12 Nonlinear Dynamics & Dynamical Systems

12.6 Chaos and Shadowing (10 units)

Familiarity with the Part II Dynamical Systems course would be very helpful for this project,
which is concerned with the behaviour of nonlinear maps and uses concepts and tools from
nonlinear dynamics.

1 Introduction: dynamical systems, chaos and shadowing

This project considers issues that arise in the numerical solution of dynamical systems which
display complicated ‘chaotic’ behaviour. We first consider the discrete-time case, defining Lya-
punov exponents which measure the rate at which nearby points separate under iteration. Then
we discuss how ‘noisy’ trajectories of an iterated map, where the ‘noise’ arises through numerical
errors, are actually close to true trajectories of the system - this property is known as ‘shad-
owing’. Finally the project considers a continous-time (ODE) example of complicated motion
motivated by celestial mechanics.

Let D be a closed bounded subset of R, and let F'(x) be a continuously differentiable map
from D to itself. A major task in dynamical systems is to characterise the behaviour of points
under repeated iteration of the map F. We call the sequence of points xg, X1, X2, . . . constructed
by setting x,+1 = F(x;,) the trajectory from the initial condition xg. The standard notation
for the repeated composition of F' is to let F™ denote the n-fold composition of F' with itself,
e x, = F(x,_1) = F?(xp_2) = -+ = F"(x0).

In many situations the rate at which nearby trajectories separate from each other is of interest.
This can be characterised by the Lyapunov exponents A(xgp, v), defined to be the asymptotic
rate of divergence of trajectories with initial conditions xy and x¢ + v, where v is a small
perturbation from xg:

n n

A(xg,v) = lim lim 1 log |7 (%0 +ev) = F™(xo)| (1)
n—00 e—0 N, llev]|
Under the conditions given above it can be shown that the limit exists. For a given xq there
will in general be m (possibly non-distinct) values of A(xg, v) as we choose different vectors v —
divergence occurs at different rates in directions corresponding to the different eigenvectors of
the Jacobian matrix DF evaluated at xo. The formula above for \(xg,v) will give the largest
positive Lyapunov exponent of the system for almost all choices of the vector v. We denote
the largest positive Lyapunov exponent by A(xg), or simply by A. If x¢ is a fixed point then
the Lyapunov exponents are simply the (real parts of the) Floquet multipliers, so in some sense
the idea of a Lyapunov exponent developed above is a generalisation of the idea of a Floquet
multiplier to arbitrary trajectories.

For the purposes of this project we will define a map to be chaotic if it appears that \(xg) > 0
for almost all xg, so that in general neighbouring points will separate exponentially.
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1.1 A map on a square

Here we consider a 2-dimensional (area preserving) map on the unit square (x,y) € [0,1]2.
Given some initial condition (g, yo), we define

K
Tl = Tp + 5 sin(27y,) (mod 1) (2)
7r

Yntl = Yn + Tnt1 (mod 1) (3)

Note that her{mod 1) means that the map is restricted to the unit square.

Question 1  For K = 3, generate a set of double precision pairs (z,, yn), 1 < n < 1000,
for a range of choices of (xg, yp). Some suggested choices of initial conditions are : (0.5,0.5);
(1078, 0); (0.1,0.5); (0.8,0.6); (0.3521,0.424).

Plot the distribution of your points (2, y,). Describe the structure of the phase portrait.
What are the fixed points of the map? Describe how the different features of the map
change with K.

1.2 Local Chaos

In contrast to the asymptotic quantity A(xg) as defined above, a possibly more useful quantity
is the local Lyapunov exponent, \;(xg), defined as

M) = Tim L 3 g It =] @
(X0) = IIm — —_—
ASON = i, — x|

where x,, is the n'" iterate of X0, X7(1A) is the nt" iterate of xg + A, and N is a suitable finite
number of iterations of the map. For infinitesimal perturbations A, A\;(x0) > 0 indicates a local
expansion of trajectories starting near xg.

Note that IV should be chosen neither too small, nor too large. In practice, you might also want
to discard the first few terms of this sum in your numerical calculations.

Question 2 For K = 3, find the maximum local Lyapunov exponent for different
initial conditions (zo, yo) and small perturbation ||A| < 1, using the Euclidean norm in
equation (4). What value of N did you use? How did you decide? What is your estimate
of the global maximum Lyapunov exponent?

Question 3 We can define a different “Lyapunov exponent”, Ay = logy e*. Why, when
doing binary arithmetic, might Ay be more interesting than A? What is your interpretation
of the information Ao provides? Given that the calculations here are done to 16 signifi-
cant figures (or to whatever precision achieved by the code you have used), what would
you expect the number of iterations required to be before the results obtained become
meaningless? How does your answer compare with what you found numerically?
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1.3 Shadowing

Numerical calculations introduce round-off and truncation errors into iteration. For chaotic
maps, such as the 2D map above this introduces an effective error at each iteration; this is in
some sense equivalent to the explicit perturbation in the initial conditions we considered above.

Since a large class of interesting problems is reducible to iterating nonlinear, and chaotic, maps,
it is of some interest to consider whether any numerical calculation can be said to follow the
“true” trajectory of such systems.

Here we will consider the simple example used above, assuming the “true” trajectory is given
by a double precision calculation of the trajectory, while a single precision calculation provides
a “noisy” trajectory.

For some nonlinear systems it is possible to define a “shadow” trajectory to a noisy trajec-
tory (obtained by adding a small perturbation), such that the shadow trajectory is a “true”
trajectory of the system, and the “shadow distance” (initially the perturbation) of the shadow
trajectory from the noisy trajectory is bounded ([1], [2], [5]). In 2D when there exists one
unstable (expanding) direction and one stable (contracting) direction, it has been proved that,
for sufficiently small perturbations, “shadow” trajectories can exist for arbitrarily long times.
In many other systems it is still possible to define a “shadow” trajectory for a finite time.

Question 4  Let L, be the Jacobian matrix of the map at iteration n. Construct and
write down explicitly the four elements of the Jacobian matrix of the standard map above.

Define e,,4+1 = pn+1 — f(pn), where e, is the error iterating the map, f, on the vector p by one
step. We want to construct a correction term, ®,,, such that

ﬁn =Pn+ q)n (5)

defines a “shadow” orbit of p, i.e. {p,} is a true orbit of the dynamical system.
Solving for ®, we find:
Ppi1 = f(Pn) — ent1 — f(pn)- (6)

For @,, small, we can expand f(py) to linear order, and

q)n+1 = Ln(I)n — €n+1- (7)

At each iteration, small perturbations along the contracting direction will decay exponentially
forward in time, while small perturbations in the expanding direction will grow exponentially
forward in time. The reverse will happen when evolving backwards in time.

We therefore want to find basis vectors u,, s, aligned with the directions defining the maximum
expansion and contraction of the local volume of phase space at step n. We can construct u,,,
sp by iterating the equations:

Lyuy,
— v 8
Untt = T ] (®)
and
Lnsn (9)
S = —.
" | Lysall

That is, take some initial ug, so (eg. (1/v/2,1/v/2), (=1/4/2,1/1/2)), and a vector pg = (o, yo).
Iterate u,, forwards, i.e. start with your ug and iterate equation (8) forward until it has converged
to the local direction of expansion. To construct s,, do the same, but take the initial sy for
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some finite (not too big nor too small) number of iterations of the map, and iterate s, backwards
to find sg. You will want N > 1 and N < N,, where N, was the number of iterations at which
the sum in equation (4) needed to be truncated.

This procedure will naturally converge onto the direction of maximum expansion when going
forward in time, because the term corresponding to the maximum eigenvalue will become dom-
inant for sufficiently large n. Conversely, when going backwards in time the term corresponding
to the smaller eigenvalue will become dominant, because it will be proportional to the inverse
of a small quantity.

Clearly, since u,, s, span the phase space, we can write

®, = ayuy + ann (10)
and
en = Npln + gnsn (11)
for some «, 3,7,€.
Using equation (7) we find
Qp1Up+1 + 6n+13n+1 = Ln(anun + ﬁnsn) - (nn+1un+1 + fn+18n+1). (12)

Question 5  Substitute equations (8) and (9) into equation (12) to find a recursion
relation for «y,, B,. As before, solve for the o, by forward iteration from n = 0 and for
the 3, by backward iteration from n = N for some suitable, fixed V.

You now have a constructed shadow map of the trajectory.

Question 6  Integrating the standard map in double precision, from some known ini-
tial condition, with a known error, show that the shadow map of the erroneous initial
conditions follows the true trajectory within some shadow distance. If necessary, iterate
the shadowing to get a more closely shadowed orbit.

Now integrate your initial condition with single precision (introducing some, in principle
unknown) error per iteration, and construct the corresponding double precision shadow
trajectory.

Plot your trajectories and comment. (Finding and plotting such trajectories can be tricky!)

Note that shadowing does not always work. A trivial counter-example is provided by the one
dimensional logistic map f(r) =1—22% x € (—1,1).

Near x = 0, no true orbit can shadow general noisy orbits, as noise in f(x) may take the map
out of the domain and iterating the subsequent trajectory will take x to —oo.

1.4 Application: the Sitnikov Problem

It is known that the N-body problem, of N > 2 bodies moving under their own mutual gravi-
tational attraction only, is chaotic.

Here we consider a well known special case of the restricted three-body problem, where one of
the bodies has zero mass. In this particular problem, known as the Sitnikov problem ([4], [3]),
the motion of the zero mass is restricted to the z axis, defined by the normal to the plane of
motion of the two massive bodies, through the center of mass. The two massive bodies move
on Keplerian ellipses with eccentricity € € [0, 1] around their centre of mass.
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Without loss of generality, we consider the two massive bodies to have masses, M; = My = 1/2.
We are interested in bound motion, with semi-major axis a = 1.

The motion of the two massive bodies is uniquely described by their elliptic orbit (the phase is
irrelevant to the dynamics we are interested in, by rotational symmetry). The separation of the
massive bodies from the center of mass is 7(t) = (1 — ecost) + O(€?), .

We want to consider the motion of the third, zero mass body on the z-axis. Define v = dz/dt,

then
dv z 3ze cos(t + to)

b — ) 13

dt (22 4 1)3/2 (22 +1)5/2 (13)
The equations of motion may be integrated numerically using a high order integrator, such as
the Runge-Kutta scheme, given some initial conditions. Without loss of generality, we choose
initial conditions tg = 0, z(0) = 0, v(0) = vo.

Question 7 Write down the energy of the third mass, i.e. lim,, ,o(£/m) and solve for
the critical velocity, v, for which the energy is zero. Write down z(t) for e = 0. Write
down the Jacobian matrix of this map.

It is useful to define the initial velocity as some multiple of v.. We are interested in
(initially) bound motion, so vy < ve.

For € = 0.03,0.04, 0.05 and vg/v. = 0.92,0.94,0.96, plot z(¢) vs t. Comment.

In continuous time we can define a (maximum) Lyapunov exponent exactly analogous to the

discrete-time case: )
Mzo) = lim lim » log 12120 £ €W) = #1(20)|

t—ooe—0 t HEWH

(14)

for almost all choices of perturbation w, where z = (z, 2) and ¢; denotes the evolution operator
defined by integrating the ODEs forwards in time.

Question 8  As before, construct a trajectory in (z, ) space with an initial “error”, d,
and integrate the true and erroneous trajectories for a chosen value of vy ~ 0.95v,.

Estimate numerically the Lyapunov exponent of the mapping for the different cases. Is
the motion chaotic?

Question 9  Using the method discussed in the previous section, construct a shadow
trajectory for the zero mass body, and compare “true” trajectories integrated with double
precision arithmetic, with the corresponding “shadow” trajectories integrated from the
same initial condition with single precision arithmetic.

Comment on the integrability of the N-body problem. Do you think numerical integrations
of N-body systems are reliable — or can be made reliable — in some sense?
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