
10 Statistics

10.15 Variable Selection and the Bias-Variance

Tradeoff

(8 units)

This project requires an understanding of the Part IB Statistics course.

1 Introduction

Consider the following linear model with a univariate response and p covariates:

Y = Xβ + ε, ε ∼ N(0, σ2). (1)

We assume throughout that all variables are zero mean. Note also that introducing an intercept
is not necessary, since it can be captured by augmenting the covariate and regression vector as
follows:

b+Xβ =
(

1 X
)( b

β

)
.

We will denote a training dataset of N response-covariate tuples by T = {(yt, xt) | t = 1, . . . , N},
where each xt is a 1× p row vector representing an observation. Alternatively, we may employ
matrix notation, letting y = (yt)t=1:N be a row vector and x = (xti) an N×p matrix where each
row corresponds to an observation. The least squares (LS) estimate of β then is the minimiser
of the residual sum of squares (RSS) over the training set:

RSS(β̂; T ) =
1

N

N∑
t=1

(yt− xtβ̂)2 =
1

N
(y− xβ̂)T (y− xβ̂), and β̂LS(T ) = argmin

β̂

RSS(β̂; T ). (2)

Assuming N > p+ 1, which we do, the LS estimator can be written in closed-form as

β̂LS(T ) = (xTx)−1xTy. (3)

The dependence on the training set will be omitted when understood. In this project we will
often refer to a subset of covariates as a model M ⊆ {1, . . . , p}. The LS estimate for M is
computed on a reduced dataset TM, obtained by deleting all covariates not in the model:

TM =
(
yt, (xti)i∈M

)
t=1:N

.

For computational ease, we will instead represent the LS estimate for M in the p-dimensional
space of the original model. We denote this representation by β̂M, where

β̂Mj (T ) =

{
β̂LSπ(j)(T

M) if j ∈M,

0 otherwise.

Here π : M → {1, 2, . . . , ||M||} maps indices of covariates in the model to their respective
indices in the reduced dataset TM, so that xβ̂M(T ) is a (simpler) notation for xMβ̂LS(TM).
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2 The Bias-Variance tradeoff

Question 1 Assume model (1). Let β̂ be an estimator of β. Show that the expected
squared prediction error at a fixed, arbitrary location u can be decomposed as follows:

ET ,y|u(y − uβ̂)2 = σ2 +
(
uβ − ET [uβ̂]

)2
+ VarT [uβ̂],

where y ⊥ T . The summands on the right-hand side are often referred to as the irreducible
variance, squared estimation bias and estimation variance, respectively. Describe what
effect deleting the pth covariate can have on each of these quantities for the LS estimator
(i.e., switch β̂ = β̂LS with β̂ = β̂{1,...,p−1}). You may consider the simplest non-trivial
case, where x is fixed such that xTx = Ip. It might further be useful to look at βp = 0,
and then at βp 6= 0.

Question 2 Consider model (1) with p = 10, σ2 = 1, and X ∼ N(0, Ip), and set

β = (−0.5, 0.45,−0.4, 0.35,−0.3, 0.25,−0.2, 0.15,−0.1, 0.05)T .

Simulate a training dataset with Ntr = 30 and a test dataset with Nte = 1000. Now
consider

M1 = {1},M2 = {1, 2}, . . . ,Mp = {1, . . . , p}.

Write a procedure that computes the training and test error of β̂Mj for j = 1, . . . , p.
Repeat the experiment 100 times and report your results in a plot of training and test
RSS averaged over experiments, against model size. What happens if Ntr = 200, and why?

The above demonstrates an effect that holds in much greater generality, namely that suitably
reducing the complexity of a model (in this instance, the number of variables involved) can
improve prediction accuracy. There may also be gains in model discovery, interpretability, and,
of course, reduced observation costs. Consequently, variable selection methods are of interest.

3 Variable selection methods

We consider two approaches to variable selection, subset selection and shrinkage-based methods.
Subset selection methods look among all possible subsets of variables for the one that minimises
some suitable estimate of prediction error. The search problem becomes infeasible for large p,
and non-exhaustive greedy search methods have to be employed. Shrinkage-based variable
selection methods will instead penalise the RSS by a penalty term that forces the LS regression
coefficients to shrink in a manner that favours exact zeros in β̂.

3.1 Subset selection

Question 3 Best subsets selection. Write a procedure bestsubset which takes as
input a training dataset T and outputs a p×p matrix B, whose jth column contains β̂Mj

for the best performing model (in the sense of RSS) of size j, Mj :

Mj(T ) = argmin
M: ||M||=j

RSS
(
β̂M(T ); T

)
.

What is the size of the model space {M | M ⊆ {1, . . . , p}}? Your procedure will
handle with difficulty values of p for which the size of the search space {M | M ⊆
{1, . . . , p}, ||M|| = j} exceeds 105 for any j ∈ {1, . . . , p}. What is the smallest such p (show
your work)?
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Question 4 Greedy subset selection. Write a procedure greedysubset, using the
same input-output format as before, that incrementally builds up the model sequenceMj

by adding at each iteration the covariate that improves model fit the most:

M0 = ∅, Md+1(T ) =Md(T ) ∪

{
l | l = argmin

j
RSS

(
β̂Md(T )∪{j}(T ); T

)}
.

Can the fact that the family of models M0, . . . ,Mp is nested be used to gain in com-
putational efficiency? Explain how, without effecting the change. Assuming that Mj =

{1, . . . , j}, you might want to consider the upper left j × j block of
(
(xMj+1)TxMj+1

)−1
.

Question 5 Forward F-test. Amend greedysubset to stop whenever the newly added
variable does not significantly improve fit (at the p = .05 level), using the F-statistic

RSS(β̂Md)− RSS(β̂Md+1)

RSS(β̂Md+1)/(N − d− 1)
,

which you may assume follows an F1,N−d−1 distribution (you may use the MATLAB
function cdf ). Would this method work for best subset selection?

Question 6 We can represent a sparse (linear regression) estimator more generally as
an algorithm that takes as input a training set T and outputs a sequence of p candidate
regression vectors for each model size (i.e., the jth candidate β̂(j)(T ) has precisely p − j
zeros). Best and greedy subset search are special cases of this definition for which each
candidate is a least squares solution, a condition we will not insist on here. We would like
to select among candidates on the basis of estimated prediction error P̂E:

β̂CV(T ) = β̂j
?
(T ), where j? = argmin

j

{
P̂E(j, T )

}
.

The prediction error can be estimated using 10-fold cross-validation as

P̂E(j, T ) =
1

10

10∑
k=1

RSS
(
β̂(j)(T −k); T k

)
,

where T k is the kth fold of the training set and T −k its complement:

T k =

{
(yπ(n), xπ(n)) | k − 1 <

10n

N
6 k

}
,

T −k =

{
(yπ(n), xπ(n)) |

10n

N
6 k − 1 or

10n

N
> k

}
, (4)

where π is a random permutation of {1, . . . , N} (you may use the MATLAB function
randperm). Implementing the above for an arbitrary sparse estimator would involve a
function taking another function as an argument. In MATLAB, this can be achieved using
function handles, as demonstrated by handle demo.m and testerror.m available from the
CATAM website. Write a procedure crossval that implements the above (the MATLAB
functions ismember and find might be useful in this). This procedure should take as input
T and a sparse estimator, and output β̂CV(T ).
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3.2 The Lasso estimator

The Lasso estimator penalises the RSS by the L1 norm of the regression coefficients:

β̂(L,λ)(T ) = argmin
β̂

RSS
(
β̂; T

)
+ λ

p∑
j=1

∣∣∣β̂j∣∣∣
 (5)

Question 7 Express the Lasso as a quadratic program with linear constraints.

In the Lasso estimator, the degree of sparsity is controlled indirectly via the penalty weight
λ, rather than directly as in earlier methods. For λ = 0 the full model is employed, whereas
increasingly many covariates are deleted from the model as λ → ∞. Given an algorithm for
solving (5), we can then use cross-validation to select among any finite set of values λ1 < λ2 <
· · · < λq for λ. For simplicity, we will continue here to perform cross-validation to select model
size rather than λ. To do so, we will rely on the LARS algorithm, which, subject to certain
minor assumptions and modifications that do not concern us here, allows us to compute in an
efficient manner one Lasso solution for each model size. The file monotonic lars.m available
from the CATAM website contains an implementation of this modified LARS algorithm that
can be used as input to crossval.

Question 8 The file prostate.dat available from the CATAM website contains a prostate
cancer dataset.∗ The dataset has been preprocessed to standardise the covariates and make
all variables zero mean, so that you can avoid using an intercept. Column 1 contains the
response, lpsa, and columns 2 to 9 the covariates lcavol, lweight, age, lbph, svi, lcp, gleason,
and pgg45. Augment the dataset by adding four zero-mean, unit-variance covariates sam-
pled from a distribution of your liking independently of variables in prostate.dat. Separate
the data into a training dataset of size 70 and a test dataset of size 27. Perform a variable
selection analysis of the data using the tools developed above. Present and discuss your
results.

∗reproduced from http://www-stat.stanford.edu/~tibs/ElemStatLearn/
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