defined and explained in the project itself.

1 Introduction

In cosmology there are many ways to specify the distance between two points because, in the
expanding Universe, the distances between objects are changing and Earth-bound observers look
back in time as they look out in distance. All these distances measure the separation between
events on radial null trajectories, trajectories of photons which terminate at the observer.

The metric for a homogeneous isotropic universe, in spherical polar coordinates for the spatial
part, is

ds2 = c2dt2 −R(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1)

where, by a suitable choice of radial coordinate r, k = −1, 0 or 1 for open, Euclidean or closed
geometries.

In this metric the redshift relative to an observer at the spatial origin is given by

1 + z = R(t0)/R(t1), (2)

where t0 is the coordinate time at which the photon is received and t1 that at which it was
emitted. Thus, for a given observer, the redshift depends only on the radial scale factor of the
Universe at the time the photon was emitted divided by its value at the observer’s time. The
redshift is important because it can be measured easily from the observed wavelengths of atomic
transition lines with known rest wavelengths.

When the matter density at time t is ρ and the pressure is zero one of the Einstein field equations
with the cosmological term becomes

Ṙ2

R2
+
kc2

R2
− Λc2

3
=

8πG

3
ρ, (3)

where Ṙ = dR
dt and Λ is a constant. The other field equation can be combined with this to give

the conservation of matter equation
ρR3 = const. (4)

For small distances the redshift cz = H0d, where d is the distance to the source. Then H0,
the Hubble constant, gives the local expansion rate. It is often written in the form H0 =
100h km s−1 Mpc−1 = 3.2409 × 10−18h s−1, where h is dimensionless. The actual value of h
is still uncertain, and hotly debated, but most would agree on measurements of 0.72 ± 0.08.
The megaparsec is an astronomical length unit appropriate for separations between galaxies,
1 Mpc = 3.0856 × 1022 m. The Hubble time tH = 1/H0 = 3.0856 × 1017h−1 s and the Hubble
distance DH = c/H0 = 9.26 × 1025h−1 m. Take the number of seconds in one year to be
3.1556926×107 s.

Our Universe can be described by two parameters, the matter density now ρ0 and the cosmo-
logical constant Λ, and we can express these in a dimensionless form using H0 as

Ωm ≡
8πGρ0

3H2
0

(5)
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and

ΩΛ ≡
Λc2

3H2
0

. (6)

By means of equation (3), at time t0, the curvature value k can be parameterised by Ωk so that

Ωm + ΩΛ + Ωk = 1. (7)

Then the function
E(z) =

√
Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ

is proportional to the time derivative of the logarithm of the scale factor, Ṙ/R, at redshift z
(see e.g. Peebles 1993, pp 310− 321).

Where specific values are required in what follows you should take H0 = 72 km s−1 Mpc−1.

2 Lookback Time

The lookback time tL is the difference between the age t0 of the Universe now and the age te
when the photons were emitted

tL = tH

∫ z

0

dz′

(1 + z′)E(z′)
. (8)

Question 1 If Ωm = 1 and ΩΛ = 0, obtain an expression for the lookback time to an
object with redshift z and show that the age of the Universe is tL(z =∞) = 2

3 tH.

Question 2 Write a program to determine the lookback time in Gyr for general H0,
Ωm and ΩΛ. If H0 = 72 km s−1 Mpc−1, tabulate the lookback time to z = 0.1, 1.0, 2.0,
4.0 and 6.7 (one of the highest individual object redshifts measured so far) for

(1) an Einstein-de-Sitter universe Ωm = 1, ΩΛ = 0,

(2) a classical closed universe Ωm = 2, ΩΛ = 0,

(3) a baryon dominated low density universe Ωm = 0.04, ΩΛ = 0 and

(4) the currently popular Universe Ωm = 0.27, ΩΛ = 0.73.

What is the age of the Universe for each of these models [to the nearest 100 million years]?

Produce a graph showing lookback time against redshift for the four models and comment
on any overall trends.

3 Distance Measures

There are three useful ways to define distance.

(1) The line of sight comoving distance

DC = DH

∫ z

0

dz′

E(z′)
. (9)

(2) The angular diameter distance is the ratio of an object’s physical size to its angular size (in
radians). For an object of size ` at redshift z the angular size is θ = `/DA, where θ is a small
angle (so sin θ ≈ tan θ ≈ θ).
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DA =


DH

1√
Ωk(1+z)

sinh
[√

ΩkDC/DH

]
, for Ωk > 0,

DC/(1 + z), for Ωk = 0,

DH
1√

|Ωk|(1+z)
sin
[√
|Ωk|DC/DH

]
, for Ωk < 0.

(10)

(3) The luminosity distance DL is defined by the relationship between the observed photon
energy flux f , integrated over all frequencies, and the intrinsic energy output from the source
L by

f =
L

4πD2
L

.

It is related to the angular diameter distance by

DL = (1 + z)2DA. (11)

Question 3 Obtain an analytic expression for the angular diameter distance DA as
a function of redshift in the case where Ωm = 1 and ΩΛ = 0 and show that it has a
maximum value when z = 1.25.

Question 4 Write a program to determine the luminosity and angular diameter dis-
tances given the redshift z and plot the dimensionless values DA/DH and DL/DH for
redshifts 0 < z < 7 for (Ωm,ΩΛ) = (1, 0), (0.04, 0) and (0.27, 0.73). For these three cases
tabulate the values at redshifts z = 1, 1.25, 2.0 and 4.0.

4 Comoving Volume

The comoving volume VC is the volume measure in which the number density of non-evolving
objects is constant with redshift. The comoving volume element in solid angle sin θdθdφ and
redshift interval dz is

dVC = DH
(1 + z)2D2

A

E(z)
sin θ dz dθ dφ.

Integrating this from the present to redshift z gives the total comoving volume over the whole
sky to redshift z,

V =
4π

3

D3
L

(1 + z)3
=

4π

3
D3

C for Ωk = 0. (12)

A method to test whether a sample of objects has a uniform comoving density and luminosity
which does not change with cosmic time is to use the < V/Vmax > test. It is assumed that all
objects with observed flux f > f0 are detected and the observed flux f and the redshift z are
measured for each object. For a given luminosity L there is a maximum redshift zmax(L) at
which the observed flux is f0 so that the object is just included. Corresponding to this redshift
is a maximum volume Vmax(L). Then, if we have a distribution of luminosities so that Φ(L)dL
is the number per unit comoving volume with luminosity between L and L + dL, the total
number of objects in the sample is∫ ∞

0
Φ(L)

∫ Vmax(L)

0
dV dL.

where V is the comoving volume.
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Question 5 Show that for a uniform comoving distribution of objects the expectation
value 〈V/Vmax〉 = 1

2 .

Question 6 Write a program to read pairs of numbers z and f/f0, determine V and
Vmax for these for Universe models for which Ωk = 0 and determine the average value
< V/Vmax > for each model.

Verify that for small values of z the program gives the Euclidean limit, for individual cases
V/Vmax ∝ (f/f0)−

3
2 .

Apply the program to the sample, listed below, of 114 quasars from an area of sky. What
is the value of < V/Vmax > for this sample if Ωm = 0.27 and ΩΛ = 0.73? Is the value of
< V/Vmax > what you would expect from a constant comoving population? How might
you interpret the result you obtain?

Question 7 The sample in the previous question was also subject to the constraints
z > 0.20 and z < 3.0, because it is only in this range that an object be recognised as a
quasar. How would you modify the V/Vmax quantity so that for a uniform distribution
in this redshift range the average value is still 1

2? What is the result of using this on the
sample of 114 quasars?
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Quasar data. The following may also be found in the file quasar.dat in the data directory
on the CATAM website:

z f/f0 z f/f0 z f/f0 z f/f0 z f/f0 z f/f0
0.202 1.570 0.217 3.250 0.225 2.884 0.237 3.630 0.246 1.213 0.259 1.330
0.274 1.614 0.298 1.330 0.315 2.032 0.322 1.066 0.332 1.976 0.351 1.018
0.362 1.096 0.373 1.191 0.385 2.937 0.402 2.355 0.433 1.853 0.449 4.168
0.460 5.105 0.479 1.706 0.492 1.629 0.507 1.940 0.530 1.472 0.549 1.419
0.571 2.511 0.582 2.089 0.590 1.599 0.609 1.406 0.624 1.018 0.641 1.018
0.659 3.564 0.672 2.511 0.679 2.013 0.692 1.294 0.714 1.294 0.723 1.584
0.737 1.342 0.754 1.076 0.774 1.753 0.781 2.128 0.791 2.779 0.803 2.421
0.832 1.106 0.847 1.527 0.874 1.158 0.892 1.202 0.913 2.167 0.934 1.629
0.955 1.887 0.973 2.208 0.993 2.558 1.012 1.355 1.025 1.247 1.040 1.318
1.056 1.213 1.072 1.803 1.092 1.330 1.115 1.342 1.140 1.086 1.152 1.180
1.182 1.180 1.205 1.393 1.220 1.247 1.234 1.342 1.247 2.535 1.263 1.047
1.288 1.541 1.313 1.028 1.332 1.037 1.343 1.235 1.376 2.779 1.388 1.202
1.400 1.086 1.440 1.127 1.455 1.009 1.469 1.056 1.487 1.330 1.511 1.330
1.543 1.028 1.559 1.202 1.583 1.819 1.593 1.294 1.619 1.614 1.641 3.047
1.664 1.393 1.684 1.158 1.700 1.513 1.727 1.629 1.756 1.137 1.776 1.355
1.810 2.831 1.844 1.018 1.878 2.208 1.913 2.606 1.941 1.342 1.961 1.555
1.976 2.910 2.005 1.106 2.035 1.306 2.075 1.887 2.092 1.958 2.106 1.367
2.134 1.406 2.187 2.089 2.244 1.202 2.297 1.106 2.329 1.009 2.388 1.737
2.442 1.644 2.523 1.000 2.595 1.393 2.649 1.282 2.786 1.527 2.936 1.445
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