
10 Statistics

10.9 Markov Chain Monte Carlo (6 units)

Bayesian inference is covered in the IB Statistics course, and developed further in the II(D)
Principles of Statistics course. Knowledge of the IB Markov Chains course, whilst useful, is not
necessary, and there is no requirement to quote results from it.

Introduction

In Bayesian statistics, it is essential to be able to sample from the posterior distribution of
unknown parameters given some data. In arbitrary, high-dimensional problems, this is not
possible analytically, but in recent years Markov Chain Monte Carlo methods (MCMC) have
become a popular alternative.

Markov Chain

The key idea is quite simple. We want to sample from a distribution π(x), x ∈ Rm, but cannot
do so directly. Instead we create a discrete-time Markov chain X(n) (taking values in Rm) such
that X(n) has equilibrium distribution π. Then

X(n)→ X ∼ π in distribution, as n→∞ (1)

and
1

N

N∑
n=1

f
(
X(n)

)
→ Eπ

(
f(X)

)
as N →∞

where f is any real-valued function on Rm for which the right-hand side above is well-defined.
The second of these limits can be used to calculate means and variances of components of X,
as well as approximations to the distribution functions. For example, f(x) = xi gives the mean
of the ith component Xi, and f(x) = I(xi 6 b) gives the distribution function of Xi at point b.

Gibbs sampler

Suppose we do not have a tractable closed-form expression for the equilibrium density π(x) =
π(x1, . . . , xm), but we do know the induced full conditional densities π(xi|x−i), where x−i is
the vector x omitting the ith component, x−i = (x1, . . . , xi−1, xi+1, . . . , xm).

A systematic form of the Gibbs sampler algorithm proceeds as follows. First, pick an arbi-
trary starting value x0 = (x01, . . . , x

0
m). Then successively make random drawings from the full

conditional distributions π(xi|x−i), i = 1, . . . ,m, as follows:

x11 from π(x1|x0
−1)

x12 from π(x2|x11, x03, . . . , x0m)

x13 from π(x3|x11, x12, x04, . . . , x0m)

...

x1m from π(xm|x1
−m).

This cycle completes a transition from x0 = (x01, . . . , x
0
m) to x1 = (x11, . . . , x

1
m). Repeating

the cycle produces a sequence x0,x1,x2, . . . which is a realization of a Markov chain, which is
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known as the Gibbs sampler. We call π(x,y) the transition probability density of this Markov
chain.

Question 1 Assume that the Markov chain X(n) takes values in a finite subset
S ⊂ Rm. Verify that π is an equilibrium distribution for this chain. That is, check that
for all y ∈ S, ∑

x

π(x)π(x,y) = π(y).

It can be shown that this implies that π is the equilibrium distribution of the Gibbs sampler,
in the sense of (1), but do not attempt to prove it. Thus our estimate of Eπ

(
f(X)

)
, taken over

N iterations, is

1

N

N∑
n=1

f(xn).

Football data

Data from the performance of K football teams, over T years has been scored on a scale of 0
(no wins) to 114 (win in all 38 games), with a win scoring three and a draw scoring one point.
Let us model Ykt, the score of the kth team in year t, as

Ykt|parameters ∼ N(µk, σ
2
k), for k = 1, . . . ,K and t = 1, . . . , T

with the hierarchical prior structure that the team mean µk and variance σ2k are independently
distributed, given θ, as

µk|θ ∼ N(θ, σ20)

σ−2
k ∼ Γ(α0, β0),

where σ20, α0 and β0 are known parameters, and θ is a second-stage prior with distribution

θ ∼ N(µ0, τ
2
0 ),

where µ0 and τ20 are known parameters.

The Gibbs sampler is well suited to the analysis of hierarchical models, since the full one-
dimensional conditional distributions often have extremely simple forms. For example, in the
above model,

µk|µ−k, θ,σ
2,y ∼ N

(
σ−2
k

∑T
t=1 ykt + θσ−2

0

Tσ−2
k + σ−2

0

,
1

Tσ−2
k + σ−2

0

)

θ|σ2,µ,y ∼ N

(
σ−2
0

∑K
k=1 µk + µ0τ

−2
0

Kσ−2
0 + τ−2

0

,
1

Kσ−2
0 + τ−2

0

)

σ−2
k |σ

2
−k,µ, θ,y ∼ Γ

(
α0 +

T

2
, β0 +

1

2

T∑
t=1

(ykt − µk)2
)
.

Question 2 Verify the one-dimensional conditional distributions given above. What
is the marginal prior distribution of µk?
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Question 3 Implement the Gibbs sampler to sample from the posterior distribution
of (µ,σ2, θ) given y. You can find the data for y in the file II-10-9-2021football.csv

on the CATAM website. Take as known σ0 = 10, α0 = 10−5, β0 = 10−3, µ0 = 60, τ0 = 20.
Briefly discuss what these prior parameter values have assumed about the football data.
With reference to these priors, how did you choose the initial state of the Markov chain?

If you wish, you can use a package to simulate distributions, but you should implement the
Gibbs sampler yourself without using library routines.

Question 4 Use your Gibbs sampler to estimate the posterior mean of each parameter
θ, µk, σ

2
k. Plot a histogram of the posterior distribution of θ and comment on your

histogram. Explain how you obtained it.

Question 5 Now choose a team k. Estimate the posterior probability that your chosen
team is above average, P(µk > θ|y).

Question 6 Build up an idea of how accurate your estimates for µk and P(µk >
θ|y) are, for your chosen team k, by performing independent runs of the Gibbs sampler,
computing estimates for each of the parameters on each run and then computing the
sample variances of these estimates. Comment on how fast your estimates converge by
considering sample variances at different values of N .

Question 7 Now try letting the algorithm run for an initial period of M cycles before
calculating estimates based on a further N iterations. This might allow the distribution
to settle down to equilibrium before being measured. Calculate sample variances (as the
previous question) for a few suitable values of M to see if this makes any noticeable
difference. Explain why you do or do not see a difference.

Question 8 In any MCMC procedure we must ensure that we are exploring the full
sample space. One way to check this is to run a number of chains that start from different
points. Using a few widely dispersed starting points confirm, or otherwise, that your
results are independent of the starting point. What is the effect of running an initial M
cycles in this situation?

Hint. Recall that the Gamma distribution Γ(γ, λ) has density

f(x) =
λγxγ−1e−λx

Γ(γ)
,

with mean γ/λ and variance γ/λ2. Also recall that a Gamma Γ(n/2, λ) has the same distribution
as the scaled chi-squared (2λ)−1χ2

n.

You can assume that a Γ(2.50001, λ) is approximately distributed as a χ2
5 (suitably scaled),

which in turn is exactly equal to the sum of two independent exponentials plus an independent
normal squared.
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