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Introduction

1 General

Please read the whole of this introductory chapter before beginning work on the projects. It
contains important information that you should know as you plan your approach to
the course.

1.1 Introduction

The course is a continuation of the Part IB Computational Projects course. The aim is to
continue your study of the techniques of solving problems in mathematics using computational
methods.

As in Part IB, the course is examined entirely through the submission of project
reports; there are no questions on the course in the written examination papers. The definitive
source for up-to-date information on the examination credit for the course is the Faculty of
Mathematics Schedules booklet for the academic year 2024-25. At the time of writing (July
2024) the booklet for the academic year 2023-24 states that

No questions on the Computational Projects are set on the written examination pa-
pers, credit for examination purposes being gained by the submission of reports. The
maximum credit obtainable is 150 marks and there are no alpha or beta quality marks.
Credit obtained is added directly to the credit gained on the written papers. The max-
imum contribution to the final merit mark is thus 150, which is the same as the
maximum for a 16-lecture course. The Computational Projects are considered to be
a single piece of work within the Mathematical Tripos.

1.2 The nature of CATAM projects

CATAM projects are intended to be exercises in independent investigation somewhat like those
a mathematician might be asked to undertake in the ‘real world’. They are well regarded by
external examiners, employers and researchers (and you might view them as a useful item of
your curriculum vitae).

The questions posed in the projects are more open-ended than standard Tripos questions: there
is not always a single ‘correct’ response, and often the method of investigation is not fully
specified. This is deliberate. Such an approach allows you both to demonstrate your ability
to use your own judgement in such matters, and also to produce mathematically intelligent,
relevant responses to imprecise questions. You will also gain credit for posing, and responding
to, further questions of your own that are suggested by your initial observations. You are allowed
and encouraged to use published literature (but it must be referenced, see also §5) to substantiate
your arguments, or support your methodology.

1.3 Timetable

You should work at your own speed on the projects contained in this booklet, which cover a
wide range of mathematical topics.
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A lecture covering administrative aspects of the course is given towards the start of the Michael-
mas Term. You may also wish to take advantage of programming tutorials available on-line if
you did not attempt the Computational Projects course in Part IB.

Your write-ups must be submitted by the second week of the Easter Term (see §6.2 below).
Please also note that you must be available in the last week of Easter term in case you
are called either for a routine Viva Voce Examination, or for an Examination Interview or an
Investigative Meeting if unfair means are suspected (see §5.2 below).

1.3.1 Planning your work

• You are strongly advised to complete all your computing work by the end of the Easter
vacation if at all possible, since the submission deadline is at the start of Easter Term.

• Do not leave writing up your projects until the last minute. When you are writing
up it is highly likely that you will either discover mistakes in your programming and/or
want to refine your code. This will take time. If you wish to maximise your marks, the
process of programming and writing-up is likely to be iterative, ideally with at least a
week or so between iterations.

• It is a good idea to write up each project as you go along, rather than to write all the
programs first and only then to write up the reports; each year several students make this
mistake and lose credit in consequence (in particular note that a program listing without
a write-up, or vice versa, gains no credit). You can, indeed should, review your write-ups
in the final week before the relevant submission date.

1.4 Programming language[s]

As was the case last year, the Faculty of Mathematics is supporting Matlab for Part II. During
your time in Cambridge the University will provide you with a free copy of Matlab for your
computer. Alternatively you can use the version of Matlab that is available on the Managed
Cluster Service (MCS) that is available at a number of UIS and institutional sites around the
Collegiate University.

1.4.1 Your copy of Matlab

All undergraduate students at the University are entitled to download and install Matlab on
their own computer that is running Windows, MacOS or Linux; your copy should be used for
non-commercial University use only. The files for download, and installation instructions, are
available at

http://www.maths.cam.ac.uk/undergrad/catam/software/matlabinstall/matlab-personal.htm.

This link is Raven protected. Several versions of Matlab may be available; if you are down-
loading Matlab for the first time it is recommended that you choose the latest version.

1.4.2 Programming guides and manual[s]

The Faculty of Mathematics has produced a booklet Learning to use Matlab for CATAM
project work , that provides a step-by-step introduction to Matlab suitable for beginners. This
is available on-line at
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http://www.maths.cam.ac.uk/undergrad/catam/MATLAB/manual/booklet.pdf

However, this short guide can only cover a small subset of the Matlab language. There are
many other guides available on the net and in book form that cover Matlab in far more depth.
In addition:

• Matlab has its own extensive built-in help and documentation.

• The suppliers of Matlab, The MathWorks, provide MATLAB Onramp, an interactive
tutorial on the basics which does not require MATLAB installation: see

http://uk.mathworks.com/support/learn-with-matlab-tutorials.html

• The MathWorks also provide the introductory guide Getting Started with Matlab. You
can access this by ‘left-clicking’ on the Getting Started link at the top of a Matlab
‘Command Window’. Alternatively there is an on-line version available at

http://uk.mathworks.com/help/matlab/getting-started-with-matlab.html

• Further, The MathWorks provide links to a whole a raft of other tutorials; see

https://uk.mathworks.com/support/learn-with-matlab-tutorials.html

In addition their Matlab documentation page gives more details on maths, graphics,
object-oriented programming etc.; see

http://uk.mathworks.com/help/matlab/index.html

• There is a plethora of books on Matlab. For instance:

(a) Numerical Computing with Matlab by Cleve Moler (SIAM, Second Edition, 2008,
ISBN 978-0-898716-60-3). This book can be downloaded for free from

http://uk.mathworks.com/moler/chapters.html

(b) Matlab Guide by D.J. Higham & N.J. Higham (SIAM, Second Edition, 2005, ISBN
0-89871-578-4).

You may be spoilt for choice: Google returns about 100,000,000 hits for the search
‘Matlab introduction’, and about 11,000,000 hits for the search ‘Matlab introduction
tutorial’.

• The Engineering Department has a webpage that lists a number of helpful articles; see

http://www.eng.cam.ac.uk/help/tpl/programs/matlab.html
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1.4.3 To Matlab, or not to Matlab

Use of Matlab is recommended,1 but you are free to write your programs in any computing
language whatsoever. Python, Julia,2 R,3 C, C++, Mathematica,4 Maple 5 and Haskell have been
used by several students in the past, and Excel has been used for plotting graphs of computed
results. The choice is your own, provided your system can produce results and program listings
for inclusion in your report.6

However, you should bear in mind the following points.

• The Faculty does not promise to help you with programming problems if you use a language
other than Matlab.

• Not all languages have the breadth of mathematical routines that come with the Matlab
package. You may discover either that you have to find reliable replacements, or that you
have to write your own versions of mathematical library routines that are pre-supplied in
Matlab (this can involve a fair amount of effort). To this end you may find reference
books, such as Numerical Recipes by W. H. Press et al. (CUP), useful. You may use
equivalent routines to those in Matlab from such works so long as you acknowledge
them, and reference them, in your write-ups.

• If you choose a high-level programming language that can perform advanced mathematical
operations automatically, then you should check whether use of such commands is permit-
ted in a particular project. As a rule of thumb, do not use a built-in function if there is
no equivalent Matlab routine that has been approved for use in the project description,
or if use of the built-in function would make the programming considerably easier than
intended. For example, use of a command to test whether an integer is prime would not
be allowed in a project which required you to write a program to find prime numbers. The
CATAM Helpline (see §4 below) can give clarification in specific cases.

• Subject to the aforementioned limited exceptions, you must write your own computer
programs. Downloading computer code, e.g. from the internet, that you are asked to write
yourself counts as plagiarism (see §5).

1.4.4 Computer Algebra Systems

Some projects require the use of a Computer Algebra System (CAS). At present none is specifi-
cally recommended but possible choices include the Symbolic Math Toolbox in Matlab, Math-
ematica and Maple.

1 Except where an alternative is explicitly stated, e.g. see footnotes 3 and 5.
2 Julia is a high-level open source language well suited to numerical computation. An Introduction to Julia

for CATAM under ongoing development is available from https://sje30.github.io/catam-julia/.
3 R is a programming language and software environment for statistical and numerical computing, as well as

visualisation. It is the recommended language for some Part II projects. R is available for free download for the
Linux, MacOS and Windows operating systems from http://www.r-project.org/.

4 Mathematica is a software package that supports symbolic computations and arbitrary precision numerical
calculations, as well as visualisation. At the time of writing Mathematica is also available for free to mathematics
students, but the agreement is subject to renewal. You can download versions of Mathematica for the Linux,
MacOS and Windows operating systems from

https://www.maths.cam.ac.uk/computing/software/mathematica/
5 Maple is a mathematics software package that supports symbolic computations and arbitrary precision

numerical calculations, as well as visualisation. It is the recommended language for some Part II projects.
6 There is no need to consult the CATAM Helpline as to your choice of language.
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Mathematica and Maple are also sensible choices for several projects other than the ones for
which a CAS is actually required, and you should feel free to use them for any of the projects,
but you should be aware of a few points:

• For intensive numerical calculations Maple should be told to use the hardware floating-
point unit (see help on evalhf).

• If you choose to use Maple, Mathematica, or any other CAS to do a project for which a
CAS is not specifically required, you should bear in mind that you may not be allowed to
use some of the built-in functions (see §1.4.3).

2 Project Reports

2.1 Project write-ups: examination credit

For each project, 40% of the marks available are awarded for writing programs that work and for
producing correct graphs, tables of results and so on. A further 50% of the marks are awarded
for answering mathematical questions in the project and for making appropriate mathematical
observations about your results.

The final 10% of marks are awarded for the overall ‘excellence’ of the write-up. Half of these
‘excellence’ marks may be awarded for presentation, that is for producing good clear output
(graphs, tables, etc.) which is easy to understand and interpret, and for the mathematical
clarity of your report.

The assessors may penalise a write-up that contains an excessive quantity of irrelevant material
(see below). In such cases, the ‘excellence’ mark may be reduced and could even become negative,
as low as -10%.

Unless the project specifies a way in which an algorithm should be implemented, marks are, in
general, not awarded for programming style, good or bad. Conversely, if your output is poorly
presented — for example, if your graphs are too small to be readable or are not annotated —
then you may lose marks.

No marks are given for the submission of program code without a report, or vice versa.

The marks for each project are scaled so that a possible maximum of 150 marks are available
for the Part II Computational Projects course. No quality marks (i.e. αs or βs) are awarded.
The maximum contribution to the final merit mark is thus 150 and the same as the maximum
for a 16-lecture course.

2.1.1 Examination credit: algorithm applied to the mark awarded for each project

Each project has a unit allocation. The mark awarded for each project is weighted according
to the unit allocation, with each project unit equating to a maximum of 5 Tripos marks. The
weighted marks for each project are summed to obtain a candidate’s total Tripos mark.

To obtain maximum credit, you should submit projects with unit allocations that sum to 30 units.
If you submit N units, where N > 30 (i.e. if you submit more then the maximum number of
units), then the following algorithm applies:
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If your weakest project is M units with M > N − 30 then the mark on that project
will be rescaled by [M − (N − 30)]/M . If M 6 N − 30 then that project will be
discarded entirely, a revised N will be calculated, and the algorithm will be applied
recursively.

This algorithm ensures that you can score no more than the overall maximum available, i.e. 150
Tripos marks, by reducing the mark only on your weakest project. There is no expectation that
you submit more than 30 units; this algorithm is simply a way to calculate your mark if you
do.7

A fractional total Tripos mark resulting from the weighting/scaling process is rounded up or
down to the nearest integer, with an exact half being rounded up.

2.2 Project write-ups: advice

Your record of the work done on each project should contain all the results asked for and your
comments on these results, together with any graphs or tables asked for, clearly labelled and
referred to in the report. However, it is important to remember that the project is set as a piece
of mathematics, rather than an exercise in computer programming; thus the most important
aspect of the write-up is the mathematical content. For instance:

• Your comments on the results of the programs should go beyond a rehearsal of the program
output and show an understanding of the mathematical and, if relevant, physical points
involved. The write-up should demonstrate that you have noticed the most important
features of your results, and understood the relevant mathematical background.

• When discussing the computational method you have used, you should distinguish between
points of interest in the algorithm itself, and details of your own particular implementation.
Discussion of the latter is usually unnecessary, but if there is some reason for including it,
please set it aside in your report under a special heading: it is rare for the assessors to be
interested in the details of how your programs work.

• Your comments should be pertinent and concise. Brief notes are perfectly satisfactory —
provided that you cover the salient points, and make your meaning precise and unam-
biguous — indeed, students who keep their comments concise can get better marks. An
over-long report may well lead an assessor to the conclusion that the candidate is unsure
of the essentials of a project and is using quantity in an attempt to hide the lack of quality.
Do not copy out chunks of the text of the projects themselves: you may assume that the
assessor is familiar with the background to each project and all the relevant equations.

• Similarly you should not reproduce large chunks of your lecture notes; you will not gain
credit for doing so (and indeed may lose credit as detailed in §2.1). However, you will be
expected to reference results from theory, and show that you understand how they relate to
your results. If you quote a theoretical result from a textbook, or from your notes, or from
the WWW, you should give both a brief justification of the result and a full reference.8 If
you are actually asked to prove a result, you should do so concisely.

• Graphs will sometimes be required, for instance to reveal some qualitative features of your
results. Such graphs, including labels, annotations, etc., need to be computer-generated

7 Needless to say, if you submit fewer than 30 units no upwards scaling applies.
8 See also the paragraph on Citations in §5
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(see also § 2.3). Further, while it may be easier to include only one graph per page, it is
often desirable (e.g. to aid comparison) to include two or more graphs on a page. Also,
do not forget to clearly label the axes of graphs or other plots, and provide any other
annotation necessary to interpret what is displayed. Similarly, the rows and columns of
any tables produced should be clearly labelled.

• You should take care to ensure that the assessor sees evidence that your programs do
indeed perform the tasks you claim they do. In most cases, this can be achieved by
including a sample output from the program. If a question asks you to write a program
to perform a task but doesn’t specify explicitly that you should use it on any particular
data, you should provide some ‘test’ data to run it on and include sample output in your
write-up. Similarly, if a project asks you to ‘print’ or ‘display’ a numerical result, you
should demonstrate that your program does indeed do this by including the output.

• Above all, make sure you comment where the manual specifically asks you to.
It also helps the assessors if you answer the questions in the order that they appear in
the manual and, if applicable, number your answers using the same numbering scheme
as that used by the project. Make clear which outputs, tables and graphs correspond to
which questions and programs.

The following are indicative of some points that might be addressed in the report; they are not
exhaustive and, of course not all will be appropriate for every project. In particular, some are
more relevant to pure mathematical projects, and others to applied ones.

• Does the algorithm or method always work? Have you tested it?

• What is the theoretical running time, or complexity, of the algorithm? Note that this
should be measured by the number of simple operations required, expressed in the usual
O
(
f(n)

)
or Ω

(
f(n)

)
notation, where n is some reasonable measure of the size of the input

(say the number of vertices of a graph) and f is a reasonably simple function. Examples
of simple operations are the addition or multiplication of two numbers, or the checking of
the (p, q) entry of a matrix to see if it is non-zero; with this definition finding the scalar
product of two vectors of length n takes order n operations. Note that this measure of
complexity can differ from the number of Matlab commands/‘operations’, e.g. there is a
single Matlab command to find a scalar product of two vectors of length n.

• What is the accuracy of the numerical method? Is it particularly appropriate for the
problem in question and, if so, why? How did you choose the step-size (if relevant), and
how did you confirm that your numerical results are reliably accurate for all calculations
performed?

• How do the numerical answers you obtain relate to the mathematical or physical system
being modelled? What conjectures or conclusions, if any, can you make from your results
about the physical system or abstract mathematical object under consideration?

In summary, it is the candidate’s responsibility to determine which points require discussion
in the report, to address these points fully but concisely, and to structure the whole so as to
present a clear and complete response to the project. It should be possible to read your write-up
without reference to the listing of your programs.

July 2024/Part II/Introduction Page 7 of 19 ©c University of Cambridge



2.2.1 Project write-ups: advice on length

The word brief peppers the last few paragraphs. To emphasise this point, in general eight sides
of A4 of text, excluding in-line graphs, tables, etc., should be plenty for a clear concise report
of a seven or eight unit project.9 Indeed, the best reports are sometimes shorter than this.

To this total you will of course need to add tables, graphs etc. However, do not include every
single piece of output you generate: include a selection of the output that is a representative
sample of graphs and tables. It is up to you to choose a selection which demonstrates all the
important features but is reasonably concise. Presenting mathematical results in a clear and
concise way is an important skill and one that you will be evaluated upon in CATAM. Twenty
pages of graphs would be excessive for most projects, even if the graphs were one to a page.10

Remember that the assessors will be allowed to deduct up to 10% of marks for any project
containing an excessive quantity of irrelevant material. Typically, such a project might be long-
winded, be very poorly structured, or contain long sections of prose that are not pertinent.
Moreover, if your answer to the question posed is buried within a lot of irrelevant material then
it may not receive credit, even if it is correct.

2.3 Project write-ups: technicalities

As emphasised above, elaborate write-ups are not required. You are required to submit your
project reports electronically. In particular, you will be asked to submit your write-ups elec-
tronically in Portable Document Format (PDF) form, and you should ensure that the submitted
file can be printed (in portrait mode on standard A4 paper). Note that many word processors
(e.g. LATEX, Microsoft Word, LibreOffice) will generate output in PDF form. In addition, there
are utility programs to convert output from one form to another, in particular to PDF form
(e.g. there are programs that will convert plain text to PDF). Before you make your choice of
word processor, you should confirm that you will be able to generate submittable output in PDF
form. Please note that a PDF file including pages generated by scanning a hand-written report
or other text document is not acceptable.

In a very few projects, where a sketch (or similar) is asked for, a scanned hand-drawing is
acceptable. Such exceptions will be noted explicitly in the project description.

If it will prove difficult for you to produce electronic write-ups, e.g. because of a disability, then
please contact the CATAM Helpline as early as possible in the academic year, so that reasonable
adjustments can be made for you.

Choice of Word Processor. As to the choice of word processor, there is no definitive answer.
Many mathematicians use LATEX (or, if they are of an older generation, TEX), e.g. this
document is written in LATEX. However, please note that although LATEX is well suited for
mathematical typesetting, it is absolutely acceptable to write reports using other word-
processing software, e.g. Microsoft Word or LibreOffice.

• Microsoft Word is commercial, but is available free while you are a student at Cam-
bridge: see

https://help.uis.cam.ac.uk/service/collaboration/office365.

• LibreOffice can be installed for free for, inter alia, the Windows, MacOS and Linux
operating systems from

9 Reports of projects with fewer/more units might be slightly shorter/longer.
10 Recall that graphs should not as a rule be printed one to a page.
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http://www.libreoffice.org/download/download/.

LATEX. If you decide to use LATEX, you will probably want to install it on your own personal
computer. This can be done for free. For recommendations of TEX distributions and
associated packages see

• http://www.tug.org/begin.html and

• http://www.tug.org/interest.html.

Front end. In addition to a TEX distribution you will also need a front-end (i.e. a ‘clever
editor’). A comparison of TEX editors is available on WikipediA; below we list a
few of the more popular TEX editors.

TEXstudio. For Windows, Mac and Linux users, there is TEXstudio. The proTEXt
distribution, based on MiKTEX, includes the TEXstudio front end.

TEXworks. Again for Windows, Mac and Linux users, there is TEXworks. The
MiKTEX distribution includes TEXworks.

TEXShop. Many Mac aficionados use TEXShop. To obtain TEXShop and the TEXLive
distribution see http://pages.uoregon.edu/koch/texshop/obtaining.html.

TEXnicCenter. TEXnicCenter is another [older] front end for Windows users.
LyX. LyX is not strictly a front end, but has been recommended by some previous

students. LyX is available from
http://www.lyx.org/.

However, note that LyX uses its own internal file format, which it converts to
LATEX as necessary.

Learning LATEX. A Brief LATEX Guide for CATAM is available for download from

http://www.maths.cam.ac.uk/undergrad/catam/files/Brief-Guide.pdf .

• The LATEX source file (which may be helpful as a template), and supporting files,
are available for download as a zip file from

http://www.maths.cam.ac.uk/undergrad/catam/files/Guide.zip .

Mac, Unix and most Windows users should already have an unzip utility. Win-
dows users can download 7-Zip if they have not.

Other sources of help. A welter of useful links have been collated by the Engineering De-
partment on their Text Processing using LATEX page; see

http://www.eng.cam.ac.uk/help/tpl/textprocessing/LaTeX_intro.html.

Layout of the first page. The first page of your report should include the project name and
project number.

Your script is marked anonymously. Hence, your name or user identifier should not ap-
pear anywhere in the write-up (including any output).

Further technicalities. Please do not use red or green for text (although red and/or green lines
on plots are acceptable). Please leave a margin at least 2 cm wide at the left, and number
each page, table and graph.

Program listings. At the end of each report you should include complete listings (i.e. printout
of source code) of every major program used to generate your results. You do not need to
include a listing of a program which is essentially a minor revision of another which you
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have already included. Make sure that your program listings are the very last thing in
your reports. Please do not mix program output and program listings together; if you do,
the program output may not be marked as part of the report.

3 Computing Facilities

You may write and run your programs on any computer you wish, whether it belongs to you
personally, to your College, or to the University.

When permitted by COVID protocols, you can also use other computing facilities around the
University; for further information (including which Colleges are linked to the MCS network)
see11

https://help.uis.cam.ac.uk/service/desktop-services/mcs/mcs-sites

At most MCS locations you can access the Matlab software and any files you store on the MCS
from one location should be accessible from any other MCS location.

If you believe that do not have access to an adequate computer to complete the CATAM projects,
you should contact your Director of Studies and/or the CATAM helpline well in advance of any
project deadlines.

3.1 Backups

Whatever computing facilities you use, make sure you make regular (electronic and pa-
per) backups of your work in case of disaster! Remember that occasionally systems go down
or disks crash or computers are stolen. Malfunctions of your own equipment or the MCS
are not an excuse for late submissions: leave yourself enough time before the deadline.

Possibly one of the easiest ways to ensure that your work is backed up is to use an online ‘cloud’
service; many of these services offer some free space. WikipediA has a fairly comprehensive list
at http://en.wikipedia.org/wiki/Comparison_of_online_backup_services. In particular note
that eligible students have 5TB of OneDrive personal storage space via their University Microsoft
account under a University agreement and unlimited storage via Google Drive (see https://help.
uis.cam.ac.uk/individual-storage).

4 Information Sources

There are many ways of getting help on matters relating to CATAM.

The CATAM Web Page. The CATAM web page,

http://www.maths.cam.ac.uk/undergrad/catam/

contains much useful information relating to CATAM. There are on-line, and up-to-date,
copies of the projects, and any data files required by the projects can be downloaded.
There is also the booklet Learning to use Matlab for CATAM project work .

11 Note that the Phoenix Teaching Rooms and the Titan Room are used during term-times for practical classes
by other Departments, but a list of these classes is posted at each site at the start of each term so that you can
check the availability in advance (see Opening Hours).
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CATAM News and Email. Any important information about CATAM (e.g. corrections to pro-
jects or to other information in the Manual) is publicised via CATAM News, which can
be reached from the CATAM web page. You must read CATAM News from time to time
(e.g. just before starting a project) to check for these and other important announcements,
such as submission dates and procedures.

As well as adding announcements to CATAM News, occasionally we will email students
using the year lists maintained by the Faculty of Mathematics. You have a responsibility
to read email from the Faculty, and if we send an email to one of those lists we will assume
that you have read it.

After 1 October 2024 you can check that you are on the appropriate Faculty year list by
referring to the https://lists.cam.ac.uk/mailman/raven webpage (to view this page you
will need to authenticate using Raven if you have not already done so). You should check
that the Maths-II mailing list is one of your current lists.

If you are not subscribed to the correct mailing list, then this can be corrected by contact-
ing the Faculty Undergraduate Office (email: undergrad-office@maths.cam.ac.uk) with a
request to be subscribed to the correct list (and, if necessary, unsubscribed from the wrong
list).

The CATAM Helpline. If you need help (e.g. if you need clarification about the wording of a
project, or if you have queries about programming and/or Matlab), you can email a query
to the CATAM Helpline: catam@maths.cam.ac.uk. Almost all queries may be sent to the
Helpline, and it is particularly useful to report potential errors in projects. However the
Helpline cannot answer detailed mathematical questions about particular projects. Indeed
if your query directly addresses a question in a project you may receive a standard reply
indicating that the Helpline cannot add anything more.

In order to help us manage the emails that we receive,

• please use an email address ending in cam.ac.uk (rather than a Gmail, etc. address)
both so that we may identify you and also so that your email is not identified as
spam;

• please specify, in the subject line of your email, ‘Part II’ as well as the project number
and title or other topic, such as ‘Matlab query’, to which your email relates;

• please also restrict each email to one question or comment (use multiple emails
if you have more than one question or comment).

The Helpline is available during Full Term and one week either side. Queries sent outside
these dates will be answered subject to personnel availability. We will endeavour (but
do not guarantee) to provide a response from the Helpline within three working days.
However, if the query has to be referred to an assessor, then it may take longer to receive
a reply. Please do not send emails to any other address.

The CATAM FAQ Web Pages. Before asking the Helpline about a particular project, please
check the CATAM FAQ web pages (accessible from the main CATAM web page). These
list questions which students regularly ask, and you may find that your query has already
been addressed.

Advice from Supervisors and Directors of Studies. The general rule is that advicemust be gen-
eral in nature. You should not have supervisions on any work that is yet to be submitted
for examination.

July 2024/Part II/Introduction Page 11 of 19 ©c University of Cambridge

http://www.maths.cam.ac.uk/undergrad/catam/news/
http://www.maths.cam.ac.uk/undergrad/catam/
http://www.maths.cam.ac.uk/undergrad/catam/news/
http://www.maths.cam.ac.uk/undergrad/catam/news/
https://lists.cam.ac.uk/mailman/raven
mailto:undergrad-office@maths.cam.ac.uk
mailto:catam@maths.cam.ac.uk
http://www.maths.cam.ac.uk/undergrad/catam/FAQ/


5 Unfair Means, Plagiarism and Guidelines for Collaboration

The objective of CATAM is for you to learn computational methods, mathematics and written
presentation skills. To achieve these objectives, you must work independently on the projects,
both on the programming and on the write-ups.

The work that you turn in must be your own. This applies equally to the source code and the
write-ups, i.e. you must write and test all programs yourself, and all reports must be written
independently.

Any attempt to gain an unfair advantage, for example by copying computer code, mathematics,
or written text, is not acceptable and will be subject to serious sanctions.

If you have any questions about what constitutes unfair means, you should seek advice from the
CATAM helpline.

Citations. It is, of course, perfectly permissible to use reference books, journals, reference articles
on the WWW or other similar material: indeed, you are encouraged to do this. You may
quote directly from reference works so long as you acknowledge the source (WWW pages
should be acknowledged by a full URL). There is no need to quote lengthy proofs in full,
but you should at least include your own brief summary of the material, together with a
full reference (including, if appropriate, the page number) of the proof.

Programs. You must write your own computer programs. Downloading computer code, e.g.
from the internet, that you are asked to write yourself counts as plagiarism even if cited.

Acceptable collaboration. It is recognised that some candidates may occasionally wish to discuss
their work with others doing similar projects. This can be educationally beneficial and is
accepted provided that it remains within reasonable bounds. Acceptable collaboration may
include an occasional general discussion of the approach to a project and of the numerical
algorithms needed to solve it. Small hints on debugging code (note the small), as might
be provided by an adviser, are also acceptable.

Unacceptable collaboration (also known as collusion). If a general discussion either is happening
regularly or gets to the point where physical or virtual notes are being exchanged (even on
the back of an envelope, napkin or stamp), then it has reached the stage of unacceptable
collaboration. As an example to clarify the limits of ‘acceptable collaboration’, if an
assessor reading two anonymous write-ups were to see significant similarities in results,
answers, mathematical approach or programming which would clearly not be expected from
students working independently, then there would appear to be a case that the students
have breached the limits. An Investigative Meeting would then be arranged (unless such
similarities were deemed to be justified in light of the declared lists of discussions, see
below). If you are uncertain about what constitutes an unacceptable collaboration you
should seek advice from the CATAM Helpline.

Generative AI. Using generative AI (e.g. ChatGPT, Bing, Bard and similar) to produce some
or part of the submitted write-up or source code would not be original work and hence
is considered a form of academic misconduct. This interpretation is consistent with Uni-
versity guidelines. We use software that is capable of detecting AI-generated content, and
where a case of unfair means is suspected, the Examiners may, at their discretion, examine
a candidate by means of an Oral Examination.

The following actions are examples of unfair means
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• copying any other person’s program, either automatically or by typing it in from a listing;

• using someone else’s program or any part of it as a model, or working from a jointly
produced detailed program outline;

• copying or paraphrasing of someone else’s report in whole or in part;

• turning in output from a generative AI either in the report or in the source code.

These comments apply just as much to copying from the work of previous Part II students, or
another third party (including any code, etc. you find on the internet), as they do to copying
from the work of students in your own year. Asking anyone for help that goes past the limits of
acceptable collaboration as outlined above, and this includes posting questions on the internet
(e.g. StackExchange), constitutes unfair means.

Further, you should not allow any present or future Part II student access to the work you have
undertaken for your own CATAM projects, even after you have submitted your write-ups. If
you knowingly give another student access to your CATAM work you are in breach of these
guidelines and may be charged with assisting another candidate to make use of unfair means.

5.1 Further information about policies regarding plagiarism and other forms
of unfair means

University-wide Statement on Plagiarism. You should familiarise yourself with the University’s
Statement on Plagiarism.

There is a link to this statement from the University’s Good academic practice and plagia-
rism website

http://www.plagiarism.admin.cam.ac.uk/,

which also features links to other useful resources, information and guidance.

Faculty Guidelines on Plagiarism. You should also be familiar with the Faculty of Mathematics
Guidelines on Plagiarism. These guidelines, which include advice on quoting, paraphrasing,
referencing, general indebtedness, and the use of web sources, are posted on the Faculty’s
website at

http://www.maths.cam.ac.uk/facultyboard/plagiarism/.

In order to preserve the academic integrity of the Computational Projects component of the
Mathematical Tripos, the following procedures have been adopted.

Declarations. To certify that you have read and understood these guidelines, you will be asked
to sign an electronic declaration. Further instructions will be given during Michaelmas
Term.

In order to certify that you have observed these guidelines, you will be required to sign
an electronic submission form provided when you submit your write-ups, and you are
advised to read it carefully; it will be similar to that reproduced (subject to revision) as
Appendix A. You must list on the form anybody (students, supervisors and Directors of
Studies alike) with whom you have exchanged information (e.g. by talking to them, or by
electronic means) about the projects at any more than a trivial level: any discussions that
affected your approach to the projects to any extent must be listed. Failure to include on
your submission form any discussion you may have had is a breach of these guidelines.
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However, declared exchanges are perfectly allowable so long as they fall within the limits
of ‘acceptable collaboration’ as defined above, and you should feel no qualms about listing
them. For instance, as long as you have refrained from discussing in any detail your pro-
grams or write-ups with others after starting work on them, then the limits have probably
not been breached.

The assessors will not have knowledge of your declaration until after all your projects have
been marked. However, your declaration may affect your CATAM marks if the assessors
believe that discussions have gone beyond the limits of what is acceptable. If so, or if there
is a suspicion that your have breached any of the other guidelines, you will be summoned
to an Investigative Meeting (see §5.2). Ultimately, your case could be brought to the
University courts and serious penalties could result (see Sanctions below).

Plagiarism detection. The programs and reports submitted will be checked carefully
both to ensure that they are your own work, and to ensure the results that
you hand in have been produced by your own programs.

Checks on submitted program code. The Faculty of Mathematics uses (and has used for
many years) specialised software, including that of external service providers, which
automatically checks whether your programs either have been copied or have un-
acceptable overlaps (e.g. the software can spot changes of notation). All programs
submitted are screened.
The code that you submit, and the code that your predecessors submitted, is kept in
anonymised form to check against code submitted in subsequent years.

Checks on electronically submitted reports. In addition, the Faculty of Mathematics will
screen your electronically submitted reports using the Turnitin UK text-matching
software. Further information will be sent to you before the submission date. The
electronic declaration which you will be asked to complete at the start of the Michael-
mas term will, inter alia, cover the use of Turnitin UK.
Your electronically submitted write-ups will be kept in anonymised form to check
against write-ups submitted in subsequent years.

Sanctions. If plagiarism, collusion or any other method of unfair means is suspected in the
Computational Projects, normally the Chair of Examiners will convene an Investigative
Meeting (see §5.2). If the Chair of Examiners deems that unfair means were used, the case
may be brought to the University courts. According to the Statues and Ordinances of the
University 12

suspected cases of the use of unfair means (of which plagiarism is one form) will
be investigated and may be brought to one of the University courts or disci-
plinary panels. The University courts and disciplinary panels have wide powers
to discipline those found to have used unfair means in an examination, including
depriving such persons of membership of the University, and deprivation of a
degree.

The Faculty of Mathematics wishes to make it clear that any breach of these
guidelines will be treated very seriously.

However, we also wish to emphasise that the great majority of candidates have, in the past,
had no difficulty in keeping to these guidelines. Unfortunately there have been a small number

12From https://www.admin.cam.ac.uk/univ/so/.
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of cases in recent years where some individuals have been penalised by the loss of significant
numbers of marks, indeed sufficient to drop a class. If you find the guidelines unclear in any
way you should seek advice from the CATAM Helpline. These policies and practices have been
put in to place so that you can be sure that the hard work you put into CATAM will be fairly
rewarded.

5.2 Oral examinations

Viva Voce Examinations. A number of candidates may be selected, either randomly or formu-
laically, for a Viva Voce Examination after submission of either the core or the additional
projects. This is a matter of routine, and therefore a summons to a Viva Voce Examina-
tion should not be taken to indicate that there is anything amiss. You will be asked some
straightforward questions on your project work, and may be asked to elaborate on the ex-
tent of discussions you may have had with other students. So long as you can demonstrate
that your write-ups are indeed your own, your answers will not alter your project marks.

Examination Interviews. Additionally, the Chair of Examiners may summon a particular can-
didate or particular candidates for interview on any aspect of the written work of the
candidate or candidates not produced in an examination room which in the opinion of
the Examiners requires elucidation. If plagiarism or other unfair means is suspected, an
Investigative Meeting will be convened (see below).

Investigative Meetings. When plagiarism, collusion or other unfair means are suspected the
Chair of Examiners may summon a candidate to an Investigative Meeting13. If this hap-
pens, you have the right to be accompanied by your Tutor (or another representative at
your request). The reasons for the meeting, together with copies of supporting evidence
and other relevant documentation, will be given to your Tutor (or other representative).
One possible outcome is that the case is brought to the University courts where serious
penalties can be imposed (see Sanctions above).

Timing. Viva Voce Examinations, Examination Interviews and Investigative Meetings are a for-
mal part of the Tripos examination, and if you are summoned then you must attend. These
will usually take place during the last week of Easter Full Term. Viva Voce Examinations
are likely to take place on the Monday of the last week (i.e. Monday 16th June 2025),
while Examination Interviews and Investigative Meetings may take place any time that
week. If you are required to attend a Viva Voce Examination, an Examination Interview
and or an Investigative Meeting you will be informed in writing just after the end of the
written examinations. You must be available in the last week of Easter Full Term in
case you are summoned.

6 Submission and Assessment

In order to gain examination credit for the work that you do on this course, you must write
reports on each of the projects that you have done. As emphasised earlier it is the quality (not
quantity) of your written report which is the most important factor in determining the marks
that you will be awarded.

13 For more information see
https://www.plagiarism.admin.cam.ac.uk/files/investigative_2016.pdf.

July 2024/Part II/Introduction Page 15 of 19 ©c University of Cambridge

https://www.plagiarism.admin.cam.ac.uk/files/investigative_2016.pdf


6.1 Submission form

When you submit your project reports you will be required to complete and upload the submis-
sion form provided, detailing which projects you have attempted and listing all discussions you
have had concerning CATAM (see §5, Unfair Means, Plagiarism and Guidelines for Collabora-
tion, and Appendix A). Further details, including the definitive submission form, will be made
available when the arrangements for electronic submission of reports and programs (see below)
are announced.

6.2 Submission of written work

In order to gain examination credit, you must:

• submit electronic copies of your reports and programs (see §6.3);

• complete and submit your submission form listing each project for which you wish to gain
credit.

Further details about submission arrangements will be announced via CATAM News and email
closer to the time.

The submission deadline is

Thursday 1st May 2025, 4pm.

Self-certified extensions may be obtained for a period of up to 7 days. A form to apply for an
extension will be made available on Moodle at the start of the submission period. Students must
inform their college Tutor that they are applying for an extension before filling out the extension
request form. Whenever possible, students should apply for an extension before the original
submission deadline. It will not be possible to apply for a self-certified extension later than 7
days after the original submission deadline. We strongly encourage all students to complete and
turn-in their work well in advance of the original submission deadline to allow time to deal with
any issues arising during submission and avoid impacts on other coursework and revision.

The Computational Projects Assessors Committee reserves the right to reduce the marks
awarded for any projects (including reports and source code) which are submitted late (either
the standard or extended deadline, as appropriate).

6.3 Electronic submission

You will be required to submit electronically copies of both your reports and your program source
files. Electronic submission enables the Faculty to run automatic checks on the independence
of your work, and also allows your programs to be inspected in depth (and if necessary run) by
the assessors.

As regards your programs, electronic submission applies whether you have done your work on
your own computer, on the MCS, or elsewhere, and is regardless of which programming language
you have chosen.

Details of the procedure will be given in advance of the submission deadlines via CATAM News
and email.

However please note that you will need to know your UIS password in
order to submit copies of your report and program source files.
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If you cannot remember your UIS password you will need to follow that instructions provided by
the University Information Service.14 Note that if you need a Password Reset Token then this
may take some time to obtain, so check that you know your UIS password well before submission
day.

6.4 Saving and sharing electronic files

After the submission deadline the electronic files will be taken offline and you will not be able
to download your submitted work from the submission site. We recommend that you keep
electronic copies of your work.

Since the manuals will be taken off-line after the close of submission, you might also like to save
a copy of the projects you have attempted.

It is critical that you do not make your reports or source code available to any
present or future students. This includes posting to publically accessible repositories
such as github.

Please note that all material that you submit electronically is kept in anonymised form to check
against write-ups and program code submitted in subsequent years.

6.5 Returning from intermission

If a student is returning from intermission that began in an academic year during which they
submitted some or all of the CATAM projects, then in certain circumstances it is possible to
carry forward some or all of their CATAM marks from that year. Action is required by the
Director of Studies. Hence, before attempting any further CATAM work, the student should
discuss the options available with their Director of Studies and decide on their intended strategy.

The following general policies have been approved by the Faculty Board. If there are exceptional
circumstances in which these seem inappropriate, the Director of Studies should discuss these
with the CATAM Director: catam-director@maths.cam.ac.uk.

In the unlikely event that a Part II student submits some CATAM projects in the Easter Term,
intermits, and is then allowed to repeat the entire year starting in Michaelmas Term, they should
normally be expected to start CATAM afresh as a logical part of repeating the year.

On the other hand, if a Part II student submits some CATAM projects in the Easter Term,
then intermits, and then returns at the start of either the Lent Term or the Easter Term, then
any marks on projects submitted should be carried over. In addition, the student may submit
as many new projects as they wish in the Easter Term of the year they return. If the total
number of units submitted is greater than 30, then they will receive credit for their best 30 units,
as defined by the standard algorithm. The Director of Studies must notify the Undergraduate
Office and the CATAM Director about any marks that are to be carried forward.

14 See https://password.csx.cam.ac.uk/forgotten-passwd.
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A Appendix: Example Submission Form

PART II MATHEMATICAL TRIPOS 2024-25

Computational Projects 2024

COMPUTATIONAL PROJECTS

STATEMENT OF PROJECTS SUBMITTED FOR EXAMINATION CREDIT

Please observe these points when submitting your CATAM projects:

1. Your name, College or CRSid User Identifier must not appear anywhere in the submitted
work.

2. Complete this declaration form and submit it electronically with your reports.

3. The Moodle submission site will close at 4pm on submission day and it is likely to be
slow immediately prior to the deadline. Please turn in your work earlier if possible and be
prepared for delays in the website on submission day.

IMPORTANT

Candidates are reminded that Discipline Regulation 7 reads:

No candidate shall make use of unfair means in any University examination. Unfair
means shall include plagiarism15 and, unless such possession is specifically autho-
rized, the possession of any book, paper or other material relevant to the examina-
tion. No member of the University shall assist a candidate to make use of such unfair
means.

To confirm that you are aware of this, you must check and sign the declaration below and
include it with your work when it is submitted for credit.

The Faculty of Mathematics wishes to make it clear that failure to comply with this
requirement is a serious matter that could render you liable to sanctions imposed by
the University courts.

15 Plagiarism is defined as submitting as one’s own work, irrespective of intent to deceive, that which derives
in part or in its entirety from the work of others without due acknowledgement.

July 2024/Part II/Introduction Page 18 of 19 ©c University of Cambridge



DECLARATION BY CANDIDATE

I hereby submit my reports on the following projects and wish them to be assessed for exami-
nation credit:

Project
Number

Brief Title Credit
Units

Total Credit Units

I certify that I have read and understood the section Unfair Means, Plagiarism and Guidelines
for Collaboration in the Projects Manual (including the references therein), and that I have
conformed with the guidelines given there as regards any work submitted for assessment at the
University. I understand that the penalties may be severe if I am found to have not kept to the
guidelines in the section Unfair Means, Plagiarism and Guidelines for Collaboration. I agree to
the Faculty of Mathematics using specialised software, including Turnitin UK, to automatically
check whether my submitted work has been copied or plagiarised and, in particular, I certify
that

• the composing and writing of these project reports is my own unaided work and no part
of it is a copy or paraphrase of work of anyone other than myself;

• the computer programs and listings and results were not copied from anyone or from
anywhere (apart from the course material provided);

• I have not shown my programs or written work to any other candidate or allowed anyone
else to have access to them;

• I have listed below anybody, other than the CATAM Helpline or CATAM advisers, with
whom I have had discussions or exchanged information at any more than a trivial level
about the CATAM projects, together with the nature of those discussions and/or ex-
changes.

Declaration of Discussions and Exchanges (continue on a separate sheet if necessary)

Signed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1 Numerical Methods

1.3 Parabolic Partial Differential Equations (7 units)

Part II Numerical Analysis is useful but not essential, since the required background can readily
be found in references [1, 2, 3], and elsewhere.

1 Formulation

For times 0 6 t <∞ we wish to solve the diffusion equation

θt = θxx

on the interval 0 6 x 6 1, with boundary conditions

θ(0, t) = f(t) and θ(1, t) = 0 for 0 6 t <∞ , where f(t) = t(1− t),

and with initial condition

θ(x, t) = 0 for t 6 0 , 0 6 x 6 1.

This is the (non-dimensionalised) initial-value problem for the conduction of heat down a bar
when the temperature of one end varies in time. The aim is to study the performance of three
simple finite-difference methods applied to this problem, for which the numerical solutions can
be compared with an analytic one.

2 Analytic solution

Question 1

(i) To find an analytic solution of the problem first write

θ(x, t) = f(t)(1− x) + φ(x, t) .

Next find the governing equation, boundary conditions and initial condition for
φ(x, t). Thence, with justification, solve for φ in terms of a Fourier sine series in x.

(ii) Deduce, either from the Fourier sine series or otherwise, that as t→∞

φ(x, t)→ α(x)t+ β(x) , (1)

where the functions α(x) and β(x) are to be identified.

(iii) Write a program to compute the analytic solution by summing a finite number of
terms of the series, or otherwise.

(iv) Plot θ against x at a few judiciously chosen values of t to illustrate the evolution in
time.

(v) How have you satisfied yourself that the solution has been computed to ‘sufficient’
accuracy?

(vi) Discuss the evolution of the temperature in terms of the physics.
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3 Numerical Methods

Divide 0 6 x 6 1 into N intervals, each of size δx ≡ 1/N . The aim is to march the solution
forward in time for various time steps δt. We consider three schemes.

(i) Approximate θt by a forward difference in time and θxx by a spatial central difference at
the current time, which gives the numerical scheme

θm+1
n − θmn

δt
=

(
δ2θ

)m
n
≡
θmn+1 − 2θmn + θmn−1

(δx)2
,

where θmn is an approximation to θ (nδx,mδt).

(ii) Approximate θt instead by a central difference in time, so that

θm+1
n − θm−1

n

2δt
=

(
δ2θ

)m
n
.

In this case you will need scheme (i) in order to make the first step.

(iii) Modify scheme (i) to

θm+1
n − θmn

δt
= ρ

(
δ2θ

)m+1

n
+ (1− ρ)

(
δ2θ

)m
n

with 0 < ρ 6 1. This is now an implicit method, and at each step (N + 1) simultaneous
equations have to be solved for the θm+1

n .

Remarks

(a) The matrix of the simultaneous equations is tridiagonal. Therefore the system may
be solved quickly and efficiently by exploiting the sparsity. Your code should make
use of the sparsity, e.g. the matrix should be stored in an efficient way, and needless
multiplications by zero avoided. If you are using Matlab then help sparse, help
spdiags and help speye should help.

(b) You can check that aspects of your program are working by setting ρ = 0 and com-
paring with the output of scheme (i).

Question 2 It is convenient to introduce the Courant number ν = δt/(δx)2.

(i) First run each finite-difference scheme with N = 5 and ν = 1
2 and, in the case of

scheme (iii), ρ = 1
2 . Plot the solution for representative times. In particular, tabulate

and plot the numerical solution θmn , the analytic solution θ(nδx,mδt) and the error
θmn − θ(nδx,mδt) at t = 0.1.

(ii) Next investigate a range of values of your choice for the parameters ν (for all schemes)
and ρ (for scheme (iii)) and describe the results. You might like to start by considering
ν = 1

12 ,
1
6 ,

1
3 ,

1
2 ,

2
3 and 1, and N = 5, 20, 80. In the case of scheme (iii) also consider

δt = µδx (i.e. ν = µ/δx) for appropriate values of the constants µ and ρ.

(iii) Discuss the accuracy and the stability of each scheme, and how these properties vary
with N , ν and ρ. For instance, are your results consistent with the theoretical order of
accuracy of each scheme, e.g. see [1, 2, 3]? Statements about accuracy and stability
should be supported by selective reference to your numerical results, displayed as
short tables and/or graphs. Relevant theoretical results should be cited briefly.

Comment on, and explain, any interesting features, e.g. do you notice anything about
the error in the case of scheme (i) with ν = 1

6 , scheme (iii) with particular choices of
ρ and ν, and scheme (iii) with ρ = 1

2 and δt = µδx?
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(iv) Explain, with justification, which scheme and parameter values you would recommend
to achieve a given level of accuracy using the least computing resources. In particular,
you should consider the total operation count to achieve a given level of accuracy.

(v) For your recommended scheme and parameter values, demonstrate that the numerical
solution tends to the asymptotic limit (1) as t→∞.

References

[1] Ames, W.F. Numerical Methods for Partial Differential Equations, Academic Press.

[2] Iserles, A. A First Course in the Numerical Analysis of Differential Equations, CUP.

[3] Smith, G.D. Numerical Solution of Partial Differential Equations: Finite Difference Meth-
ods, OUP.
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1 Numerical Methods

1.8 Hyperbolic Partial Differential Equations (8 units)

This project concerns shock formation and propagation in nonlinear hyperbolic equations. While
this project is largely self-contained, knowledge of the Part II Waves and Part II Numerical
Analysis courses is helpful. You might also find it helpful to refer to one or more of the following
textbooks: Billingham & King [1], Lighthill [2], Renardy & Rogers [3] or Whitham [5].

1 Background

The Euler equations of compressible fluid dynamics allow for the development of some interesting
non-linear features; for example shocks (or sonic booms) and rarefaction fans. A useful model
equation both for furthering our understanding of such solutions and for developing numerical
methods for the Euler equations is

ut + f(u)x = 0, f(u) = 1
2u

2 , (1)

known variously as the kinematic wave equation or the inviscid Burger’s equation. This equa-
tion’s interest lies in the fact it posesses a non-linear flux term proportional to the square of
the basic variable u, identical to the convection term present in the Euler equations.

Question 1 Show analytically that u is constant along the characteristic curves of (1).
A ‘shock’ develops at the point in space and time where characteristic curves intersect. In
the context of (1) and with the aid of characteristic diagrams (sketch only∗), clearly state
the condition required for a shock to form and provide examples of initial conditions with
qualitatively different behaviour.

Consider the following discontinuous initial condition:

u(x, 0) = u0(x) =

{
u1 x < 0, t = 0

u2 x > 0, t = 0

with u1 < u2. Obtain and sketch a solution to (1) satisfying this initial condition and
discuss the possibility for shock formation in this case.

In the numerical work to follow we wish to solve (1) subject to the following initial condition

u(x, 0) =


−1 x < 1,

1/2 1 6 x < 2,

0 x > 2,

(2)

on the domain x ∈ [0, 3]. The boundary conditions at x = 0 and x = 3 should be taken to be
those of out-flow.

∗ Whereas almost all graphs, including labels, annotations, etc., need to be computer-generated, this is one
of the relatively few cases where a scanned hand-drawing is acceptable for electronic submission.
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2 Numerical Fundamentals

We divide our domain of interest into J cells each of size ∆x. Our basic variable u is conserved
under the action of equation (1). It is, therefore, important that this is reflected in any numerical
method we employ. A particular class of methods with this conservation property update the
solution at the ith cell via

un+1
i = uni +

∆t

∆x

(
F (uni−1, u

n
i )− F (uni , u

n
i+1)

)
. (3)

In this equation n is the current time level, n+1 the next time level and ∆t the time step between
the two; F (uL, uR) is the numerical flux through the interface between two neighbouring cells,
uL and uR the states of the left and right cells respectively. The update is conservative no
matter how we define the function F .

The time step ∆t need not necessarily be constant throughout our numerical calculation. One
approach is to let it be given by the formula

∆t =
∆xCcfl

Sn
max

, (4)

wherein 0 < Ccfl 6 1 is the Courant-Friedrichs-Lewy (CFL) coefficient and Sn
max the maximum

wave speed at time level n. In the case of equation (1) this is simply

Sn
max = max

06i6J
{|uni |}.

3 Numerical Methods

A simple numerical method is the Lax-Friedrichs scheme wherein the numerical flux is defined
as

FLF(uL, uR) =
1

2

(
f(uL) + f(uR)

)
+

1

2

∆x

∆t
(uL − uR). (5)

Question 2 Given the initial condition (2) and the boundary conditions specified in
Section 1, write a program that marches equation (1) forward to a time t = 1

2 using the
Lax-Friedrichs scheme. Derive the exact solution analytically and compare your numerical
solution with it. What is the order of accuracy of the scheme?

Another numerical method is the Richtmyer scheme. The numerical flux in this case is calculated
via

uRi =
1

2
(uL + uR) +

1

2

∆t

∆x

(
f(uL)− f(uR)

)
, FRi(uL, uR) = f(uRi). (6)

Question 3 Using the same initial and boundary conditions as in Question 2, write a
program that marches equation (1) forward to a time t = 1

2 using the Richtmyer scheme.
Compare your numerical solution with the exact solution commenting on the order of
accuracy and any interesting features you observe. How do these results compare with
those obtained previously? Your remarks should include an outline discussion of the
property known as monotonicity and a statement of its relevance to both the Richtmyer
and Lax-Friedrichs schemes. Reference to the textbook by Toro [4] may be helpful.
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In order to eradicate the inaccuracies associated with each of the above schemes, the following
numerical flux was proposed:

F = FLO + φ[FHI − FLO], (7)

which contains both a high (HI) and low (LO) order flux and a flux limiter φ. The limiter lies
in the range 0 6 φ 6 1 and acts to vary the overall flux, F , locally between low and high order.

There are many different limiter functions. We will consider here

φ =


0 r 6 0,

r 0 6 r 6 1,

1 r > 1,

wherein r is defined locally as

rni = min

{
uni − uni−1

uni+1 − uni
,
uni+2 − uni+1

uni+1 − uni

}
(8)

and is a measure of the local change in gradient of the solution.

Question 4 Is the overall flux, F , predominantly high or low order accurate in the
neighbourhood of:

(i) sharp changes in gradient?

(ii) slight changes in gradient?

Outline your reasoning given the above formulae and why, in light of earlier results, such
variation of F is desirable.

A particular method is the Flux LImited Centred (FLIC) scheme. In this case the high and low
order fluxes are defined as

FHI = FRi,

FLO = 1
2 [FLF + FRi].

Question 5 Using the same initial and boundary conditions as in Questions 2 and 3,
write a program that marches equation (1) forward to a time t = 1

2 using the FLIC
scheme. Compare your numerical results with the exact solution and with the results
obtained earlier. To what extent has the scheme eliminated the undesirable features of
the previous methods?

References

[1] Billingham, J. & King, A.C. Wave Motion: Theory and application. Cambridge University
Press, 2000.

[2] Lighthill, M.J. Waves in Fluids. Cambridge University Press, 1978.

[3] Renardy, M. & Rogers, R.C. An Introduction to Partial Differential Equations. Springer-
Verlag, 1993.

[4] Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag,
1997.

[5] Whitham, G.B. Linear and Nonlinear Waves. Wiley, 1999.
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2 Waves

2.7 Soliton Solutions of the KdV Equation (7 units)

This project assumes only basic knowledge of wave equations and does not rely directly on any
Part II lecture course. The Part II(D) course Integrable Systems may be useful but the project
should be quite accessible to those who have not taken this course, using Drazin & Johnson [1]
as a suitable reference.

1 Theory

The Korteweg-de Vries (KdV) equation,

ut + uux + δ2uxxx = 0 , (1)

arises in many branches of physics as a model for the evolution and interaction of nonlinear
waves. It is well-known that the equation possesses single-soliton solutions of the form u(x, t) =
f(x− ct), where

f(x) = Asech2

(
x− x0

∆

)
, ∆2 = 12δ2/A , c = A/3 , (2)

and where A and x0 are arbitrary constants representing the amplitude and initial location of
the soliton respectively. It is supposed that u(x, t) obeys the cyclic boundary conditions,

u(x+ 1, t) = u(x, t) , (3)

so that only the region 0 6 x 6 1 need be considered.

2 Questions

Question 1 Verify that the single soliton (2) is indeed a [non-periodic] solution of the
KdV equation. For a periodic solution satisfying (3), prove that the mass, M , and the
energy, E, of the motion, defined by

M ≡
∫ 1

0
u(x, t)dx and E ≡

∫ 1

0

1

2
u2(x, t)dx , (4)

are independent of time.

Question 2 A leap-frog scheme first employed by Zabusky & Kruskal for solving the
KdV equation is given on page 184 of Drazin & Johnson [1]. Let unm be the solution at
x = hm and t = kn with n, m = 0, 1,. . . , then the KdV equation can be discretised as

un+1
m = un−1

m − k

3h
(unm+1+unm+unm−1)(u

n
m+1−unm−1)−

kδ2

h3
(unm+2−2unm+1+2unm−1−unm−2) .

(5)
What is the order of this scheme? For δ = 1, this scheme will be stable provided that

k 6
h3

4 + h2|umax|
, (6)
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where |umax| is the maximum modulus of u. By rescaling the KdV equation, derive the
stability condition for δ 6= 1.

Write a program to implement (5). Note that you will need an alternative method for
making the first step; explain your choice carefully in your write-up. As as a check on the
accuracy of your program, use it to calculate u(x,0.5) for the initial data

u(x, 0) = A sech2

(
x− x0

∆

)
, (7)

with δ = 0.03, A = 2 and x0 = 0.25.

Estimate the error in your results, and clearly explain the reasoning behind your choice of
the values of k and h. Plot on the same axes graphs of both your numerical solution and
the exact solution at t = 0.5. Comment on any differences. Does the propagation speed
of the numerical solution agree exactly with that of the analytical solution?

Question 3 Describe and comment on the evolution of the initial data corresponding
to the sum of two solitons, one with A = 2 and x0 = 0.25, and a second with A = 1
and x0 = 0.75, again with δ = 0.03. Illustrate your answer with plots of the numerical
solution at several instants. In addition, use the trapezium rule to calculate the mass and
energy associated with your numerical solution at each time step, and comment on their
variation with time (you need not output these quantities at every time step).

Question 4 Consider now
u(x, 0) = sin(2πx) . (8)

In the case δ = 0 give a very brief qualitative description of the evolution of this initial
data. Use your program to investigate the case δ = 0.03 numerically, plotting graphs of
the solution at suitable instants. With particular reference to the relative magnitudes
of the various terms in the KdV equation, explain why your numerical solution changes
character at a certain time; estimate this time. Describe how the solution evolves after
this time.

Try different values of δ, both larger and smaller than 0.03, and comment on the results
that you obtain.

References

[1] Drazin, P.G. & Johnson, R.S. (1989) Solitons: An Introduction, CUP.

[2] Zabusky, N. & Kruskal, M (1965) Interaction of “solitons” in a collisionless plasma and the
recurrence of initial states. Physical Review Letters, volume 15, number 6, pages 240-3.
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2 Waves

2.10 Phase and Group Velocity (8 units)

Part II Waves is helpful but not essential. The main prerequisite is an elementary knowledge of
the method of stationary phase, as taught in Part II Waves and Part II Asymptotic Methods.
However, all the required material can be found in [1], or any of the books listed in the Asymp-
totic Methods schedule, or those by Billingham & King, Lighthill and Whitham in the Waves
schedule.

The Klein-Gordon equation,

u(x, t) : utt − c2
0uxx = −q2u with c0 > 0 and q > 0 constants , (1)

arises, for example, when looking for solutions of ‘the’ wave equation ptt − c2
0∇2p = 0∗ in the

form p = u(x, t) cos (mπy/a) cos (nπz/b) to describe the propagation of, say, sound waves in a
rectangular tube (‘waveguide’) occupying 0 < y < a, 0 < z < b. It is a simple example of a
wave equation which is both hyperbolic (there is an upper bound on the speed at which waves
can propagate) and dispersive (different Fourier components propagate at different speeds).

1 Initial-value problem

The goal of this part of the project is to solve (1) for x ∈ (−∞,∞) with initial conditions

u(x, 0) = f(x) , ut(x, 0) = 0 , (2)

where f(x) is some specified (real) function with f(x)→ 0 as |x| → ∞, and which for simplicity
we shall assume to be even in x, in which case the solution u(x, t) will be even in x for all t.
Without loss of generality we set c0 = 1. (Why?)

When q = 0, (1) reduces to ‘the’ one-dimensional wave equation familiar from IB Methods, and
the solution subject to (2) is

u(x, t) = 1
2 [f(x− t) + f(x+ t)] . (3)

Question 1 Show that for general q, (1)–(2) may be solved by a Fourier transform in
x to give

u(x, t) =
1

4π

∫ ∞
−∞

f̃(k)eikx−iΩ(k)tdk + complex conjugate (4)

where

f̃(k) =

∫ ∞
−∞

f(x)e−ikxdx (5)

and
Ω(k) =

√
q2 + k2 (the ‘dispersion relation’). (6)

Note that if f(x) is even in x, f̃(k) is real (and even in k).

Sketch graphs† of ‘phase velocity’ Ω(k)/k, and ‘group velocity’ Ω′(k) against k (on the
same axes). Give a physical interpretation of phase velocity.

∗More properly, this should be called ‘the linear non-dispersive wave equation’, for there are many other
equations which describe wave propagation, the Klein-Gordon equation being one such.

† Whereas almost all graphs, including labels, annotations, etc., need to be computer-generated, this is one
of the relatively few cases where a scanned hand-drawing is acceptable for electronic submission.
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An alternative representation of the solution, which you are not asked to verify‡, is

u(x, t) = 1
2

[
f(x− t) + f(x+ t)− qt

∫ π/2

−π/2
J1 (qt cos θ) f (x+ t sin θ) dθ

]
(7)

where J1(x) is the Bessel function of the first kind [which could be computed by using the
MATLAB function besselj(1,x)]. Neither analytic form is particularly suitable for calculating
u(x, t) at a large number of points. Nevertheless, the Fourier representation is convenient in
allowing a simple approximation for large t to be obtained by the method of stationary phase.

Question 2 Giving only a brief outline of the theory, show by the method of stationary
phase applied to the integral (4) that for q > 0, in the limit t → ∞ with V ≡ x/t fixed
and |V | < 1

u(x, t) ∼
[
2πΩ′′(k0)t

]−1/2 |f̃(k0)| cos
[
k0x− Ω(k0)t+ arg f̃(k0)− 1

4π
]

(8)

where k0 is specified by
Ω′(k0) = V , (9)

and hence (assuming that f̃(k) is real)

u(x, t) ∼ q1/2t

(2π)1/2 (t2 − x2)3/4
f̃

(
qx√
t2 − x2

)
cos
(
q
√
t2 − x2 + 1

4π
)

for |x| < t . (10)

Explain how this provides a physical interpretation of group velocity.

Question 3 Write a program to solve (1)–(2) numerically as follows: take a uniform
grid with steplengths ∆t in t and ∆x in x, and use the centred-difference approximation

utt(x, t) =
u(x, t+ ∆t)− 2u(x, t) + u(x, t−∆t)

(∆t)2 +O
(

(∆t)2
)
, (11)

and a similar one for uxx, to generate the finite-difference scheme

uj+1
i − 2uji + uj−1

i

(∆t)2 −
uji+1 − 2uji + uji−1

(∆x)2 = −q2

(
uji+1 + uji−1

2

)
(12)

where uji is an approximation to u (i∆x, j∆t). (It is possible to use the more natural −q2uji
on the right-hand side, but then a smaller ∆t may be required for numerical stability: see
[2], p.588.) The solution at t-level j + 1 can thus be found from those at j and j − 1.
Clearly the first t-level needs special treatment: for the initial conditions (2) it is sufficient,
to the order of accuracy of the scheme, to set u−1

i = u1
i . (Why?) Further, since we are

restricting attention to solutions even in x, we need only solve in 0 6 x 6 L ≡ N∆x
with the additional boundary condition ux(0, t) = 0, which can be implemented in the
finite-difference scheme by setting uj−1 = uj1. Note that the uj0 are determined as part of

the solution, but the outer-boundary values ujN need to be specified.

‡The derivation is indicated in [3]
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Run the program with

f(x) =

{
(1− x2)2 |x| 6 1
0 |x| > 1

, (13)

for both q = 0 and q = 1, at least up to t = 50. The x-range should be sufficiently
large that the outer-boundary values ujN can safely be set equal to zero. Experiment with
different values of ∆x and ∆t/∆x, and comment on the accuracy and stability of the
numerical scheme; you may wish to compare with the exact solutions (3) and/or (7) at
selected points.

Find f̃(k) and plot its graph.

Plot the finite-difference solutions against x at various representative values of t, using
steplengths which are sufficiently small for graphical accuracy; for the case q = 1, su-
perpose the stationary-phase approximation (10). Comment on the solutions, mentioning
similarities and differences between those for q = 0 and q = 1. What would you expect to
happen if q were non-zero but very small?

2 Signalling Problem

Question 4 Modify your program to solve (1) for x > 0, t > 0 with the initial
conditions

u(x, 0) = ut(x, 0) = 0

and the boundary condition
u(0, t) = sin (ω0t) .

Physically, this describes a system which is undisturbed (u ≡ 0) for t < 0, but excited for
t > 0 by a time-harmonic forcing applied at x = 0. As before, there is no loss of generality
in taking c0 = 1. (Why?)

For q = 0, find the solution analytically, and use it as a check on the program.

Run the program with q = 1 and ω0 = 0.9, 1.1 and 1.5, at least as far as t = 150, with
suitable steplengths and domain size (give brief justification for your choice). For each
case, present selected results to illustrate the key features. Comment on the solutions,
particularly in the light of phase and group velocities (see Question 1).
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3 Fluid and Solid Dynamics

3.1 Boundary-Layer Flow (6 units)

This project is based on a section of the Part II course Fluid Dynamics but the relevant material
can be found in Chapter 8 of [1] or Chapter V of [2]; a brief outline is given below. Further
relevant material can be found in book by Sobey [3] and the paper by Stewartson [4].

1 Background Theory

Consider flow of an incompressible viscous fluid of constant density ρ and kinematic viscosity ν,
whose velocity u(x, t) and hydrodynamic pressure p(x, t) satisfy the incompressibility condition

∇.u = 0 , (1)

and the Navier-Stokes momentum equation

ρ (ut + (u.∇)u) = −∇p+ ρν∇2u . (2)

It follows that the vorticity ω ≡ ∇× u satisfies

ωt + (u.∇)ω − (ω.∇)u = ν∇2ω . (3)

If the flow is two-dimensional, it can be expressed in terms of a streamfunction ψ(x, y, t), with

u ≡ (u, v, 0) =

(
∂ψ

∂y
,−∂ψ

∂x
, 0

)
, ω =

(
0, 0,−∇2ψ

)
, (4)

in terms of which the vorticity equation (3) becomes

∂

∂t

(
∇2ψ

)
−
∂
(
ψ,∇2ψ

)
∂ (x, y)

= ν∇2
(
∇2ψ

)
. (5)

Suppose there is a stationary rigid boundary on y = 0, x > 0 on which must be satisfied the
conditions of no slip, u = 0, and no penetration, v = 0. If the viscosity is ‘small’, then away from
the boundary the flow may, to a good approximation, be irrotational: in this case u ≈ ∇φ for a
velocity potential φ satisfying ∇2φ = 0 (incompressibility) and ∂φ/∂y = 0 on y = 0, x > 0 (no
penetration). These conditions, together with corresponding ones on other boundaries and/or
at infinity, are sufficient to determine ∇φ uniquely. As a result, it is not possible to specify the
tangential (‘slip’) velocity component on the boundary, i.e.

∂φ

∂x
(x, 0, t) ≡ Ue(x, t) (x > 0) .

Instead, Ue(x, t) is determined as part of the irrotational potential-flow solution, and is neces-
sarily non-zero. There must therefore be a ‘boundary layer’ near y = 0 where the potential-flow
approximation is not valid and satisfaction of the no-slip condition implies viscous diffusion of
vorticity away from the boundary.

If the boundary layer is ‘thin’, in the sense that within it ∂/∂x � ∂/∂y (i.e. variations with
respect to y are much more rapid than variations with respect to x), then the approximations

∇2ψ ≈ ψyy , ∇2
(
∇2ψ

)
≈ ψyyyy ,
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may be made in equation (5), which can then be integrated once with respect to y to give

ψyt + ψyψxy − ψxψyy = G(x, t) + νψyyy , (6)

This is in fact the x-component of the Navier-Stokes momentum equation (2) with the ρνuxx
term neglected (since it is small compared to ρνuyy). The forcing term, or more precisely −ρG,
may be identified with the pressure gradient ∂p/∂x (which in this approximation is independent
of y, i.e. uniform across the ‘thin’ boundary layer). Equation (6) is to be solved in conjunction
with the conditions of no slip and no penetration at the boundary, i.e.

ψy = 0 , −ψx = 0 ⇒ ψ = ψ0(t) , on y = 0 , (7)

where ψ0(t) = 0 without loss of generality. In addition the solution must ‘match’ to the outer
potential flow, i.e.

u ≡ ψy → Ue(x, t) as y →∞ . (8)

It follows from (6) and (8) that

G(x, t) =
∂Ue
∂t

+ Ue
∂Ue
∂x

. (9)

In the special case when the flow is steady, ∂/∂t = 0, and when

Ue(x) = Axm for x > 0 , (10)

with A and m constants, the problem (6)–(9) admits a ‘similarity’ solution with

ψ(x, y) = |Ue(x)|δ(x)f (η) , η =
y

δ(x)
and δ(x) =

(
νx

|Ue(x)|

) 1
2

. (11)

Here, δ(x) is a measure of the local boundary-layer thickness, and the function f satisfies the
Falkner–Skan equation

m
(
f ′
)2 − 1

2(m+ 1)ff ′′ = m+ f ′′′ , (12)

with the boundary conditions

f ′ = f = 0 on η = 0, f ′ → sgnA as η →∞. (13)

In fact, if there is no source of vorticity other than the boundary y = 0, then f ′ should converge
to sgnA exponentially fast as η →∞, i.e.

ηN
(
f ′ − sgnA

)
→ 0 as η →∞ for any N . (14)

The tangential velocity component is obtained from (4) and (11) as

u =
∂ψ

∂y
= |Ue(x)|f ′(η) . (15)

The tangential stress (force per unit area in the x-direction) exerted by the fluid on the boundary
y = 0 is

τ0 ≡ ρν
∂u

∂y

∣∣∣∣
y=0

= ρ

(
ν|Ue(x)|3

x

) 1
2

f ′′(0). (16)

Different values of m arise for different external flows. Particular cases are (taking A > 0 unless
stated otherwise):
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m = 1 : Flow towards a stagnation point on a plane wall.

0 < m < 1 : Flow past a wedge of semi-angle θ = πm
m+1 .

m = 0 : Flow past a flat plate (the Blasius boundary layer).

−1
2 < m < 0 :

Flow around the outside of a corner, turning
through an angle θ = − πm

m+1 with slip (but no pen-
etration) upstream of the corner, and no slip (and
no penetration) downstream. This is an artificial
problem, but it might be that the solution could
arise as the downstream limit of a realistic flow.

stick
slip

m = −1 :
Flow due to a line source (for A > 0) or line
sink (A < 0) at the intersection of two plane rigid
boundaries (at arbitrary angle).

The aim of this project is to solve the two-point-boundary-value problem (12)–(14) by ‘shooting’,
finding by trial-and-error the values of f ′′(0) which give a solution with the required behaviour
as η →∞. Except in the last question, attention is to be restricted to the case A > 0.

2 Analysis

Question 1 Examine analytically the possibility that a solution of the Falkner-Skan
equation (12) has one of the following terminal behaviours as η →∞:

(i) algebraic convergence,

f ′ = 1 +Bη−k + . . . as η →∞ ;

(ii) exponential convergence,

f = η − η0 + e−σ(ξ) + . . . as η →∞ ,

where ξ = η − η0 and

σ′(ξ) = kξ + k′ + k′′ξ−1 +O
(
ξ−2

)
;

(iii) algebraic divergence,
f = Bη1+k + . . . as η →∞ ;

(iv) exponential divergence,

f = Bekη + . . . as η →∞ ;
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(v) a finite-distance singularity, at η = η0 say, with

f = B (η0 − η)−1 + . . . as η → η0 .

Here B, η0, k, k′, k′′ are constants with B 6= 0 and k > 0. For each case deduce by means
of an asymptotic series solution, or otherwise,

(a) which (if any) of these constants can be determined without use of conditions at
η = 0;

(b) what restrictions (if any) must be placed on the value of m for this type of behaviour
to be possible.

3 Computation

Programming Task: Write a program to integrate the Falkner–Skan equation (12)
subject to the one-point boundary conditions

f(0) = f ′(0) = 0 , f ′′(0) = S , (17)

where S is a known constant. You may use a black-box numerical integrator for this
problem such as the Matlab routine ode45, but you should not use any two-point-
boundary-value solver such as the Matlab routine bvp4c (except possibly as a check).

Question 2 Integrate the Falkner-Skan equation (12) with boundary conditions (17)
for m = 0 and S = 1. You should find that f ′ converges to a constant as η →∞; comment
on the nature of the convergence, and determine the constant to at least four significant
figures, presenting evidence that this accuracy has been achieved.

Explain how it is possible to deduce, without further computation, a solution of the
boundary-value problem (12)–(13) for m = 0, and state f ′′(0).

Hint: consider af(bη) for suitable constants a and b.

Question 3 Now apply the shooting method for 0 6 m 6 1. You should find that for
each m in this range, there is a unique value of S, call it Sm, for which f ′ → 1 as η →∞.
For m = 2

5 and m = 1, plot graphs of f ′ against η for various values of S, both less than
and greater than Sm, and comment on their terminal behaviours with reference to the
terminal behaviours listed in question 1.

Write a program to determine Sm. Note:

• you may wish to use a black-box root-finder such as the Matlab routine fzero;

• it may also be helpful, for the next question, to have the option of finding the inverse,
i.e. determining m for given S.

Tabulate and plot Sm against m for 0 6 m 6 1 correct to at least four significant figures,
explaining why you are satisfied with the accuracy.

Comment on the physical interpretation of your solutions, e.g. the effect of varying m.

Question 4 Investigate solutions of the Falkner-Skan equation (12) subject to (17)
for various m in the range −1 < m < 0 and various S (both positive and negative), and
display some representative results, illustrating the different kinds of terminal behaviour
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(as enumerated in question 1) which occur. In the range mc < m < 0 (where mc is to be
determined) you should find two branches of exponentially converging solutions, one of
which is the continuation of that already found for m > 0. Tabulate and plot Sm against
m for both branches, and plot f ′ for both solutions against η for at least one value of m.
Discuss the physical interpretation of each solution, and the form of the second solution
as m ↑ 0.

In the interval −1 < m < mc, there are other branches of exponentially converging
solutions: plot at least two of these branches in the m-S plane, and present graphs of f ′

against η for a few of the solutions. Comment on their physical significance.

Question 5 Investigate (numerically) m = −1, for both signs of A. What are your
conclusions?
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3 Fluid and Solid Mechanics

3.8 Wind-Forced Ocean Currents (10 units)

This project may well be attempted by someone who has attended the two Fluid Dynamics courses
in Part IB and Part II.

1 Theory

Western boundary currents develop on the western sides of the ocean basins in response to
wind forcing. Poleward flowing western boundary currents like the Gulf Stream and Kuroshio
carry vast amounts of heat from the tropics to the mid-latitudes. Here, you will investigate
wind-forced ocean circulation and the formation of western boundary currents in an idealized
rectangular ocean basin.

A simple depth-independent model of the wind-forced ocean circulation is described by the
governing equation for the streamfunction ψ(x, y, t),

ζt + J(ψ, ζ) + v = −εζ +Rτ (1)

in 0 6 x 6 1, 0 6 y 6 1 with ψ = 0 on the boundaries. x and y are Cartesian coordinates
representing eastward and northward directions respectively. The vorticity ζ is related to ψ
through the Poisson equation

∇2ψ = ζ, (2)

and the x and y components of the velocity, respectively u and v, may be written in terms of
ψ as

u = −∂ψ
∂y

, v =
∂ψ

∂x
(3a, b),

J(ψ, ζ) is the Jacobian with respect to x and y and is an alternative way of writing the advective
derivative term u.∇ζ. The −εζ term on the right-hand side of (1) is a simple representation of
the effect of bottom friction on the flow. The constant ε is a nondimensional frictional damping
rate. The term Rτ(x, y), representing the wind forcing, is equal to the curl of the wind stress.
It is convenient to take τ to be a prescribed function of x and y and, when investigating the
behaviour of the model, to vary the strength of the forcing by varying the constant R.

The steady state form of (1) may be written in the form

u.∇(ζ + y) = Rτ − εζ, (4)

implying that in the absence of wind-forcing and bottom friction the quantity ζa = ζ + y would
be conserved following the fluid motion. ζa is known as the ‘absolute vorticity’ and is the vertical
(i.e. perpendicular to the Earth’s surface) component of the vorticity measured with respect
to an inertial frame (i.e. including the Earth’s rotation as well as the motion of fluid relative
to the Earth). The y contribution to the absolute vorticity is a simple representation of the
variation of the vertical component of the rotation vector with latitude.

Question 1 Use incompressibility of u to rewrite the left hand side of (4). By inte-
grating (4) over a region enclosed by a streamline and, using the divergence theorem on
the left-hand side, deduce that if τ is one-signed then no steady state is possible if ε = 0,
i.e. friction is essential in the steady-state balance.

July 2024/Part II/3.8 Page 1 of 4 ©c University of Cambridge



In this project you will be concerned with steady-state solutions to (1), and their variation as ε
and R are changed. However, a convenient way to find the steady-state solution is to integrate
(1) in time, say from initial conditions in which ψ = 0 for all x and y, until the steady state is
achieved.

2 Numerical solution of (1)

Define a rectangular grid covering the domain, with points

(xi, yj) =

(
i

Nx
,
j

Ny

)
0 6 i 6 Nx, 0 6 j 6 Ny.

The grid spacings are δx = 1/Nx and δy = 1/Ny in the x and y directions respectively. The
variables ζ and ψ are defined at each point on the grid and it is helpful to use the notation,
ψt
i,j = ψ(xi, yj , t), ζ

t
i,j = ζ(xi, yj , t). (The superscripts denote the time at which a particular

quantity is to be evaluated.)

In order to integrate (1) in time it is sensible to use the ζti,j as the working independent variable
and derive all the other quantities by solving (2) and then using finite-difference approximations
for spatial derivatives in (1). You are recommended to use the expressions

vti,j =
ψt
i+1,j − ψt

i−1,j

2δx
(5a)

for v and

J t
i,j = [(ψt

i+1,j+1 − ψt
i−1,j+1)ζti,j+1 − (ψt

i+1,j−1 − ψt
i−1,j−1)ζti,j−1

− (ψt
i+1,j+1 − ψt

i+1,j−1)ζti+1,j + (ψt
i−1,j+1 − ψt

i−1,j−1)ζti−1,j ]/4δxδy, (5b)

for the Jacobian, both evaluated at the point (xi, yj) and time t.

To begin, it is recommended that to integrate (1) in time using the explicit Euler scheme in the
form

ζt+∆t
i,j − ζti,j + J t

i,j∆t+ vti,j∆t = −1
2ε

(
ζt+∆t
i,j + ζti,j

)
∆t+Rτi,j∆t. (6)

for 1 6 i 6 Nx−1, 1 6 j 6 Ny−1. Note that the boundary condition on ψ means that evaluating
Ji,j via (5b) at points immediately adjacent to the boundary does not require knowledge of ζ on
the boundary itself. There is no need to impose or determine ζ on the boundary at any stage.

Question 2 Write a program to integrate the above. Take τ = − sinπx sinπy. You
may use a library routine for the solution of Poisson’s equation (see Appendix below). Try
using a grid size Nx = Ny = 32. Note that numerical accuracy of the time integration is
not particularly important here because it is only the final steady state that is of interest.
You should experiment to find the largest possible time step ∆t for which the integration
remains stable and approaches a steady state.

Concentrate first on the case where R is very small. For ε = 0.2 and ε = 0.05 produce
a plot to verify that your solution approaches a steady state. Plot contour maps of the
streamfunction and vorticity fields for the steady state solution. Describe your results in
qualitative terms.

In this regime you may assume that ζ and ψ scale with R and thus you might find it
helpful to redefine ζ and ψ as ζ̂ = ζ/R and ψ̂ = ψ/R. Then in the limit R → 0 the
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nonlinear term involving the Jacobian may be neglected, and the steady state form of (1)
can be approximated as

v̂ = −εζ̂ + τ . (7)

You should see that the solution for ε = 0.05 is highly asymmetric in the x direction with
a strong narrow flow close to the x = 0 boundary and a broad weaker flow in the interior.
Which term in the equation (1) leads to this asymmetry? For the case ε = 0.05, indicate
which terms in the equation play a dominant role in the balance in different parts of the
flow. Provide an argument for why a strong current near the x = 1 boundary cannot
exist. In this linear (i.e. small R) case, estimate the maximum value for ψ in the small-ε
limit. (Consider where a boundary layer may lie, and which boundary conditions you can
discard.) Repeat your integrations at higher resolution with Nx = Ny = 64. What are
your conclusions? What resolution do you think would be needed to adequately resolve
the boundary current near x = 0?

Question 3 Now, for ε = 0.05 investigate the steady-state behaviour as R increases
through the range 5 × 10−4 to 10−1. Continue to use Nx = Ny = 32. You will find that
the timestep ∆t must be reduced as R increases, firstly to suppress numerical instability
and secondly to allow a steady state to be achieved. For R = 0.1 you will need to run
your code for a while in order for a steady state to be achieved. You might find it helpful
to replace (6) with a more accurate time-stepping scheme such as a 3rd order accurate
Runge-Kutta or Adams-Bashforth scheme. This should allow you to take larger time
steps, but it is not necessary and full marks can be obtained using (6).

Describe how the pattern of flow changes as R is increased. You may find it useful to
look at contour plots of ψ and ζ and also of the quantity y+ ζ. Include sufficient plots in
your report to illustrate your main points. By considering plots of ψ and ζ and y+ ζ, for
large R identify the terms involved in the dominant balance of equation (1). Plot a graph
of the maximum value of the streamfunction in the domain, ψmax against R, and try to
explain its form. How would you expect ψmax to depend on the frictional damping rate ε
in the large-R and small-R limits?

3 Reference

This topic is discussed in some detail in Chapter 19 of the book by Vallis (Vallis, G.K., 2017:
Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press; reference copies and
an online version are available from the Betty and Gordon Moore Library) but it is certainly
not necessary to understand all of this Chapter in detail in order to complete this project.

Appendix

A solver of the Poisson equation in (2) for ψ given ζti,j , is provided on the CATAM website,
located among the data files. After copying these matlab files into your working directory, you
should be able to call the function poisson which is described below.

If you are using python, you can call the matlab script using oct2py. To do this, first in-
stall oct2py (e.g. pip install oct2py). Then, in your python script use the following com-
mands: from oct2py import Oct2Py, oc = Oct2Py(), and call the function poisson.m using, e.g.
psi=oc.poisson(x,5,zeta).
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[psi]=poisson(x,N,f)

The solver assumes a square grid and that ψ is 0 on all 4 boundaries.

x: vector with grid locations in the x direction (and equivalently in the y direction).
The first and last gridpoints in x should correspond to the boundary locations.

N: Type of integration scheme. For 5 point N=5, 9 point N=9, modified 9 point N=10.
For more information see reference below.

f: Function to be integrated, in this case ζ. Note that f should be a matrix of size
(length(x),length(x)).

psi: The solution to the Poisson equation on the interior gridpoints (excluding the val-
ues on the boundary which are set to 0). psi will be a matrix of size (length(x)-
2,length(x)-2).

For more information on Poisson.m go to https://cs.nyu.edu/~harper/poisson.htm. Note
that while the mathematics involved in the version described at the link are the same, the inputs
of the Poisson solver provided have been modified slightly.
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4 Dynamics

4.3 The Rotating Top (6 units)

This project assumes knowledge of the relevant material from the Classical Dynamics course,
which may also be found in the reference listed.

This project concerns the familiar problem of the axisymmetric top, rotating about a fixed point
on its axis of symmetry. By choosing units such that mgh = A, the Lagrangian (scaled by A)
is

L = 1
2 [θ̇2 + φ̇2 sin2 θ] + 1

2C[ψ̇ + φ̇ cos θ]2 − cos θ.

Here θ, φ, ψ are the usual 3 Eulerian angles. C is the ratio of the principal moments of inertia
(in usual, dimensional, notation, equal to C/A). The first Lagrangian equation of motion is
then

0 =
d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= θ̈ − φ̇2 sin θ cos θ + Cφ̇ sin θ [ψ̇ + φ̇ cos θ]− sin θ.

The other two can immediately be integrated once to give

∂L

∂ψ̇
= constant ⇒ C[ψ̇ + φ̇ cos θ] = α, (1)

∂L

∂φ̇
= constant ⇒ α cos θ + φ̇ sin2 θ = β. (2)

The energy integral is

E = 1
2 [θ̇2 + φ̇2 sin2 θ] + 1

2C[ψ̇ + φ̇ cos θ]2 + cos θ = constant. (3)

Further details of the theory can be found in §5.7 of [1].

The equations can be rewritten in a form suitable for numerical solution as

φ̇ =
β − α cos θ

sin2 θ
, (4)

θ̈ = [φ̇(φ̇ cos θ − α) + 1] sin θ. (5)

Programming Task: Write a program to investigate the motion numerically and to dis-
play the motion graphically. You should use MATLAB’s 64-bit (8-byte) double-precision
floating-point values or the equivalent in other programming languages. You may use any
numerical method which you consider suitable, or library routines. For each of the ques-
tions below, you should consider the most appropriate and informative form of graphical
output; possibilities include (but are not limited to) either 3D plots or 2D plots such as θ
vs. φ, θ vs. t or φ vs. t.

Comment on the numerical method chosen. Check the accuracy of your program by
printing out E during each run, and comment on your results.

What problem can arise when sin θ becomes small? Your program will need to include
a method for dealing with this difficulty, and you should check that it produces accurate
results.

In later questions you may find that θ sometimes leaves its usual domain (0 6 θ 6 π). Should
this occur, explain the physical meaning of your results and how your computed values for θ
are related to the proper values.
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Question 1 Explain the general theory underlying the motion of a rotating top, start-
ing from equations (1)–(3). Demonstrate that your program can simulate the three main
types of motion below and explain what initial conditions are required.

1. Normal precession (φ̇ does not change sign)

2. Retrograde motion (φ̇ changes sign)

3. Motion with cusps (the border between 1 and 2)

You should obtain one hard copy of each type of motion.

Question 2 Choose values for α, θ such that there are 2 values of φ̇ that give a
solution with constant θ, and show that your program can replicate the motion. Explain
how these results fit the general theory.

Question 3 Investigate the stability of a sleeping top (i.e., one that spins with θ = 0)
by giving the motion a small disturbance; specifically, use initial conditions θ = 0 and
θ̇ non-zero but small. Explain clearly the possible types of subsequent motion and give
an appropriate criterion for stability. Obtain a rough estimate for the critical value of α,
which should be independent of C, and show examples of the motion just above and below
the critical value. Is your estimate consistent with the theoretical predictions?

Question 4 Take α, θ very small (both 0.01 say) with initial conditions θ̇ = φ̇ = 0.
What happens? Give a physical interpretation. Now change α to zero, and explain your
results.

References
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5 Quantum Mechanics

5.1 Band Structure (8 units)

This project relies on a knowledge of material covered in the Part II course Applications of
Quantum Mechanics.

1 Introduction

In suitable units, the Schrodinger equation for a particle moving in a potential V is

d2ψ

dx2
+
(
E − V (x)

)
ψ = 0, (1)

where ψ is the wavefunction and E is the energy. In this project, we suppose that V is periodic,
in which case the Schrodinger equation may be considered to be a model for an electron in a
crystal lattice. You will seek solutions to the Schrodinger equation such that ψ remains finite
as |x| → ∞: these will be called “allowed solutions”. You will verify that the energy values E
for these solutions form a band structure.

If V (x) is periodic with period l, the solutions to (1) where ψ remains finite as |x| → ∞ can
always be written as linear combinations of Bloch functions. These are functions such that

ψ(x) = eikxv(x), v(x+ l) = v(x), (2)

where k is a real number. Hence, “allowed solutions” to (1) are those which can be expressed
as linear combinations of Bloch functions. One sees that v(x) is a periodic function with the
same period as V , but ψ(x) does not necessarily have this property.

2 Numerical Work

Consider a specific choice for V (x), which is an even function [V (x) = V (−x)], formed from an
infinite series of nearly parabolic sections, each of width 2a. For positive x,

V (x) = 1− cosh (x− (2r + 1)a) (3)

where r = floor(x/2a), i.e. the greatest integer less than or equal to (x/2a).

Programming Task: Given some xmax, write a program which solves (1) for 0 < x <
xmax. The solution depends on the value of E, and on the boundary values ψ(0) and
ψ′(0).

Your program should

(i) input the values for E and xmax, and suitable boundary conditions for ψ;

(ii) solve the Schrodinger equation for x between 0 and xmax.

Your program should be able to plot the solution ψ as a graph. When running the
program, you will need to select a suitable parameters for your numerical integration.
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Question 1 Consider the case

a = 2, ψ(0) = 1, ψ′(0) = 0, xmax = 150

Run your program for some energies in the range −1.5 < E < 2.0 and report the results
for ψ. You should choose the values of E to illustrate the different kinds of solution that
you find. Your report should discuss the accuracy of the numerical methods which you
use.

Note: In this question and throughout this project, you should provide graphs that illus-
trate clearly the behaviour that you observe. Note that very large numbers of graphs are
unlikely to be effective in communicating this information.

Question 2 Remember, the physically-relevant energies E are those for which ψ re-
mains finite as |x| → ∞. These “allowed” values of the energy are grouped into bands.

For the parameters of question 1, use trial and error to find five band boundaries in the
range −1.5 < E < 2.0. Evaluate the energies of the band boundaries to two decimal
places. In order to determine which energy values are allowed, you may want to consider
the effect of increasing xmax, it should be adequate to consider xmax 6 500 but you may
consider higher values if you wish.

Make graphs showing representative solutions for ψ. You should show examples for ener-
gies that are near to all band boundaries, and examples taken from near the middle of two
different bands. Comment on your results. Are the band boundaries affected by choosing
different initial conditions for ψ, for example ψ(0) = 0, ψ′(0) = 1?

Question 3 The allowed solutions can be expressed as linear combinations of Bloch
functions, as defined in (2). Given a solution for ψ, show how you can extract k from
your numerical results. How does the energy E depend on k? (It may be useful to make
a sketch.)

Make a graph in which you compare one of your numerical solutions with a suitably chosen
linear combination of Bloch functions.

Question 4 Compare your numerical results with those expected from the ‘nearly
free’ and ‘tightly bound’ models of electrons in solids. Which is the most appropriate
model for the different energy bands that you have found?
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6 Electromagnetism

6.1 Diffraction pattern due to a current strip (7 units)

Knowledge of material covered in the Part IB course Electromagnetism is useful as background.

This project investigates the magnetic field generated by an oscillating current. The field is
given in terms of an integral whose behaviour is analysed numerically.

1 Theory

Consider an infinite two-dimensional strip of conductive material in the plane y = 0 that covers
the area defined by −d < x < d and −∞ < z < ∞. A time-dependent current flows in the
z-direction, and it emits electromagnetic (radio) waves with wavelength λ. We assume that
d = nλ/2 where n is a positive integer. The time-dependent current is independent of x, z, and
is given by

jz(t) = j0e
iωt.

where j0 is a parameter and ω = 2πc/λ. In the following, all length scales are normalised so
that λ = 1, hence for example d = n/2.

Now consider the component of the magnetic field in the x-direction. It is independent of z. For
this particular form of jz(t), it can be derived from Maxwell’s equations of electromagnetism as
Hx(x, y, t) = jz(t)hx(x, y) with

hx(x, y) =
1

2π

∫ +∞

−∞
e2πiuxA(u, y)du (1)

where

A(u, y) =
sin(nπu)

u
×


exp

(
2πiy
√

1− u2
)
, |u| 6 1

exp
(
−2π|y|

√
u2 − 1

)
, |u| > 1

(2)

To avoid ambiguity, it is convenient to specify A(0, y) = limu→0A(u, y).

It can be shown that for large y, the complex modulus of the magnetic field asymptotically
approaches

|hx| '
∣∣∣∣sinnπv2πv

∣∣∣∣
√
v(1− v2)

x
, (3)

where
v =

x√
x2 + y2

.

This project investigates numerical approximations to hx(x, y), as defined in (1).

2 Numerical method

The right-hand side of (1) is a Fourier integral. Numerical estimation of this function has some
tricky features: for example, if x is large then the integrand oscillates rapidly in u. This project
uses a specialised method for integrals of this type, called the fast Fourier transform (FFT).
It is a very efficient method, in particular it allows simultaneous estimation of hx(x, y) at N
distinct values of x.
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To apply the method, note first that A decays rapidly for large u, so it is reasonable to introduce
a (large) parameter U and approximate hx(x, y) as

hx(x, y) ≈ 1

2π

∫ U

−U
e2πiuxA(u, y)du (4)

This approximation is accurate for sufficiently large U .

Now define a periodic function Aper with period 2U by taking Aper(u, y) = A(u, y) for |u| 6 U
and Aper(u + 2mU, y) = Aper(u, y) for any integer m. The integral in (4) is unchanged on
replacing A by Aper. The domain of integration can then be replaced by [0, 2U ], and it is
natural to estimate the integral by a (Riemann) sum. Define

ĥx(x, y) =
∆u

2π

N−1∑
k=0

e2πikx∆uAper(k∆u, y) (5)

with ∆u = 2U/N .

Under certain conditions, this allows hx(x, y) to be approximated by ĥx(x, y), but the accuracy of
this approximation requires some care. For example ĥx exhibits rapid oscillations as a function
of x, which are not present in hx. Also, the right hand side of (5) can be recognised as a
Fourier series (or discrete Fourier transform, DFT). Hence ĥx(x, y) is periodic in x, specifically
ĥx(x, y) = ĥx(x+ 2mX, y) with X = 1/(2∆u). However, hx is not periodic.

To understand the relation of ĥx to hx, define a periodic function hper
x by taking hper(x, y) =

h(x, y) for |x| 6 X and hper
x (x+2mX, y) = hper

x (x, y) for any integer m. Define also ∆x = 2X/N .
Then for integer m and sufficiently large values of N and U , one has

ĥx(m∆x, y, t) ≈ hper
x (m∆x, y, t) . (6)

Under these conditions, hx can be approximated by ĥx as long as |x| 6 X and x = m∆x. This
construction relies on the fact that ∆x∆u = 1/N so that the exponential factors in (5) are the
Nth roots of unity.

The FFT method is an efficient algorithm for computing sums of the form (5), for x = m∆x
and m = 0, 1, 2, . . . , N − 1. This allows accurate estimation of hper

x (m∆x, y, t) for x ∈ [0, 2X]
and hence of hx. The method is described in the Appendix. For cases where N is an integer
power of 2, the FFT is much faster than computing the sum (5) individually for each value of
m in turn. For this project, it is not necessary to understand any of the details, you only need
to invoke an FFT routine to compute the relevant quantities. You may use a Matlab routine
such as fft or ifft, or an equivalent routine in any other language, or you may write your own
(but you should not compute (5) directly).

Finally, note that we have defined the method by taking N and U as parameters, from which
∆u,∆x,X are derived. From a practical point of view it is more natural to take N and X as
parameters, from which one may derive U and the other relevant quantities.

3 Numerical work

Programming Task: Given values of n, y,N,X, write a program to compute (5) by
FFT, for x = m∆x and m = 0, 1, . . . , N − 1. It is sufficient to restrict to N = 2p for
integer p. The program should also use (6) to estimate the real and imaginary parts of
hx for x ∈ [−X,X]. Also estimate its complex modulus |hx|. It will be necessary to plot
these estimates.
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Question 1 Take

n = 2 , y = 0.2 , X = 5 , N = 256 .

Plot your estimates of the real and imaginary parts of hx, and its modulus, for |x| < X.
Derive the relationships between hx(x, y) and hx(−x, y) and hx(x,−y). Verify that your
results are consistent with these relationships.

Question 2 Keeping n = 2 and y = 0.2, compute estimates of hx(x, y) for |x| < 5,
using different values of X and N (always with X > 5). Analyse the behaviour of your
estimates, as N and X are varied.

Note: In this question and throughout this project, you should provide graphs that il-
lustrate clearly the effect of the parameters on your results. Note that large numbers of
graphs are very unlikely to be effective in communicating this information.

Question 3 For n = 2, produce a single graph that shows |hx| as a function of x for
for y = 0.12, 0.6, 1, 6, 12. Fix N = 256 and choose suitable values of X (dependent on y).
Justify the values that you have chosen. Are there some values of y for which larger (or
smaller) values of N would be appropriate?

Compare your numerical results for large y with the asymptotic formula (3). This com-
parison must be presented in a way that illustrates clearly any differences between the
numerical estimates and the asymptotic formula. It may be useful to consider additional
values of y, as well as those listed above.

Question 4 Perform a similar analysis to question 3 but now for n = 3, 4. Justify
your choices of N,X. Combining these results with those of question 3, discuss how the
approximation of h by ĥ depends on both n, y and N,X.

Question 5 Comment on the physical significance of your results. In particular, how
do your results demonstrate the phenomenon of diffraction?

Appendix: The Fast Fourier Transform

Given a vector of complex numbers µ = (µ0, µ1, . . . , µN−1), define

λr =
N−1∑
k=0

µke
−2πikr/N . (7)

The FFT is an efficient (fast) method of evaluating the vector λ = (λ0, λ1, . . . , λN−1), which is
the discrete Fourier transform. The same algorithm can also be used to evaluate similar vectors
where the factor e−2πikr/N in the definition of λr is replaced by e2πikr/N , this is sometimes called
the inverse FFT.
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Note that (7) corresponds to multiplication of the vector µ by a particular N ×N matrix that
we denote by Ω(N). Its elements are taken from the set of Nth roots of unity. It follows that λ
can be computed using approximately N2 multiplication operations. (There would be a similar
number of addition operations, it is assumed here that the multiplication operations take the
greater part of the computational effort.) If N = 2p for integer p, the FFT can compute λ much
more quickly, it requires approximately (N/2) log2N multiplication operations.

To see this, divide µ into even and odd subsequences, that is µE = (µ0, µ2, . . . , µN−2) and
µO = (µ1, µ3, . . . , µN−1). Their Fourier transforms are given by matrix multiplication as

λE = Ω(N/2)µE, λO = Ω(N/2)µO . (8)

Then it may be shown that

λr = λEr + e2πir/NλOr

λr+N/2 = λEr − e2πir/NλOr

}
r = 0, 1, . . . , N2 − 1 (9)

Hence if λE and λO are known, it requires (N/2) multiplications to evaluate λ.

Moreover, since λE is itself the Fourier transform of a particular sequence µE, it can be esti-
mated efficiently by further splitting µE into even and odd subsequences. For N = 2p, this
decomposition is repeated p times, leading to an FFT in p stages.

In stage 1, each element µk of µ is treated as a sequence µ(k,1) of length 1. Their Fourier trans-

forms are simply λ
(k,1)
0 = µ

(k,1)
0 . These sequences are labelled as even/odd, and are combined

in pairs using a rule similar to (9), which generates N/2 sequences each of length 2. These
are denoted as λ(k,2) for k = 0, 1, 2, . . . , (N/2) − 1. In stage 2, these new sequences are again
labelled as even/odd and combined in pairs using the generalised (9), to obtain N/4 sequences
of length 4, denoted by λ(k,4) for k = 0, 1, 2, . . . , (N/4) − 1. The procedure repeats until stage
p ends with a single sequence λ(0,2p) of length 2p.

The detailed rules that explain how the sequences are combined can be found in the original
paper [1] or in standard textbooks such as [2]. These are chosen such that λ(0,2p) = λ, the
vector of interest.

For efficiency, the key point is that each step requires N/2 multiplication operations and there
are p = log2N stages. Hence the algorithm only requires (N/2) log2N multiplication operations,
as advertised above.
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7 Mathematical Methods

7.5 Padé Approximants (8 units)

This project is essentially self-contained, though the Part II course Asymptotic Methods provides
background to Question 4.

1 Introduction

A Padé approximant is a rational function, i.e., a function expressed as a fraction whose numer-
ator and denominator are both polynomials, whose power series expansion agrees with a given
power series to the highest possible order.

The primary application of Padé approximants is to problems where it is possible to derive
the solution formally as a power series expansion in some parameter. The corresponding Padé
approximants often turn out to be much more useful than the power series itself (in a sense to
be explored in this project).

Given the power series

f(x) =
∞∑
k=0

ckx
k (1)

the [L,M ] Padé approximant RL,M (x) is defined by

RL,M (x) =

∑L
k=0 pkx

k

1 +
∑M

k=1 qkx
k

(2)

such that
f(x)−RL,M (x) = O(xL+M+1), (3)

i.e., the first L+M + 1 terms of the power series of RL,M (x) match the first L+M + 1 terms
of the power series of f(x).

Equations for the coefficients pk, k = 0, . . . , L and qk, k = 1, . . . ,M can be obtained by multi-
plying (3) by the denominator of RL,M (x) and equating coefficients of xk for k = 0, . . . , L+M .

The result is M simultaneous equations for the qk, k = 1, . . . ,M ,

min(r,M)∑
k=1

qkcr−k = −cr (r = L+ 1, . . . , L+M) (4)

and L+ 1 expressions for the pk, k = 0, . . . , L,

pk = ck +

min(k,M)∑
s=1

qsck−s (k = 0, . . . , L) (5)

In many cases it is convenient to consider only ‘diagonal’ Padé approximants with L = M . But
sometimes this may not be possible, e.g., for special forms of the power series the simultaneous
equations (4) corresponding to diagonal approximants may not have a solution. It that case it
may be convenient to choose M = L+ 1, or something similar.
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Programming Task: You will need to write two general purpose programs for this
project. You should use MATLAB’s 64-bit (8-byte) double-precision floating-point values
or the equivalent in other programming languages.

Program A should solve equations (4) and (5) given the coefficients ck and the values
of L and M and evaluate the resulting Padé approximant RL,M (x) for a specified set
of values of x. You may use a library routine to solve the simultaneous equations (4).
For example, if using MATLAB you can use the built-in matrix division routines such as
mldivide. If you are not using MATLAB it may be worth using iterative improvement.
(See Appendix.)

Program B should find the (possibly complex) roots of a polynomial, given the coeffi-
cients. If using MATLAB, the roots routine makes this program particularly easy to
write. Alternatively, two straightforward possibilities are discussed in section 9.5 of [3].
If a (possibly complex) roots of a polynomial routine is available with the programming
language you choose, just use it.

2 Estimating functions defined by power series

Consider the function f1(x) = (1 + x)1/2.

Question 1 Derive the power series expansion for f1(x) about x = 0, deducing a
formula for the coefficients ck for arbitrary k. What is the radius of convergence of the
power series and what limitations does this put on using the power series to estimate
f1(x)? Noting that the power series converges for x = 1 investigate the convergence of the
partial sums

∑N
k=0 ck as N increases and display selected results. Regarding the partial

sum as an estimate for
√

2, how does the error vary with N as N increases?

Question 2 Use your program to determine the Padé approximant RL,L(x) and eval-
uate this for x = 1. Again regarding this as an estimate for

√
2, how does the error vary

with L as L increases? What is the smallest value to which the error can be reduced?
What determines this smallest value? Does iterative improvement to the solution of (4)
make any difference?

Compare the results for the power series and for the Padé approximant. Which method
would you recommend to give an estimate for

√
2 to specified accuracy?

Question 3 Now consider x in the range 1 < x 6 100. Compare power series estimates
and Padé approximant estimates for f1(x) for a few choices of N and L. Display the results
graphically and discuss. For two chosen values of x (e.g., x = 10 and x = 100) investigate
carefully how the error in the Padé approximant estimates varies as L increases, display the
results graphically and discuss. What are the implications for using the Padé approximant
to estimate f1(x) for large x?

Now consider the function f2(x) =
∫∞
0 e−t(1 + xt)−1dt , which is defined for all real x > 0 (in

fact, everywhere in the complex x-plane except the negative real axis). Replacing (1 +xt)−1 by
its Maclaurin expansion and integrating term-by-term gives the asymptotic expansion

1− 1!x+ 2!x2 − 3!x3 + 4!x4 − 5!x5 + · · · (6)

This diverges for all x 6= 0, which is hardly surprising since the Maclaurin expansion of (1+xt)−1

diverges for t > x−1. Nevertheless, when truncated at a finite number of terms, the series gives
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a “good” approximation to f2(x) when x is “small”. (A more precise statement of this result,
and its justification by Watson’s Lemma, can be found in [1] or [2], or any of the books listed
in the schedule for the Part II Asymptotic Methods course.)

Question 4 Regarding the asymptotic series (6) as a power series, use program A
to generate Padé approximants for f2(x). Compare the truncated power series and the
Padé approximants as a basis for calculating f2(x) on the range 0 6 x 6 20. Note that
numerical integration gives the following values, correct to eight decimal places:

x f2(x)

0.1000 0.91563334
0.2000 0.85211088
0.3000 0.80118628
0.4000 0.75881459
0.5000 0.72265723
0.6000 0.69122594
0.7000 0.66351027
0.8000 0.63879110
0.9000 0.61653779
1.0000 0.59634736
2.0000 0.46145532
3.0000 0.38560201
4.0000 0.33522136
5.0000 0.29866975
6.0000 0.27063301
7.0000 0.24828135
8.0000 0.22994778
9.0000 0.21457710

10.0000 0.20146425
11.0000 0.19011779
12.0000 0.18018332
13.0000 0.17139800
14.0000 0.16356229
15.0000 0.15652164
16.0000 0.15015426
17.0000 0.14436271
18.0000 0.13906806
19.0000 0.13420555
20.0000 0.12972152

3 Zeros and poles

Question 5 Use Program B to determine (in the complex x-plane) the poles and zeros
of the Padé approximant RL,L(x) for f1(x). Investigate carefully how the positions of the
poles and zeros change as L is increased.

Carry out the same investigation for the functions f3(x) = (1 + x)−1/2, f4(x) = ex,
f5(x) = ex/(1 + x) and f6(x) = (1 + x + x2)1/2. [For f5(x) and f6(x) your program
will have to do some straightforward calculation to evaluate the coefficients in the power
series.]
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On this basis can you suggest how the positions of poles and zeros of the Padé approxi-
mants correspond to any poles, zeros, branch points and branch cuts of the approximated
functions? Relate your comments carefully to specific properties of each of the functions
considered. Provide a selection of results in the form of plots or short tables to support
your comments.

Do you find ‘anomalous’ poles and zeros of the approximants that do not match poles,
zeros, branch points or branch cuts of the approximated function? You will find many
such cases for f4(x) and f5(x), but should also find cases for f1(x) and f3(x), particularly
when L is large. What do you notice about the anomalous poles and zeros in these latter
cases?

Comment on any problems that might be encountered in using Padé approximants to
estimate f6 along the real x-axis. Display one or two relevant graphs.

Appendix: Iterative improvement of the solution of
linear simultaneous equations

Consider the set of equations Ax = b, where A is a square matrix, b is the column vector of
right-hand sides and x is the column vector of unknowns.

Suppose that numerical solution has generated the approximate solution y. Now suppose that
the true solution is given by x = y+δy. Multiplying by A implies that Aδy = b−Ay. This is a
set of equations for the correction δy to the approximate solution and solving gives an estimate
for the correction, and hence a refinement to the solution. This procedure may be repeated
until no further improvement is found.

Note that at each refinement the set of simultaneous equations to be solved has the same
associated matrix A. Only the right-hand sides change. Therefore there is advantage in using an
approach such as LU decomposition, since once the LU decomposition of A has been calculated
it may be used repeatedly to solve the simultaneous equations occuring at each refinement.
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7 Mathematical Methods

7.6 Insulation (10 units)

There are no prerequisites for this project.

1 Introduction

When sheets of plastic and of other insulating materials are used in the construction of building
walls and ceilings, a balance is sought between the need to minimise the loss of heat and the
need to include (non-insulating) holes to allow gases, especially water vapour, to pass. In
this project we will model a two dimensional analogue of this problem. A perfectly insulating
sheet containing equally spaced holes is placed between two constant temperature surfaces and
the resulting steady-state temperature distribution is computed. The steady-state temperature
distribution is computed by solving Laplace’s equation using a so-called relaxation method.

We start from the non-steady-state (Poisson’s) equation appropriate to heat conduction,

κ∇2T = ρs
∂T

∂t
, (1)

where T is temperature, t is time, κ is the thermal conductivity of the medium, ρ is its density
and s is its specific heat. We then impose the steady-state condition ∂T/∂t = 0, to obtain

∇2T = 0 , (2)

that is, Laplace’s equation.

2 Empty unit square

In this section we will consider a unit square or “box” 0 6 x 6 1 and 0 6 y 6 1 in which the
left side x = 0 is held at constant temperature 0, the right side x = 1 at constant temperature
1, and in which the top and bottom boundaries y = 0, 1 are perfect insulators, so that there is
no temperature flux across the top and bottom. Thus the boundary conditions are

T (0, y) = 0

T (1, y) = 1

∂T

∂y
(x, 0) =

∂T

∂y
(x, 1) = 0

The analytic solution to this problem is easy to find; this therefore allows us to check the
accuracy of our numerical method and confirm that it is working correctly.

Consider the following Nx ×Ny discretisation of the unit square:

xi = i∆x, i = 0, 1, . . . , Nx, ∆x =
1

Nx
,

yj = j∆y, j = 0, 1, . . . , Ny, ∆y =
1

Ny
.
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Let us adopt the notation Ti,j = T (xi, yj) for the numerical solution to (2). We approximate
∂2T/∂x2 and ∂2T/∂y2 to second order at a general internal (i.e., away from the boundary)
point (xi, yj) with

∂2T

∂x2
=
Ti+1,j − 2Ti,j + Ti−1,j

∆x2
,

∂2T

∂y2
=
Ti,j+1 − 2Ti,j + Ti,j−1

∆y2
.

By choosing the special case ∆x = ∆y = ∆, which implies Nx = Ny, Laplace’s equation can
therefore be written in discretised form to second order as

0 = −4Ti,j + Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1 . (3)

In this project (3) is solved using a relaxation method. So-called multigrid methods are faster,
but their extra complications are not necessary here (see Press et al., 1992 for details). The
relaxation method iteration is started by choosing any initial values for the Ti,j ; initial values
that are close to the solution to (3) will converge quicker than initial values that are very
different from the solution. Each subsequent iteration step consists of computing new values
for Ti,j successively for each internal point using the relaxation algorithm:

T new
i,j = (1− σ)T old

i,j +
σ

4
(Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1) , (4)

where σ is a pre-determined constant (see below).

New values for Ti,j on the boundary are then computed by applying the appropriate boundary
conditions. Applying the first two boundary conditions is simply a matter of not changing the
boundary points T0,j and TNx,j . The third boundary condition can be obtained by using a
central difference approximation to ∂T/∂y at a general boundary point (xi, yj):

∂T

∂y
=
Ti,j+1 − Ti,j−1

2∆
= 0 . (5)

This approximation is used with (4) to compute a new value for Ti,j on the boundary in terms
of points that are either on the boundary or internal. For example the bottom j = 0 boundary
points are computed using

T new
i,0 = (1− σ)T old

i,0 +
σ

4
(Ti+1,0 + Ti−1,0 + 2Ti,1) , (6)

and an analogous formula is used for the top j = Ny boundary points.

Further iterations are carried out until the Ti,j have converged at which time they are a solution
to (3). The special case σ = 1, obtained by rearrangement of (3), is called the Jacobi relaxation
method. However, in practice, convergence can be considerably faster if an appropriate value
σ > 1 is chosen (called over-relaxation). For all the cases studied in this project, σ ≈ 1.9 is a
good first choice.

Programming Task: Write a program to solve (2) for the unit square 0 6 x 6 1 and
0 6 y 6 1 with the given boundary conditions. You should use MATLAB’s 64-bit (8-byte)
double-precision floating-point values or the equivalent in other programming languages.
Your program should plot contours of T and should include some mechanism for deciding
whether the T array has converged. You should choose Nx = Ny that is large enough for
the contours of T to be well resolved but small enough that the T array converges in a
reasonable time.
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Note that equation (4) does not specify whether some of the values of T on the right-hand
side are the “old” or the “new” values. Either choice will work, but it is most efficient to
“sweep” through the matrix updating each value of Ti,j immediately as you go along; so in
fact, some of the T -values on the right-hand side will be “old” (because they haven’t yet been
updated) and some will be “new” (because the sweeping process has already updated them).
This improvement to the Jacobi method, which surprisingly increases its rate of convergence,
is called the Gauss–Seidel method.

Question 1 Describe how you decided whether the T array had converged. Experi-
ment with values of σ and comment on the effect of changing σ on the number of iterations
required for convergence. Include in your write-up a contour plot of the steady-state tem-
perature distribution of T (x, y).

3 Unit square and vertical insulating wall with holes

In this section we place a vertical insulating “wall” across the unit square of section §2 with
holes of size ε spaced a distance δ apart. Figure 1 shows a schematic example for the case
ε = 2∆, δ = 5∆. The top of the wall is shown expanded to show more clearly new types of
boundary gridpoint labelled A–H. New boundary conditions (similar to (6)) will be needed for
these types of gridpoint and for I and J at the bottom of the wall. At corners of the wall (e.g.,
gridpoint F) you should assume that the corner is smoothed off (rounded) so that the normal
is diagonal to the grid there.

δ

ε

1.0

insulation

grid points

F

A B

I

J

C D

E

G H

Figure 1: Insulating wall with holes

Programming Task: Modify the program of section §2 to include a vertical insulating
wall at the middle of the box (or as close as possible) with holes of size ε, spaced δ
apart. Your program should arrange the holes and the insulator pieces as symmetrically
as possible about the centre of the box so that there is a length of insulator at the top and
bottom of the wall as in Fig. 1. Explain briefly how your program assigns the locations
of the insulating sections and how it deals with special cases. Note that it is not always
possible to obtain perfect symmetry.
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Question 2 Write down and explain the formulae you used to compute T new
i,j at the

new types of boundary grid point A–J. Include in your write-up a contour plot of the
steady-state temperature distribution of T (x, y) for the case ε = 4∆, δ = 8∆, Nx =
Ny = 129. Why is 129 a better choice than 128? What effect does putting holes in the
wall have on the temperature distribution in the unit square? Examine what happens
to temperature along horizontal cross-sections through the temperature distribution by
plotting T (x, y0) against x for a few values of y0. Choose values of y0 that are near the
centre of the box and make sure you include cases that go through the centre of a hole
and through the the centre of an insulating section.

The total heat flux across the boundary x = 1 is a gauge of the quality of the insulating
layer. Given that the heat flux at any point (x, y) is given by −κ∇T (x, y), where κ is
the thermal conductivity from equation (1), define a suitable measure Q of the insulator’s
quality. How would Q differ for a good insulator versus a good conductor? Comment on
the insulating properties of the wall with ε = 4∆, δ = 8∆.

Question 3 Investigate what happens to the insulator quality Q when you vary ε and
δ (but keep Nx = Ny constant) according to

ε = kδα , (7)

where k and α are suitable real constants. In our discrete model, since ε and δ must be
multiples of ∆, you would need to choose the nearest integer multiple of ∆ for ε for a
given δ or vice-versa. Include in your write-up a few plots that illustrate what happens
to Q as you decrease δ: choose relationships that show interesting behaviour. Comment
on your plots and on the physical significance of (7).

4 Infinite length vertical insulating wall with holes

εj

0

1

2

3

4

5

6

7

8

δ/2

δ/2

Figure 2: Insulating wall with holes, periodic boundary

In this section we simulate an infinitely long vertical insulating wall with holes by taking a
single, finite section of the wall and imposing a periodic boundary condition at the top and
bottom of the region. A periodic boundary condition means T (x, ybot) = T (x, ytop). With this
boundary condition only one central hole is needed. Figure 2 shows a schematic example for
the case ε = 2∆, δ = 8∆ so that Ti,8 = Ti,0. Thus for the case shown in Fig. 2, the j = 0
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(boundary) points are computed using (4) but with the periodic boundary taken into account
by replacing j with j modulo 8, thus

T new
i,0 = (1− σ)T old

i,0 +
σ

4
(Ti+1,0 + Ti−1,0 + Ti,1 + Ti,7) . (8)

Similarly, the j = 7 points are computed using

T new
i,7 = (1− σ)T old

i,7 +
σ

4
(Ti+1,7 + Ti−1,7 + Ti,0 + Ti,6) . (9)

Programming Task: Write a program to implement a relaxation method algorithm for
the situation illustrated in Fig. 2 but for general Nx, δ and ε.

Question 4 Investigate what happens to Q when you vary ε and δ (but keep Nx

constant) in this new model. Include in your write-up a couple of illustrative plots. Is
there any need to change your definition of the qualityQ? How does this periodic boundary
condition model relate to the model in Question 3?

Question 5 Adapt the infinite length vertical insulating wall with holes program for
the case δ = 8ε to investigate what happens to the steady-state temperature distribution
near the hole(s) as the wall thicknes is varied. Try values of wall thickness in the range
ε
4 to 4ε. To do this you will need to use as large a number of gridpoints as is consistent
with a not unreasonable run time of your program.

Note that you may find it helpful to start with the smallest wall thickness, save the
gridpoint temperature distribution, use it to construct a first approxination for the next
wall thickness and repeat the process.

Question 6 The original task was to investigate, for insulating sheets, the balance
between the need to minimise the loss of heat and the need to include (non-insulating)
holes to allow gases, especially water vapour, to pass. In the light of what you have learned
from this model, what advice would you give a manufacturer of insulating sheets? What
are the limitations of the model and what steps could be taken towards greater realism?

Reference

Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., 2002: Numerical recipes in
C: The art of Scientific computing, Cambridge University Press.
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9 Operational Research

9.3 Protein Comparison in Bioinformatics (8 units)

This project is computationally intensive but mostly self-contained mathematically. Some un-
derstanding of random variables (covered in the Part IA Probability course) is required.

Introduction

Sequence comparison and alignment, combined with the systematic collection and search of
databases containing biomolecular sequences, both DNA and protein, has become an essential
part of modern molecular biology. Molecular sequence data is important because two proteins
with similar sequences often have similar functions or structures. This means that we can learn
about the function of a protein in humans by studying the functions of proteins with similar
sequences in simpler organisms such as yeast, fruit flies, or frogs.

In this project we will examine methods for comparison of two sequences.

We will work with two strings S and T of lengths m and n respectively, composed of characters
from some finite alphabet. Write Si for the ith character of S, and S[i, j] for the substring
Si, . . . , Sj . If i > j then S[i, j] is the empty string. A prefix of S is a substring S[1, k] for some
k 6 m (possibly the empty prefix). Similarly, a suffix of S is a substring S[k,m] with k > 1.

1 The edit distance

This section follows work originally done by Needleman and Wunsch [4], although the notation
we use is slightly different.

Suppose S = fruit and T = berry. We can transform S into T by

1. Replacing f with b,

2. Inserting e,

3. Matching r with r,

4. Replacing u with r,

5. Replacing i with y,

6. Deleting t.

We call RIMRRD the editing transcript. The alignment of S and T is read vertically character by
character and is given by:
RIMRRD

f ruit

berry

There are, of course, many possible ways to transform one string into another; but from an
evolutionary point of view there must be a cost associated with any action other than matching.
The optimal edit transcripts are those that involve the least number of edit operations (Replace,
Insert, and Delete). We define the edit distance d(S, T ) to be the minimal number of edits
between S and T . Let D(i, j) = d(S[1, i], T [1, j]). Observe that d(S, T ) = D(m,n).
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Question 1 Prove that for all i, j > 0

D(i, j) = min{D(i− 1, j) + 1, D(i, j − 1) + 1, D(i− 1, j − 1) + s(Si, Tj)},

where s(a, b) is some suitable function which you should determine. Explain your reasoning
carefully. What boundary conditions D(0, 0), D(i, 0), and D(0, j) did you use?

Question 2 Write a program to find the edit distance between two strings. Use it to
find the edit distance between shesells and seashells. What is the complexity of your
algorithm?

Usually, we are interested in finding an optimal editing transcript and alignment of S and T
rather than just d(S, T ). This can be done by assigning a pointer when calculating D(i, j),
pointing to one of D(i− 1, j), D(i, j − 1), or D(i− 1, j − 1).

Question 3 Modify your algorithm so as to produce one possible optimal alignment
between two strings. Take proteins A and B from the file proteins.txt on the CATAM
website. (Both proteins are myoglobin, protein A is for the duckbill platypus and protein
B for yellowfin tuna.) Find the edit distance between them, and give the first 50 steps of
an optimal alignment.

2 Scoring matrix

A protein is essentially a long sequence of amino acids. Approximately twenty types of amino
acid (the exact number is species dependent) are involved in the construction of each protein.
A gene is a sequence of DNA which can be translated into a sequence of amino acids, i.e., a
protein. Mutations in DNA will lead to changes in the sequence of amino acids, and some
mutations are more likely than others. In this section we adjust our scoring algorithm in order
to capture some of these biological considerations.

The adjustment is achieved by replacing the scoring function s(a, b) which you found in Section 1.
There are various schemes for assessing the probability of a mutation from amino acid a to amino
acid b; currently the two dominant schemes are the PAM matrices introduced by Dayhoff [2],
and the BLOSUM matrices of Henikoff and Henikoff [3].

For historical reasons, we will talk about maximising a score rather than minimizing a distance.
Let v(S, T ) be the maximum score of all edit transcripts from S to T .

Question 4 Using the BLOSUM matrix blosum.txt from the CATAM website for the
scoring function s, and scoring −8 for each Insert or Delete, find the score v between
proteins A and B and give the first 50 steps of the optimal alignment.∗

3 Scoring for gaps

Some mechanisms for DNA mutations involve the deletion or insertion of large chunks of DNA.
Proteins are often composed of combinations of different domains from a relatively small reper-
toire; so two protein sequences might be relatively similar over several regions, but differ in
other regions where one protein contains a certain domain but the other does not.

∗If your version of MATLAB has the Bioinformatics Toolbox installed, the appropriate BLOSUM matrix can
be generated using the command blosum(62,’order’,’CSTPAGNDEQHRKMILVFYW’).
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At some computational cost, we can still align two protein strings taking gaps into account.
Let w(l) < 0, l > 1, be the score of deleting (or inserting) a sequence of amino acids of length l
from (or into) a protein. Let vgap(S, T ) be the gap-weighted score between S and T , and write
Vgap(i, j) for vgap(S[1, i], T [1, j]). Then

Vgap(i, j) = max {E(i, j), F (i, j), G(i, j)},

E(i, j) = max
06k6j−1

{Vgap(i, k) + w(j − k)},

F (i, j) = max
06k6i−1

{Vgap(k, j) + w(i− k)},

G(i, j) = Vgap(i− 1, j − 1) + s(Si, Tj).

Iterating the above equations on the n by m grid has complexity of O(mn2 +nm2). Happily, if
w(l) takes some fixed value u for all l > 1, then there exists an algorithm for finding vgap which
has complexity O(mn).

Question 5 Find and implement such an algorithm. Explain how your algorithm
works, and why it has complexity O(mn). What boundary conditions do you use?

Question 6 Take proteins C and D from the file proteins.txt on the CATAM website.
(Both proteins are keratin structures in humans.) Using the BLOSUM matrix from Sec-
tion 2 for the scoring function s, and u = −12 as the fixed score of insertion/deletion, find
the gap-weighted score vgap(C,D) and give the first 50 steps of the optimal alignment.

4 Statistical significance

We may now ask at what threshold a score vgap(S, T ) should be declared to have biological
significance?

Let us simplify the problem slightly. Suppose there are only two letters in our alphabet, a and
b, corresponding, say, to hydrophobic and hydrophilic amino acids. Let s(a, a) = s(b, b) = 1 and
s(a, b) = s(b, a) = −1. Let Un be a random protein of length n: all the amino acids Un

1 , . . . , U
n
n

are independent and identically distributed, with P (Un
i = a) = p and P (Un

i = b) = 1− p.

Question 7 Consider two random proteins Un and V n, independent and identically
distributed. Let the score of inserting/deleting a sequence of length l be fixed: w(l) = u
for all l > 1. Prove that for all 0 6 p 6 1, and for all u 6 0,

lim inf
n→∞

E(vgap(Un, V n))

n
> 0.

(Note: if xn is a sequence of real numbers, then lim infn→∞ xn is defined by

lim inf
n→∞

xn = lim
n→∞

inf
m>n

xm.

Note that the limit is always guaranteed to exist, though it may be +∞ or −∞. This is discussed
further in most textbooks on analysis.)

In fact, limn→∞ n−1E(vgap(Un, V n)) exists and is strictly positive. One way to obtain an excel-
lence mark in this project, though not the only way, is to show that this limit exists.

Question 8 Let u = −3, p = 1
2 . Write a program to estimate n−1E(vgap(Un, V n)).

Now vary n and estimate the limit of n−1E(vgap(Un, V n)). Explain how you arrive at
your estimate of the limit.
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5 Local Alignment

Full alignment of proteins is meaningful when the two strings are members of the same family.
For example, the full sequences of the oxygen-binding proteins myoglobin and haemoglobin are
very similar. Often, though, only a small region of the protein is critical to its function and
only this region will be conserved throughout the evolutionary process. When we identify two
proteins which perform similar functions but look superficially different, it is useful to identify
these highly conserved regions.

We aim to find a pair of substrings S′ and T ′ of S and T with the highest alignment score,
namely,

vsub(S, T ) = max{v(S′, T ′) : S′ a substring of S, T ′ a substring of T}.

(For simplicity, we will use the same scoring as in Section 2. We will also write s(−, a) =
s(a,−) < 0 for the score of an insertion or deletion.)

Finding vsub(S, T ) seems to be of much higher complexity than solving the global alignment
problem, as there are Θ(n2m2) combinations of substrings of S and T . Amazingly, we will solve
it using an algorithm whose complexity is still only O(mn).

We will first define a slightly easier problem. Suppose we restrict ourselves to suffixes of S
and T :

vsfx(S, T ) = max{v(S′, T ′) : S′ a suffix of S, T ′ a suffix of T}.

Question 9 Prove carefully that

vsub(S, T ) = max{vsfx(S′, T ′) : S′ a prefix of S, T ′ a prefix of T}.

Question 10 Write Vsfx(i, j) for vsfx(S[1, i], T [1, j]). Prove that

Vsfx(i, j) = max


0,

Vsfx(i− 1, j − 1) + s(Si, Tj),

Vsfx(i− 1, j) + s(Si,−),

Vsfx(i, j − 1) + s(−, Tj),

with boundary conditions Vsfx(i, 0) = Vsfx(0, j) = 0.

Question 11 Find vsub for proteins C and D, using the BLOSUM matrix from Sec-
tion 2 and s(a,−) = s(−, a) = −2 for all amino acids a.

References
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9 Operational Research

9.5 The Google PageRank Algorithm (5 units)

This project requires an understanding of the Part IB Markov Chains course. Familiarity with
Linear Algebra is desirable.

1 Introduction

PageRank is a link analysis algorithm, operating on a database of documents connected to
each other via directional hyperlinks. It was developed to measure the relative importance of
a webpage in the World Wide Web, and with minor variations has also been employed in the
context of assigning importance to academic journal publications.

Graph-theoretic terminology We will represent a collection of hyperlinked documents
(webpages, academic journals, etc.) as a directed graph G = (V,E), where V is the set of
documents {d1, . . . , dN} and the edge set E ⊆ V ×V can be represented by an N×N adjacency
matrix A, where Aij = 1 iff dj → di (i.e., iff (dj , di) ∈ E). The out-degree of a node i is the
number of outgoing edges di → dj . A node with out-degree 0 is called a dangling node. Multiple
edges can be incorporated by letting Aij = d when there are d edges j → i.

2 The PageRank algorithm

PageRank may be motivated as a voting system. Each webpage can distribute a total vote
of 1 to other webpages, and votes themselves are weighted according to the importance of the
respective voter, giving rise to the following recursion for the score wi of the ith webpage:

wi =
∑

j=1:N

Sijwj , where Sij =
Aij∑

q=1:N Aqj
and wi > 0. (1)

A normalisation constraint
∑

iwi = N is also employed, to ensure an average score of 1. More-
over, we assume that “everyone votes,” i.e., that there are no dangling nodes. We may interpret
S as the transition matrix of a Markov chain that describes the behaviour of a surfer who
chooses where to go next by picking one of the available outgoing links at random. Recursion
(1) then characterises the score vector w as an invariant measure for this Markov chain.

Question 1 Produce an adjacency matrix for which recursion (1) fails to converge
when initialised at w = (1, 1, . . . , 1) and iterated. Assume that everyone votes.

To avoid having to enforce assumptions on the edge structure of the document collection, we
may assume that the surfer occasionally gets bored following links and starts anew, selecting a
random webpage from V to visit next according to some “default” distribution π on V . This
is often referred to as damping. If we handle dangling nodes in a similar way, we obtain the
random surfer model of Figure 1.
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Random Surfer [(V,A), π, d]

At t = 0, choose a random webpage from V according to π.
At t > 0, if there are no outgoing links,

choose a random webpage from V according to π;
else

with probability d
choose an outgoing link uniformly at random among available links,

with probability (1− d)
choose a random webpage from V according to π.

Figure 1: Description of the random surfer model for user behaviour.

Question 2 Simulate 100 sample paths of the Markov chain of Figure 1 on the fol-
lowing example graph, with π uniform and d = 0.85:

A =


0 1 0 0
1 0 0 0
1 0 0 1
0 0 0 0

 . (2)

For the jth sample path, denote the average time spent on the kth node from the beginning

of that sample path until time t by µ
(k)
jt . For a fixed sample path of your choice, and for

each node, plot µ
(k)
jt against t. For each node, and for each value of t, compute the variance

of µ
(k)
jt over different sample paths and plot it against t.

Question 3 Modify (1) to incorporate damping and handle dangling nodes as de-
scribed above. Assuming that 1 > d > 0, and πi > 0 for all i, use standard Markov chain
results to establish that the recursion you have obtained

• has a unique solution p, such that p is a distribution (i.e.,
∑

i pi = 1, pi > 0) and pi
represents the average time the surfer spends visiting webpage i; and

• converges to p.

The PageRank scores are then given by w = Np.

Question 4 Write a procedure that implements PageRank with d = 0.85 and π uni-
form. Your procedure should take as input an adjacency matrix and a maximum number
of iterations, and output a column vector of PageRank scores.

• Test your procedure on A given in question 2, and compare with your results there.

• Construct an example for which node 1 has a larger number of both incoming and
outgoing links than node 2, but a smaller PageRank score.

Question 5 Write a procedure that generates a random adjacency matrix of size N ,
such that the out-degree of each node is an independent Poisson random variable with
mean k, and conditional on the sequence of out-degrees all graphs are equiprobable.

• Generate an example with N = 1000 and k = 100, and convince yourself that your
implementation of PageRank is correct by inspecting the eigenvectors of the modified
transition matrix. Carefully explain your reasoning. You may use the MATLAB
function eig.
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File citations.dat :
... ...

9408099 9204102
9408099 9211097
9408099 9402002
9408099 9402005

... ...

File articlejids.dat :
... ...

9204102 82
9204103 62
9205001 65
9205002 65

... ...

Figure 2: A few entries from the two files forming the citation dataset.

• What happens to the empirical distribution of scores as k decreases?

• Describe one aspect of this model that provides an unrealistic description of real-life
web networks.

3 Ranking academic journals.

Let us represent a collection of academic journals as a directed graph, letting Aij be equal to
the number of times an article published in journal j cited an article from journal i. We force
Aii = 0, disregarding citations within the same journal. The Eigenfactor (EF) score of each
journal is then computed by applying PageRank to the graph described, with d = 0.85 and the
following choice of default distribution π intended to represent journal size or popularity :

πi =
zi∑
i zi

, where zi is the number of articles in journal i in the given time period. (3)

Before the introduction of the EF score, the industry standard for ranking academic journals
was the Total Citations (TC) score, which in this representation is the in-degree of a node. To
separate journal prestige from journal size or popularity, the TC score is commonly reported
as an Impact Factor (IF), obtained by dividing the in-degree of node i by zi. By analogy, the
Article Influence (AI) score is obtained by dividing the EF score of a journal by zi.

3.1 Real data

The files citations.dat and articlejids.dat on the CATAM website contain citation data from
the Arxiv high energy physics theory section (also see Figure 2). Each article is represented
by a 7 digit identifier, leading zeros being omitted without risk of confusion. Each line of the
file citations.dat is of the form ‘[article i] [article j]’, and represents a citation from article i to
article j. In articlejids.dat, each article is assigned a journal identifier ranging from 1 to 272.

Question 6 Verify that the same set of articles appears in both files, and that each
article is assigned a unique journal identifier. Then retrieve the (multiple-edge) journal
adjacency matrix A, and the vector z of articles per journal. In MATLAB, files can be
loaded using the function load. The following functions might also be useful: isequal,
ismember, find, unique.

Following the introduction of EF alongside TC scores (and of AI alongside IF scores), a debate
ensued as to the relative merits of the two approaches. Central to this debate is the statistical
question of whether the two offer similar information.
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Question 7 On the basis of the citations dataset, discuss the question whether EF and
TC scores are practically indistinguishable. Your answer should consider

• the correlation ρEF,TC between EF and TC scores and

• the differences in journal ranking for each of the two scores.

Is the correlation ρAI,IF between AI and IF scores relevant to this question? If so, how?
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10 Statistics

10.3 Bootstrap Estimation of Standard Error (5 units)

This project is not strongly related to particular courses in Part II, though practice in statistical
thinking will obviously be helpful.

Background

Bootstrap methods are procedures for the empirical estimation or approximation of sampling
distributions and their characteristics. Their primary use lies in estimating the accuracy (e.g.,
bias or variance) of parameter estimators, and in constructing confidence sets or hypothesis
tests. They are applied in circumstances where the form of the population from which the
observed data was drawn is unknown.

The general bootstrap method was formalized by Efron [1], [2]. In this project, the bootstrap
method will be used to estimate the standard error of certain statistics derived from a sample
of independent, identically distributed random variables.

Let X = (X1, . . . , Xn) be an IID sample on some sample space Ω , drawn from a distribution
F , and let T (X) be a statistic of interest. The standard error of T is

σ(T ;F ) =
√

VarF T (X) .

The non-parametric bootstrap estimate of the standard error is

σ(T ; F̂ ) =
√

VarF̂ T (Y) ,

where Y is an IID sample of size n drawn from the empirical distribution

F̂ (A) =
1

n

n∑
i=1

1 [Xi ∈ A] for A ⊂ Ω .

Question 1 Show that Y is the same as a random sample of size n , drawn with
replacement from the actual sample X. Comment on the reasonableness of the bootstrap
estimate, such as its bias, ergodic variance, etc.

Often there will be no simple expression for σ(T ; F̂ ). It is, however, simple to estimate it
numerically by means of simulation. The algorithm proceeds in three steps:

1. Draw a large number B of independent bootstrap samples Y1 , . . . , YB .

2. For each bootstrap sample, evaluate the statistic T (Yb).

3. Calculate the sample standard deviation of the T (Yb) values:

σ̂B =

√√√√ 1

B − 1

B∑
b=1

(
T (Yb)− T̄

)2
, where T̄ =

1

B

B∑
b=1

T (Yb) .

As B →∞ , σ̂B will approach σ(T ; F̂ ).
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1 Correlation Coefficient

Suppose each sample pointXi consists of a pairXi = (Yi, Zi). The variance-stabilized correlation
coefficient is

T (X) =
1

2
log
( 1 + r(X)

1− r(X)

)
,

where

r(X) =

∑n
i=1(Yi − Ȳ )(Zi − Z̄)√∑n

i=1(Yi − Ȳ )2
√∑n

i=1(Zi − Z̄)2
,

and Ȳ = n−1
∑
Yi and Z̄ = n−1

∑
Zi .

The data set II-10-3-2020.csv on the CATAM website contains IQ data from 120 people.
Each data point Xi consists of two statistics Xi = (VIQi,PIQi). The first measures the verbal
IQ score (based on verbal questions and verbal responses); the second measures the performance
IQ score (based on picture arrangement, object assembly and other nonverbal tasks).

Question 2 Use the bootstrap method to estimate the distribution of T , i.e., plot a
histogram of the bootstrap values T (Yb). Comment on any interesting features.

Question 3 Use the bootstrap method to estimate σ(T ;F ) by finding σ̂B for a rea-
sonable value of B . Repeat this experiment several times, for the same value of B , and
plot a histogram of the values of σ̂B you obtain. How does this histogram change with
B? What value of B would you advise?

Question 4 Theory tells that for a bivariate normal distribution F , the standard error
of T equates to

σ(T ;F ) =
1√
n− 3

.

It has been suggested that IQ scores are normally distributed. Does your analysis provide
sufficient evidence to reject the hypothesis that the Verbal and Performance IQ data are
bivariate normal?

2 Uniform Data

Let X = (X1, . . . , Xn) be a sample of real-valued random variables. Suppose the distribution
of the statistic

T (X) = max {X1, . . . , Xn}

is of interest. For this very simple statistic, it is possible to calculate σ(T ; F̂ ) exactly.

Question 5 Calculate σ(T ; F̂ ). (You may wish to assess your answer by comparing
it to what you obtain using the bootstrap algorithm, for some sample X , but you do not
need to include any such tests in your final report.)

Suppose the sample X comes from the uniform distribution on [0, θ] for some θ > 0 . (Then
T (X) is the maximum likelihood estimator for θ .)
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Question 6 Calculate σ(T ;F ).

Question 7 Generate a sample X with θ = 5 and n = 100 . Compare σ(T ; F̂ ) to
σ(T ;F ). Repeat for increasing n . How well does the bootstrap method perform? Why?
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10 Statistics

10.15 Variable Selection and the Bias-Variance

Tradeoff

(8 units)

This project requires an understanding of the Part IB Statistics course.

1 Introduction

Consider the following linear model with a univariate response and p covariates:

Y = Xβ + ε, ε ∼ N(0, σ2). (1)

We assume throughout that all variables are zero mean. Note also that introducing an intercept
is not necessary, since it can be captured by augmenting the covariate and regression vector as
follows:

b+Xβ =
(

1 X
)( b

β

)
.

We will denote a training dataset of N response-covariate tuples by T = {(yt, xt) | t = 1, . . . , N},
where each xt is a 1× p row vector representing an observation. Alternatively, we may employ
matrix notation, letting y = (yt)t=1:N be a row vector and x = (xti) an N×p matrix where each
row corresponds to an observation. The least squares (LS) estimate of β then is the minimiser
of the residual sum of squares (RSS) over the training set:

RSS(β̂; T ) =
1

N

N∑
t=1

(yt− xtβ̂)2 =
1

N
(y− xβ̂)T (y− xβ̂), and β̂LS(T ) = argmin

β̂

RSS(β̂; T ). (2)

Assuming N > p+ 1, which we do, the LS estimator can be written in closed-form as

β̂LS(T ) = (xTx)−1xTy. (3)

The dependence on the training set will be omitted when understood. In this project we will
often refer to a subset of covariates as a model M ⊆ {1, . . . , p}. The LS estimate for M is
computed on a reduced dataset TM, obtained by deleting all covariates not in the model:

TM =
(
yt, (xti)i∈M

)
t=1:N

.

For computational ease, we will instead represent the LS estimate for M in the p-dimensional
space of the original model. We denote this representation by β̂M, where

β̂Mj (T ) =

{
β̂LSπ(j)(T

M) if j ∈M,

0 otherwise.

Here π : M → {1, 2, . . . , ||M||} maps indices of covariates in the model to their respective
indices in the reduced dataset TM, so that xβ̂M(T ) is a (simpler) notation for xMβ̂LS(TM).
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2 The Bias-Variance tradeoff

Question 1 Assume model (1). Let β̂ be an estimator of β. Show that the expected
squared prediction error at a fixed, arbitrary location u can be decomposed as follows:

ET ,y|u(y − uβ̂)2 = σ2 +
(
uβ − ET [uβ̂]

)2
+ VarT [uβ̂],

where y ⊥ T . The summands on the right-hand side are often referred to as the irreducible
variance, squared estimation bias and estimation variance, respectively. Describe what
effect deleting the pth covariate can have on each of these quantities for the LS estimator
(i.e., switch β̂ = β̂LS with β̂ = β̂{1,...,p−1}). You may consider the simplest non-trivial
case, where x is fixed such that xTx = Ip. It might further be useful to look at βp = 0,
and then at βp 6= 0.

Question 2 Consider model (1) with p = 10, σ2 = 1, and X ∼ N(0, Ip), and set

β = (−0.5, 0.45,−0.4, 0.35,−0.3, 0.25,−0.2, 0.15,−0.1, 0.05)T .

Simulate a training dataset with Ntr = 30 and a test dataset with Nte = 1000. Now
consider

M1 = {1},M2 = {1, 2}, . . . ,Mp = {1, . . . , p}.

Write a procedure that computes the training and test error of β̂Mj for j = 1, . . . , p.
Repeat the experiment 100 times and report your results in a plot of training and test
RSS averaged over experiments, against model size. What happens if Ntr = 200, and why?

The above demonstrates an effect that holds in much greater generality, namely that suitably
reducing the complexity of a model (in this instance, the number of variables involved) can
improve prediction accuracy. There may also be gains in model discovery, interpretability, and,
of course, reduced observation costs. Consequently, variable selection methods are of interest.

3 Variable selection methods

We consider two approaches to variable selection, subset selection and shrinkage-based methods.
Subset selection methods look among all possible subsets of variables for the one that minimises
some suitable estimate of prediction error. The search problem becomes infeasible for large p,
and non-exhaustive greedy search methods have to be employed. Shrinkage-based variable
selection methods will instead penalise the RSS by a penalty term that forces the LS regression
coefficients to shrink in a manner that favours exact zeros in β̂.

3.1 Subset selection

Question 3 Best subsets selection. Write a procedure bestsubset which takes as
input a training dataset T and outputs a p×p matrix B, whose jth column contains β̂Mj

for the best performing model (in the sense of RSS) of size j, Mj :

Mj(T ) = argmin
M: ||M||=j

RSS
(
β̂M(T ); T

)
.

What is the size of the model space {M | M ⊆ {1, . . . , p}}? Your procedure will
handle with difficulty values of p for which the size of the search space {M | M ⊆
{1, . . . , p}, ||M|| = j} exceeds 105 for any j ∈ {1, . . . , p}. What is the smallest such p (show
your work)?
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Question 4 Greedy subset selection. Write a procedure greedysubset, using the
same input-output format as before, that incrementally builds up the model sequenceMj

by adding at each iteration the covariate that improves model fit the most:

M0 = ∅, Md+1(T ) =Md(T ) ∪

{
l | l = argmin

j
RSS

(
β̂Md(T )∪{j}(T ); T

)}
.

Can the fact that the family of models M0, . . . ,Mp is nested be used to gain in com-
putational efficiency? Explain how, without effecting the change. Assuming that Mj =

{1, . . . , j}, you might want to consider the upper left j × j block of
(
(xMj+1)TxMj+1

)−1
.

Question 5 Forward F-test. Amend greedysubset to stop whenever the newly added
variable does not significantly improve fit (at the p = .05 level), using the F-statistic

RSS(β̂Md)− RSS(β̂Md+1)

RSS(β̂Md+1)/(N − d− 1)
,

which you may assume follows an F1,N−d−1 distribution (you may use the MATLAB
function cdf ). Would this method work for best subset selection?

Question 6 We can represent a sparse (linear regression) estimator more generally as
an algorithm that takes as input a training set T and outputs a sequence of p candidate
regression vectors for each model size (i.e., the jth candidate β̂(j)(T ) has precisely p − j
zeros). Best and greedy subset search are special cases of this definition for which each
candidate is a least squares solution, a condition we will not insist on here. We would like
to select among candidates on the basis of estimated prediction error P̂E:

β̂CV(T ) = β̂j
?
(T ), where j? = argmin

j

{
P̂E(j, T )

}
.

The prediction error can be estimated using 10-fold cross-validation as

P̂E(j, T ) =
1

10

10∑
k=1

RSS
(
β̂(j)(T −k); T k

)
,

where T k is the kth fold of the training set and T −k its complement:

T k =

{
(yπ(n), xπ(n)) | k − 1 <

10n

N
6 k

}
,

T −k =

{
(yπ(n), xπ(n)) |

10n

N
6 k − 1 or

10n

N
> k

}
, (4)

where π is a random permutation of {1, . . . , N} (you may use the MATLAB function
randperm). Implementing the above for an arbitrary sparse estimator would involve a
function taking another function as an argument. In MATLAB, this can be achieved using
function handles, as demonstrated by handle demo.m and testerror.m available from the
CATAM website. Write a procedure crossval that implements the above (the MATLAB
functions ismember and find might be useful in this). This procedure should take as input
T and a sparse estimator, and output β̂CV(T ).
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3.2 The Lasso estimator

The Lasso estimator penalises the RSS by the L1 norm of the regression coefficients:

β̂(L,λ)(T ) = argmin
β̂

RSS
(
β̂; T

)
+ λ

p∑
j=1

∣∣∣β̂j∣∣∣
 (5)

Question 7 Express the Lasso as a quadratic program with linear constraints.

In the Lasso estimator, the degree of sparsity is controlled indirectly via the penalty weight
λ, rather than directly as in earlier methods. For λ = 0 the full model is employed, whereas
increasingly many covariates are deleted from the model as λ → ∞. Given an algorithm for
solving (5), we can then use cross-validation to select among any finite set of values λ1 < λ2 <
· · · < λq for λ. For simplicity, we will continue here to perform cross-validation to select model
size rather than λ. To do so, we will rely on the LARS algorithm, which, subject to certain
minor assumptions and modifications that do not concern us here, allows us to compute in an
efficient manner one Lasso solution for each model size. The file monotonic lars.m available
from the CATAM website contains an implementation of this modified LARS algorithm that
can be used as input to crossval.

Question 8 The file prostate.dat available from the CATAM website contains a prostate
cancer dataset.∗ The dataset has been preprocessed to standardise the covariates and make
all variables zero mean, so that you can avoid using an intercept. Column 1 contains the
response, lpsa, and columns 2 to 9 the covariates lcavol, lweight, age, lbph, svi, lcp, gleason,
and pgg45. Augment the dataset by adding four zero-mean, unit-variance covariates sam-
pled from a distribution of your liking independently of variables in prostate.dat. Separate
the data into a training dataset of size 70 and a test dataset of size 27. Perform a variable
selection analysis of the data using the tools developed above. Present and discuss your
results.

∗reproduced from http://www-stat.stanford.edu/~tibs/ElemStatLearn/
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11 Statistical Physics

11.2 Monte Carlo simulation of the Ising Model (10 units)

Knowledge of the Statistical Physics course will be useful for this project.

1 Introduction

The Ising model is a simple model for a magnet. It consists of N “spins”, which are variables
σ1, σ2, . . . , σN . Each spin (for example σi) takes values in {−1,+1}. A configuration is specified
by giving the value of every spin; we denote such a configuration by σ = (σ1, σ2, . . . , σN ).

To each configuration σ we associate an energy E(σ) which for the one-dimensional (1d) model
is

E(σ) = −J

[
σNσ1 +

N−1∑
i=1

σiσi+1

]
− h

N∑
i=1

σi.

The first term in the square brackets is present because we have arranged the spins on a circle
so the Nth spin is adjacent to the first one (“periodic boundary conditions”). In the canonical
ensemble at temperature T , configuration σ occurs with a probability given by the Boltzmann
distribution

p(σ|T ) =
1

Z
exp

(
−E(σ)

T

)
where Z is the partition function (normalisation constant).

A common aim in statistical mechanics is to compute averages of observable quantities with
respect to p. For example we might compute the average energy U(T ) =

∑
σ E(σ)p(σ|T ),

where the sum runs over all possible configurations. For the 1d Ising model this sum can be
done analytically. In two dimensions, the average energy can be computed analytically for
the special case h = 0, but not otherwise. In three dimensions, the average energy cannot be
computed analytically.

In this project, we consider a general numerical method for computing averages in the canonical
ensemble. (In principle this method can be used in any dimension, here we consider d = 1.)
The idea is to define a dynamical process by which the Ising model evolves, as a function of
time. This process is random – within its steady state, configuration σ appears with probability
p(σ|T ). Hence one can use the random process to estimate averages such as U(T ). This method
is very useful in systems that cannot be solved analytically. It is related to Markov chain Monte
Carlo (MCMC) methods in statistics.

1.1 Theoretical analysis

The project focusses on the magnetisation of the system. The results in this section can be
derived using methods from part II statistical physics. The magnetisation of a configuration is

M̂(σ) =
1

N

∑
i

σi

Its average (with respect to the Boltzmann distribution) is

M(T ) =
∑
σ

M̂(σ)p(σ|T )
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where the sum runs over all configurations. Note that M(T ) depends on J, h,N as well as T .
The (scaled) magnetic susceptibility is χ(T ) = T ∂M

∂h . This quantity is related to the variance

of M̂ , as

χ(T ) = N
∑
σ

[M̂(σ)−M(T )]2p(σ|T )

In the limit N →∞, it can be shown by transfer matrix methods that

M(T ) = sinh(h/T )
cosh(h/T ) +

√
sinh2(h/T ) + e−4J/T

sinh2(h/T ) + e−4J/T + cosh(h/T )
√

sinh2(h/T ) + e−4J/T
. (1)

For h = 0 we have also
χ(T ) = e2J/T . (2)

2 The Simulation

In the following, you will use a computer to generate a sequence of configurations, which corre-
spond to the Ising model evolving (stochastically) as a function of time. The time t is a positive
integer and the t-th configuration is denoted by σ(t).

To generate the configuration σ(t+ 1), first set σ(t+ 1) = σ(t); then choose a random integer
i between 1 and N ; and finally replace σi(t+ 1) by either −1 or 1, according to

Prob[σi(t+ 1) = +1] =
1

1 + e−2κi/T

Prob[σi(t+ 1) = −1] =
1

1 + e2κi/T
(3)

with
κi = h+ J(σi+1 + σi−1).

This update yields the new configuration σ(t + 1), which may be identical to σ(t), or it may
differ in exactly one spin. (It is easy to verify that the probabilities of the two possible values of
σi(t+1) sum to unity. In the formula for κi then σN+1 should be interpreted as σ1 and σ0 should
be interpreted as σN , to take care of the periodic boundaries.) The variable κi is sometimes
called the “local field”: you can check that the difference in energy between configurations with
σi = −1 and σi = 1 is 2κi.

After many updates, the probability that the system ends in configuration σ converges to
p(σ|T ), this is discussed in a later section. It is useful to define a rescaled time τ = t/N . If
τ = 1, this means that N updates have been performed.

2.1 The program

You will write a program that stores a configuration of N Ising spins, and performs random
updates using the rule described above. The configuration should be stored as a sequence of 1’s
and −1’s in an array of size N . You can verify that while the parameters J, h, T all appear in the
algorithm, the behaviour of the system only depends on J/T and h/T . These parameters will
have the same value for every update (they are independent of time). In order to do the updates,
you will need to generate random numbers: the MATLAB manual has some information on this.

Here is an outline of the program that you should write. It depends on a few parameters whose
values will be discussed at the end
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(1) Choose an initial condition with σi = 1 for all i.

(2) Define a parameter nw and perform nw × N updates to “warm up” the system. [The
initial configuration was our choice, but the idea is that if nw is reasonably large then we
the final configuration will be distributed (approximately) as p(σ|T ).] After this warming
up, the rescaled time is τ = nw. Set a counter k = 1 and define a parameter K.

(3) For the configuration obtained at the current time t, compute and store the magnetisation
as

Mk =
1

N

∑
i

σi(t),

(4) Continue updating for an additional rescaled time nI (that is, perform nI ×N updates).
Increase the counter k by 1.

(5) Repeat steps (3) and (4) until k = K. At the end of this procedure you will have stored
a list of K values of the magnetisation, which are M1,M2, . . . ,MK . It is suggested that
you store these in an array of size K.

(6) Compute the average of your magnetisation values, and also a scaled measure of their
variance, as

M =
1

K

K∑
k=1

Mk,

χ̂ =
N

K

K∑
k=1

(Mk −M)2

The algorithm is designed in such a way that if K and nw are large enough, we expect M and
χ̂ to be close to the equilibrium magnetisation and susceptibility defined in (1,2).

2.2 Numerical results

As a starting point, some recommended values for parameters are

N = 50, nw = 104, nI = 5, K = 2048 .

Instead of specifying the parameter T , it may be useful to work instead with β = 1/T . A
typical simulation with these parameters should not take more than a few minutes. In some
cases it may be useful to store your lists of magnetisation values in a file, to avoid recreating
many similar lists.

Question 1 Fix J = 1 and h = 0.1. Choose some values of β between 0 and 2.5; for
each value of β, run a simulation and compute M and χ̂. Plot these values on a graph.
Compare your result for M with the theoretical prediction of (1).

Question 2 The simulations use random numbers, so if you do several different com-
putations with the same parameters, you should get different answers for M . Check that
you do get different answers (if not, you may need to read about choosing different “seeds”
for your random number generator). For each point in the graph in question 1, do several
simulations, compute the standard deviation of the values of M and χ̂ between the runs,
and use these to add suitable error bars to your plot. (If the error bars are too small to
see then this is not a problem, but you should state this fact.)
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Question 3 Repeat the analysis of questions 1 and 2, but now for J = 1 and h = 0.
(That is, make plots of M and χ̂ against β, with error bars.) In this case you can also
compare your result for χ̂ with the theoretical prediction of (2). Make sure to analyse the
errors in M : even if the theoretical prediction for this quantity is trivial, your numerical
estimate M is not a trivial quantity.
When interpreting these results, you should recall that this numerical method is accurate
only if nw and K are large enough. The dependence of the results on these parameters
will be discussed later, in question 6.

2.3 Validity of the method, and error estimates

It was claimed above that as the number of updates goes to infinity, the final configuration
generated by the method will be distributed as p(σ|T ). This can be proven, but we don’t do
it here. However, the main step in the proof would be to verify the detailed balance property,
which concerns the probability that an update generates configuration σ at time t + 1, given
that the configuration at time t was σ′. If this probability is P (σ′ → σ) then the required
condition is that for all pairs σ,σ′ then

p(σ′|T )P (σ′ → σ) = p(σ|T )P (σ → σ′)

Roughly speaking, this says that if the configurations are already distributed as p(σ|T ), then
the probability to go from σ′ to σ is equal to the probability of making the opposite transition
(from σ to σ′).

Question 4 Show that the detailed balance property holds for the simulation algo-
rithm that you are using.

We now make a short theoretical analysis of the sequence of magnetisation valuesM1,M2, . . . ,MK

that is generated by your program. These are sequences of random variables, in the sense that
repeating the same computation with the same parameters will give a different sequence. If nw
is large enough, each of these numbers should have the same distribution, but that they are
correlated random variables (they are not independent, because values that are adjacent in the
sequence are likely to be similar to each other). This is particularly true if nI is small.

Programming Task: To investigate this, generate a long sequence of magnetisation
values (at least K = 16384), at the state point h = 0, J = 1, β = 0.7. You need to choose
sensible values of nw and nI so that the M obtained from this sequence is a good estimate
of M(T ).

Split this sequence into blocks (subsequences) of length ` with (for example) ` = 2, 4, 8, . . . .
There will be K/` such blocks and you will compute the average magnetisation of the r-th
block as

m(`, r) =
1

`

(r+1)`∑
k=r`+1

Mk

with r = 0, 1, 2, . . . , (K/`)− 1. Note, m(K, 0) = M .

If the Mk were independent, standard statistical methods could be used to show that the
variance of m(`, r) is proportional to 1/`. If the Mk are not independent (as in your case),
the variance of m(`, r) depends on whether typical data points within a block are strongly- or
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weakly-correlated. Since you have a long time series, you can estimate the variance of m(`, r)
as

S(`)2 =
`

K

(K/`)−1∑
r=0

[m(`, r)−M ]2

and it is useful to define a rescaled variance

s(`) = ` · S(`)2

If the correlations of the samples within a block are weak, one expects s(`) to depend weakly on
`. This typically happens for longer blocks. On the other hand, if the correlations are strong,
one expects s(`) to depend strongly on ` (this typically happens for small blocks, in which all
the values are strongly correlated with each other).

Question 5 Using your long sequence of magnetisation results, compute s(`) for ` =
2, 4, 8, 16, 32 and present the results in a graph. Explain the behaviour that you observe.
What happens at different state points, for example β = 1.7? Why?

Question 6 Consider the graph (with error bars) for M from question 3. Investigate
how the mean value M and its error bar depend on nw and K. Explain the behaviour
that you observe. It may be useful to refer to your answer to question 5.

Question 7 Discuss the physical behaviour that is occurring at high and low temper-
atures in the 1d Ising model. You will find it useful to explain how typical configurations
depend on the system parameters. What happens if you increase (or reduce) the system
size N?
Explain how the behaviour of the system affects the computational time required to com-
pute accurate estimates of M(T ) using this simulation method.
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12 Nonlinear Dynamics/Dynamical Systems

12.8 A Nonlinear Map and the Dynamics of

Hydrogen Atoms in Electric Fields

(7 units)

Material in both the Part II course Dynamical Systems and the Part II course Classical Dy-
namics is relevant to this project.

1 Part 1

The behaviour of Rydberg atoms, i.e. atoms in highly excited electronic states, in the presence
of external fields has been the subject of extensive investigations. Advances in theoretical and
experimental techniques in the past few decades have made it possible to study the dynamics
of hydrogen atoms with very high initial quantum number. In this limit, and because of the
form of the potential, they are ideal candidates for exploring the borderline between classical
and quantum mechanics.

This projects explores a simple dynamical model, used to approximate the particular case of
hydrogen atoms in a monochromatic, linearly polarised electric field, which are initially prepared
in a very extended state along the field direction.

This case can be modelled using classical dynamics, by the one-dimensional Hamiltonian

H(x, p, t) =
p2

2
− 1

x
+ εx sinωt (1)

where p and x are momentum and position of the electron, and ε and ω are strength and
frequency of the external electric field. It is convenient to express this Hamiltonian in action-
angle variables (I, θ):

H(I, θ, t) = − 1

I2
+ ε

[
3I2

2
− 2I2

∞∑
s=1

J
′
s(s)

s
cos(sθ)

]
sinωt , (2)

where J
′
s(z) denotes the derivative of an ordinary Bessel function and the term in square brackets

is the Fourier expansion of x(I, θ).

The equations of motion are then

İ = −∂H
∂θ

= ε sinωt
∂x(I, θ)

∂θ
(3)

θ̇ =
∂H

∂I
=

1

I3
− ε sinωt

∂x(I, θ)

∂I
.

By integrating these equations over one field period, we can obtain the solution in the form of
a discrete map.

In the unperturbed case ε = 0 we obtain the simple twist map

In+1 = In (4)

θn+1 = θn +
2π

I3n+1

,

July 2024/Part II/12.8 Page 1 of 3 ©c University of Cambridge



while for ε 6= 0 the solution has the form

In+1 = In + f(In+1, θn, ε) (5)

θn+1 = θn +
2π

I3n+1

+ g(In+1, θn, ε) .

The functions f and g have no known analytical form. We could find an approximate solution
by truncating the sum in (2), but for the purpose of this simple model we shall only require that:
(a) the fixed points of the perturbed map are the same as, or very close to the fixed points of the
unperturbed twist map; (b) the perturbed map is area-preserving; (c) the motion described by
the perturbed map becomes ‘chaotic’ only above a critical value of the action I, which depends
on the strength of the perturbation. Chaotic motion is that for which trajectories, i.e. iterated
points of the map, do not lie on any invariant curve.

We shall therefore choose f = − ∂B
∂θn

and g = ∂B
∂In

, with B = εI
−2
n+1 cos θn. and study the map

In+1 = In + εI
−2
n+1 sin θn (6)

θn+1 = θn +
2π

I3n+1

− 2
log ε

I3n+1

εI
−2
n+1 cos θn .

Question 1 Check that the fixed points of the perturbed map (6) are very close to
those of the simple twist map (4).

By considering how the perturbed map (6) can be described as a transformation with a
generating function of the form F2(In+1, θn), check that it is area-preserving (why do we
need this?).

Now write a program that plots trajectories of the perturbed map (6) in phase space. Calculate
θn modulus 2π. Note that In+1 is defined implicitly in terms of In, so you will need to use some
root-finding method to calculate it at each step.

Question 2 For two different values of the field parameter: ε = 0.0005 and ε = 0.002,
plot several phase space trajectories of the map on the same graph. In each case look for
representative trajectories with I in the range [0.7, 2.0], for example starting at I = 0.81.
Can you restrict initial values of θ to the range [0, π]?

Comment on your choice of root-finding method, and the numerical error it introduces.
Comment on your choice of initial conditions, and total number of iterations.

Estimate the complexity of your program.

Describe the structure of the phase space. Give an estimate, based on the observed
behaviour, of the critical value of I above which chaotic regions of phase space exist.

Now iterate the map with several values of the field parameter in the range ε ∈ [0, 0.1]

Question 3 Plot phase space trajectories for some representative values of ε.

Describe how the phase space structure changes as a function of ε. Find how the critical
value of I changes with ε. Comment on the number of iterations needed to show a good
illustration of the behaviour.
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2 Part 2

In this section we introduce a function that models a slow change of the field parameter ε,
in order to explore the existence of adiabatic invariants in the non-integrable system under
investigation. A similar problem is investigated in [3].

Adapt the program of Part 1 to iterate the perturbed map, but this time with a gradual ‘switch-
on’ of the perturbation, using the discrete switch-on function defined by:

A(n,Na) =


0 s 6 0
s2(2− s2)2 0 < s < 1
1 1 6 s

, (7)

where Na is the length (in number of steps) of the adiabatic switch, and s = n/Na.

Question 4 In the cases ε = 0.005 and ε = 0.015 repeat plots of the iterates of the
maps for a range of initial conditions as in question 3, but now using the function A(n,Na)
to switch on the perturbation, with Na = 100. Describe the effects of switching on the
perturbation gradually.

Focus now on just two initial values of the action: I = 1.1 and I = 1.236068,

Question 5 Plot results obtained with different lengths of the adiabatic switch, for
example Na = 10, 100, 500, 1, 000, 2, 000 (or other values that you think best illustrate the
dependance), and varying the number of total iterations of the map.

Describe how persistence of the invariant curves varies with the different parameters.

We can verify adiabatic invariance by using the non-adiabaticity parameter defined by Dana
and Reinhardt (1987):

∆J(Na) =

[
1

2π

∫ 2π

0
(INa(θ)− I(θ))2dθ

]1/2
. (8)

Write a programme to calculate numerically the non-adiabaticity parameter ∆J(Na) using a
suitable numerical approximation for the integral.

Question 6 Comment on your choice of approximation for the integration.

Show plots of ∆J(Na) v Na for all the cases in Question 5.

Use the non-adiabaticity parameter to verify cases where adiabaticity holds, and where it
breaks down.

Comment on the relevance of these results to quantisation of this classical system.
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12 Nonlinear Dynamics/Dynamical Systems

12.9 Differential Equations for Nonlinear

Oscillators

(10 units)

Material in the Part II course Dynamical Systems is relevant to this project.

Introduction

Many nonlinear differential equations arise in physical, biological and chemical contexts. Several
of these describe nonlinear oscillators and exhibit interesting dynamics.

The general equation of a forced nonlinear oscillator can be written as

ẍ+ (α+ βxm)ẋ− γx+ δxn = f(t)

When β = 0 and n = 3 the system described by this equation is known as a Duffing oscillator.
When δ = 0 and m = 2 it is know as a van Der Pol oscillator.

Part 1

We shall study the forced Duffing equation with periodic forcing in the form

ẍ+ aẋ− x+ x3 = b cos t

where a and b are constants and dot signifies differentiation with respect to t.

Question 1 Write a program (using the Runge-Kutta routine for example) to integrate
this system from five initial conditions with −2 6 x(0) 6 2 and −2 6 ẋ(0) 6 2, plotting
all five solutions on a single picture. (Plot x(t) against ẋ(t).)

Question 2 Test your program by running it with b = 0 at a = −0.2, a = 0 and
a = 0.2 and show and describe the results. Comment on any special features of the case
a = b = 0.

Now set a = 0.15 and b = 0.3. Use your program to find two stable solutions (one is a periodic
orbit, the other looks like a “strange attractor”, so solutions on this attractor never appear to
settle down to any simple closed loop) which both exist at these parameter values.

Question 3 Choose two initial conditions, one which tends towards each attractor,
and adapt your program to integrate with these two sets of initial conditions only. Display
your results.

Question 4 Repeat this numerical experiment with the same two initial conditions
and the same parameter values, but this time, instead of plotting the whole solution, plot
points (without joining them up) only when t = 2nπ (n = 0, 1, 2, . . .). Comment on the
relationship between the two different ways (whole trajectories and points) of representing
solutions.

Question 5 Use this program to investigate in detail the behaviour of the system at
different values of a between 0.1 and 0.5 (with b = 0.3 and a range of initial conditions),
in particular the evolution of the strange attractor (when it exists). Show any pictures
that seem interesting (four or five extra pictures are sufficient).
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Part 2

Consider the equation
ẍ+ (x2 − b)ẋ− ax+ x3 = 0.

For a and b small the parameter space can be divided into six regions as shown in Figure 1
overleaf. A choice of (a, b) in each of these six regions yields qualitatively different behaviour of
solutions. Figure 1 remains a good approximate description of the regions and boundaries for
moderate values of a, b, e.g. |a| 6 2, |b| 6 2.

Adapt the program of Part 1 to integrate these equations at given values of a and b with
solutions from five different initial conditions displayed in a single picture.

Question 6 Run this program (with suitable choices of the initial conditions so that
the pictures are as clear as possible) for a single value of (a, b) in each of the six regions,
and show representative pictures for each region. You may like to set b = ±1 and vary a
to find the different regions.

Question 7 Describe the dynamics in each region, including the nature of any fixed
points or other features, and the transition from one region to the next. What happens
as you move through the boundaries between each region? There is no need to find c; you
are only required to find an example of behaviour in each region.

a

b

Region I Region VI

Region II

Figure 1

Region III

Region IV

Region V

b=a

b=4a/5

Region VI

b=ca,   0<c<4/5

Part 3

The forced van der Pol oscillator

ẍ+ a(x2 − 1)ẋ+ x = 1 + b

has a Hopf bifurcation when b = 0. (In a Hopf bifurcation, a periodic orbit appears near
a stationary point as the parameter, b, increases or decreases.) The above equation may be
written in Liénard coordinates as ẋ = y − a(x3/3 − x), ẏ = −x + 1 + b. Adapt your program
to integrate the forced van der Pol equation in this form.
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Question 8 Locate the periodic orbit when b = −0.001 for a = 1, a = 5 and a = 10,
giving a picture of the orbit by plotting x(t) against ẋ(t) at each time step.

Question 9 Investigate the evolution of the periodic orbit for b ∈ [−0.1, 0) at each of
these values of a, commenting on any unusual behaviour that you observe at particular
values of b.

Question 10 Consider also the appearance of the orbit in the x-y plane. Can you
explain its shape for large a? Explain what numerical difficulties can arise in calculating
such an orbit.
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14 General Relativity

14.1 Particle or Photon Orbits near a Black

Hole

(8 units)

This project is most suitable for those attending the Part II course General Relativity.

The aim of this project is to investigate the motion of a particle or photon in the Schwarzschild
solution to the Einstein field equations.

1 Theory

Use the Lagrangian

L = F (r)ṫ2 − ṙ2

F (r)
− (rφ̇)2 ,

where F (r) = 1 − 1/r, and dots denote differentiation with respect to a variable, say s, which
will be the affine parameter along the geodesic. (The units are such that c = 1 and 2GM = 1
which makes the Schwarzschild radius r = 1.)

Question 1 Using Lagrange’s equations and the Lagrangian above, obtain the equa-
tions of motion for a particle and a photon and establish equations for orbits in (u, φ)
space, where u = 1/r, using the second derivative of u with respect to φ. You should set
L = 0 or 1 depending on whether you are using photons or particles, and use this in the
differential equation if you need it.

2 Particle Orbits

To address the questions below you should integrate the equations using one of the Runge–Kutta
routines or another of your choice.

Question 2 A particle is at a distance corresponding to r = 6, with dr/dφ = 0
initially. For a range of angular momentum parameters from 0 to that for a circular orbit,
determine

• the orbit in (r, φ) space, giving graphical output of the orbits in this space;

• for what range of angular momentum parameters the particle is captured by the
black hole (i.e., it reaches r = 1);

• the proper time taken for a particle to fall into a black hole if it does so.

Question 3 What is the nature of the orbits if r = 2.5 initially?

Question 4 Compare your computed results with the theoretical results for some
cases where analytic solutions are possible. In particular you should examine the stability
of circular particle orbits at small radial distances from the black hole, and compare this
with the numerical results.

Question 5 How would the outputs change if the problem was formulated using the
second derivative of r with respect to t, and the first derivative of φ with respect to t?
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3 Particle Scattering

Consider a particle far from the hole with speed v and impact parameter b (the impact parameter
is the minimum distance between the centre of the hole and the undeflected path that the particle
would follow in the absence of the hole). For given v there is a critical value of b, say bcrit,
such that particles with b < bcrit are captured, while particles with b > bcrit are not. The
cross-section σ(v) is defined by σ(v) = πb2crit.

Question 6 Devise a program to obtain σ(v) and to produce a graph of σ(v) for
0 < v < 1. Comment on the limits v � 1, v ≈ 1.

4 Photon scattering

Question 7 A photon far from the hole is directed towards it with impact parameter
b. Compute the deflection angles when b is large, and compare this with results obtained
analytically on the assumption that the bend angle is small.

Compute the angle of deflection of the photon for b = 3.2, b = 2.8 and b = 2.65. What
happens when b = 2.5?
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14 General Relativity

14.7 Gravitational Radiation from Point Masses

in a Keplerian Orbit

(8 units)

This project does not require prior knowledge of either of the Part II courses General Relativity
or Cosmology, but does require Part IB Methods and Part IA Dynamics. (You may, however,
find it useful to review some of your answers after taking appropriate Part II courses; but the
computation may be attempted immediately.)

For nearly Newtonian, slow-motion sources in General Relativity, the following are the formulae
for the time-averaged losses due to gravitational radiation for the energy and angular momentum
of a gravitating source:

dE

dt
= − G

5c5
〈
...
Ijk

...
Ijk〉 (1)

and
dJj
dt

= −2G

5c5
εjkl〈Ïki

...
Iil〉. (2)

Here i, j and k are the three space indices, the summation convention is used and ε is the
alternating tensor. (Note that the coordinate system used is Euclidean, so there is no distinction
between upstairs and downstairs indices.) The dot represents a derivative with respect to time
t (note the asymmetric time derivatives in (2)). Ijk is the trace-free part of the second moment
of the mass distribution,

Ijk = Qjk − 1
3δjkQii,

where Qjk is the second moment of the mass distribution (the moment of inertia tensor):

Qjk =
∑
a

m(a)x
(a)
j x

(a)
k

where the sum is over the (point) masses. (For continuous mass distributions the sum is replaced
by an integral.)

The brackets 〈•〉 in (1) and (2) denote an average over a suitably large spacetime 4-volume (a
more precise definition is given below).

Consider a Keplerian orbit of two point masses m1 and m2 in the x–y plane, with semi-major
axis a and eccentricity e. Assume the origin is the centre of mass. It is convenient to introduce
the total mass M = m1 +m2 and the reduced mass µ = m1m2/M .

Let d be the distance between the two masses and let ψ be the angle of one of the masses
relative to the x-axis (so that the other mass has angle ψ+π) at a particular point of the orbit;
so both d and ψ are functions of time. The first point mass is then at d1(cosψ, sinψ, 0) and the
second point mass is at d2(− cosψ,− sinψ, 0), where d1 = dµ/m1 and d2 = dµ/m2.

Question 1 Calculate the Qjk and hence the Ijk as functions of d, µ and ψ. Simplify
your answer and write it in matrix form.

For Keplerian motion the orbit equation is

d =
a(1− e2)

1 + e cosψ
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and the angular velocity is given by

ψ̇ =

√
GMa(1− e2)

d2
.

In equations (1) and (2), assume 〈•〉 denotes an average in time over one orbit. For a function
w of ψ this means that

〈w〉 =
1

T

∫ T

0
w
(
ψ(t)

)
dt =

1

T

∫ 2π

0

w(ψ)

ψ̇
dψ

where

T =
2πa3/2√
GM

is the period of the orbit.

Assume that a and e do not change appreciably in one orbit, so that their time derivatives can
be ignored in the averages.

Question 2 Note that J1 = J2 = 0 (i.e., the x and y components of J vanish). Show
that 〈

dE

dt

〉
= −32G4µ2M3

5c5a5
f(e) (3)

where

f(e) =
1 + 73

24e
2 + 37

96e
4

(1− e2)7/2

and that 〈
dJ3
dt

〉
= −32G7/2µ2M5/2

5c5a7/2
g(e) (4)

where

g(e) =
1 + 7

8e
2

(1− e2)2
.

For Keplerian orbits we have

E = −GµM
2a

and
J3 =

√
Gµ2Ma(1− e2)

(J3 is usually denoted L).

Question 3 For Keplerian orbits prove that〈
da

dt

〉
= −64G3µM2

5c5a3
f(e),

and that 〈
de

dt

〉
= −304G3µM2

15c5a4
h(e)

where

h(e) =
(1 + 121

304e
2)e

(1− e2)5/2
.

Under what conditions is it true that the time derivatives of a and e (as just calculated)
can be ignored in the averages in (1) and (2) (as was assumed above in deriving (3) and
(4))? (This is a consistency check.)
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Question 4 Find a as a function of time in the case when e ≡ 0 (i.e., a circular orbit).

Question 5 The WUMa eclipsing binary star system has m1 = 0.77M� and m2 =
0.56M� (the Sun has mass M� ≈ 2×1030 kg), with period T = 0.33 days. This determines
the initial value of a but not of e, so we consider the situation as a function of e.

Using a computer, calculate how much power is being radiated (now) gravitationally for
e = 0, 0.5 and 0.95. Compare the results with the electromagnetic output of the Sun
(about 4× 1026 J s−1).

Write a program to determine how long it will take, as a function of initial eccentricity
e0, before a decays to zero for WUMa. Use this program to calculate the decay time for
initial values e0 = 0.00, 0.05, 0.10, . . . , 0.95. Compare the results with the present age of
the universe (13.7× 109 years).

Question 6 Write a program to calculate the initial semi-major axis a0 that a binary
must have in order for the inspiral time to be equal to the age of the universe. Use this
to calculate a0 (in units of the solar radius R� ≈ 7 × 108 m) for a binary consisting of
a solar mass star and giant gas planet of mass 0.001M� (about a Jupiter mass) with
e0 = 0.00, 0.05, 0.10, . . . , 0.95.

Hot Jupiters are a class of exoplanets with masses similar to Jupiter, but orbiting at
< 0.5 AU (where 1AU ≈ 1.5× 1011 m). Since Jupiter-like planets are expected to form at
around 5 AU, using your above results comment on whether gravitational radiation is a
possible mechanism for the Hot Jupiters to have subsequently migrated to their current
location.
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15 Number Theory

15.3 Positive Definite Binary Quadratic Forms (9 units)

Background material is contained in the Part II course Number Theory. Part IB Groups, Rings
and Modules and Part II Number Fields may be helpful, but are not necessary.

1 Introduction

We start with a binary quadratic form f(x, y) = ax2 + bxy + cy2 with a, b, c ∈ Z, which we
shall abbreviate as (a, b, c). The discriminant of the form (a, b, c) is d = b2 − 4ac. Note that d
is always congruent to 0 or 1 modulo 4. We consider only positive definite forms, for which d is
negative and a is positive.

Two forms f , g are equivalent, written f ∼ g, if one can be transformed into the other by a
unimodular substitution M , that is, if g(x, y) = fM(x, y) = f(sx + ty, ux + vy) where s, t, u,
v ∈ Z and sv − tu = 1, i.e.

M =

(
s t
u v

)
∈ SL2(Z).

Equivalent forms have the same discriminant, but the converse is not true in general. A form
(a, b, c) is primitive if no integer greater than one divides all three of a, b and c.

2 Computing the class number

A form (a, b, c) is reduced if either −a < b 6 a < c or 0 6 b 6 a = c. There are only finitely many
reduced forms of given discriminant. It is known that distinct reduced forms are inequivalent,
and that every form is equivalent to a reduced form.

Question 1 Find bounds for the coefficients of a reduced form of given discriminant
and use these to write a procedure to list all the reduced forms with given discriminant
d. Find all the reduced forms of discriminant d for −32 6 d < 0, and indicate which of
these forms are primitive.

The number of equivalence classes of primitive forms of discriminant d is the class number
h(d). This is equal to the number of primitive reduced forms. Sometimes a slightly different
definition is used, without the requirement that the forms are primitive. However you should
use the definition given here.

Question 2 Tabulate both the number of reduced forms of discriminant d, and the
class number h(d), for −120 6 d < 0. Comment on the relationship between these
numbers. Also comment on the relationship between h(d) and h(dk2), when k is an odd
prime (you may ignore d = −3,−4 here). You may find it helpful to make a table with a
large enough range of d and k to look for patterns.
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3 Reduction of positive definite forms

We can find the reduced form equivalent to a given form f by reduction. If f is not reduced
then c < a, or |b| > a, or a = −b, or a = c and b < 0. We define operations S, T and T−1 on
forms by

S : (a, b, c) 7→ (c,−b, a),

T : (a, b, c) 7→ (a, b+ 2a, a+ b+ c),

T−1 : (a, b, c) 7→ (a, b− 2a, a− b+ c).

These operations are represented by matrices S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
in SL2(Z),

so that each operation yields an equivalent form. If a form is not reduced then one of these
operations may be applied and the result will be “closer” to a reduced form (in the sense that
|a|+ |b| is made smaller).

Question 3 Write a program to find the reduced form equivalent to a given form.
Your program should read in the coefficients a, b, c and print the reduced form equivalent
to (a, b, c) together with the sequence of reduction operations which are needed. Run your
program on the forms (220, 594, 401) and (226, 367, 149).

4 Composition of forms

The composition of primitive forms f1 = (a1, b1, c1) and f2 = (a2, b2, c2), with the same discrim-
inant d, is defined as follows. First we put β = (b1 + b2)/2 and γ = (b2 − b1)/2. Then we use
Euclid’s algorithm twice. The first time we compute m = gcd(a1, β) and find integers x and y
with a1x+ βy = m. The second time we compute n = gcd(m, a2) and solve the congruence

(m/n)z ≡ γx− c1y (mod (a2/n))

for z. The composition of f1 and f2 is then

f3 = f1 ◦ f2 = (a1a2/n
2, b1 + 2a1z/n, ∗)

where the third coefficient is chosen so that f3 also has discriminant d.

Question 4 Write a program to compute the composition of two primitive forms.
Briefly explain how you solve for z. It is known that if f1 ∼ g1 and f2 ∼ g2 then
f1 ◦ f2 ∼ g1 ◦ g2. As a way of testing your program, give some examples checking that this
property holds.

Let d be a discriminant, i.e. a negative integer that is congruent to 0 or 1 modulo 4. It is known
that the set of equivalence classes of primitive binary quadratic forms of discriminant d is an
abelian group under composition. This is called the class group. The identity class contains
either (1, 0,−d/4) or (1, 1, (1− d)/4). The inverse of the class containing (a, b, c) is the class of
(a,−b, c).
It is known that every (non-trivial) finite abelian group may uniquely be written in the form

Cn1 × Cn2 × . . .× Cnt

where n1, . . . , nt are integers greater than one with n1|n2| . . . |nt. One way to distinguish these
groups is by counting the number of elements of each given order.
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Question 5 Determine the class group for all discriminants d between 0 and −120,
and in addition for d = −48247, −71411 and −28959. You are not required to write a
program that works for arbitrary d, but you are expected to explain your reasoning.

5 An application to factoring

For the remainder of this project we will only consider primitive forms.

A form (a, b, c) is ambiguous if it is equivalent to (a,−b, c).

Question 6 Find all reduced ambiguous forms of discriminant d for d = −240, −627
and −1428. Comment on the relationship between the reduced ambiguous forms of dis-
criminant d and the factorisation of d. What do you notice about the number of such
forms?

By factoring we mean the task of finding a non-trivial factor of a given composite integer N .
The following method uses binary quadratic forms.

We take a discriminant d = −kN , with k a small positive integer, and attempt to construct
ambiguous forms of discriminant d. To do this we pick a form at random and raise it to a
suitable power in the class group. If this fails to produce an ambiguous form that factors N ,
we repeat with another randomly chosen form. One difficulty with this method is that it seems
to require knowledge of the class number h(d).

Question 7 Explain, in terms of complexity, why computing h(d) using the methods
in Section 2 would not lead to a useful factoring algorithm.

Instead we fix a positive integer B and assume that h(d) is a product of prime powers less than
B. We choose a form of discriminant d at random (for example by choosing a small value of a
at random, and then solving for b and c if possible) and successively raise it to each odd prime
power less than B. We then repeatedly square this form in the hope of finding an ambiguous
form that factors N . If this method repeatedly fails we might increase the value of B, or change
the value of k.

Question 8 Describe an efficient procedure for computing powers in the class group,
based on the programs you wrote for Questions 3 and 4.

Illustrate the above method by using it to factor N = 12597203, 33377419 and 49047121.
You should find it sufficient to work with k 6 10 and B 6 50. In each case you should
specify both the value of k and the sequence of forms computed.
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15 Number Theory

15.6 Computing Roots Modulo p (7 units)

Background material for this project is contained in the Part II course Number Theory.

1 Introduction

Throughout, p will be an odd prime number. An integer a coprime to p is called a quadratic
residue mod p if the congruence x2 ≡ a (mod p) is soluble, otherwise a is termed a non-residue
mod p. The Legendre symbol, (a/p), is defined (for a any integer and p an odd prime as above)
by (

a

p

)
=


0 if p|a ;
1 if a is a quadratic residue mod p ;
−1 if a is a non-residue mod p.

In Section 2 we consider the problem of distinguishing quadratic residues from non-residues.
The remainder of the project is concerned with computing square roots mod p, or more generally
finding the roots of a polynomial mod p.

2 Computing Legendre symbols

The Legendre symbol (a/p) can be computed using Euler’s criterion:(
a

p

)
≡ a(p−1)/2 (mod p).

Question 1 Write a program to compute (a/p) for p an odd prime and a any inte-
ger, using Euler’s criterion. (You should use the repeated squaring method for modular
exponentiation – see [1] if this is not familiar.) Test your program with p = 10708729 and

(i) 100 random values for a between 1 and p;
(ii) all a between 1 and 100.

For each of (i) and (ii), keep a tally of the number of values of a for which (a/p) = 1.

The Jacobi symbol is a generalisation of the Legendre symbol. For n odd and positive it is
defined by (

a

n

)
=

(
a

p1

)
. . .

(
a

pr

)
where n = p1 . . . pr is a product of (not necessarily distinct) primes, and the symbols on the
right are Legendre symbols. The Jacobi symbol satisfies the properties(

a

n

)
=

(
a mod n

n

)
,(

ab

n

)
=

(
a

n

)(
b

n

)
,

and if m and n are odd positive and coprime,(
m

n

)(
n

m

)
= (−1)(m−1)(n−1)/4.
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Question 2 Write a program to compute (a/p) for p an odd prime and a any integer,
by manipulating Jacobi symbols. You should try to make your algorithm reasonably
efficient. Make a note in your report of any properties of the Jacobi symbol you needed
in addition to those listed above.

Estimate the complexity of your algorithm and compare with Question 1.

[You should estimate the number of basic operations required, where a basic operation
could be addition or multiplication of two numbers. A more sophisticated analysis might
also take into account the time required to add and multiply large numbers on a finite
machine, but it isn’t necessary to go into such details here.]

3 Computing square roots mod p

Suppose that p is an odd prime and a is a quadratic residue mod p. How can we find x such
that x2 ≡ a (mod p)? We could simply search through all congruence classes mod p, but if p is
large then we need a better method.

Question 3 Show that if p ≡ 3 (mod 4) then the congruence x2 ≡ a (mod p) has
solution x ≡ a(p+1)/4 (mod p). Further show that if p ≡ 5 (mod 8) then the congruence
x2 ≡ a (mod p) has solution x ≡ 2k(p−1)/4a(p+3)/8 (mod p) for some k ∈ {0, 1}.

Now suppose that p− 1 is a power of 2 and let g be a primitive root mod p, i.e. a generator for
the multiplicative group of non-zero residues mod p. To solve the congruence x2 ≡ a (mod p)
we substitute x ≡ gr (mod p) where r =

∑
j>0 rj2

j with rj ∈ {0, 1}. Raising each side of the
original congruence to suitable powers it is possible to solve for the binary digits r0, r1, r2, . . .
in turn. For example the first step is

r0 =

{
0 if a(p−1)/4 ≡ 1 (mod p)

1 if a(p−1)/4 ≡ −1 (mod p).

Question 4 Use this method to solve the congruence x2 ≡ 58256 (mod 65537).

A general algorithm for computing square roots mod p is obtained by combining the methods of
Questions 3 and 4. We begin by writing p− 1 = 2αs with s odd. Then we find a non-residue n,
and compute b ≡ ns (mod p). Since s is odd it suffices to solve the congruence y2 ≡ as (mod p).
We do this by substituting y ≡ br (mod p) and solving for the binary digits of r.

Question 5 Write a program for computing square roots mod p, based on the method
described above. Test your program for p = 10708729 and all quadratic residues mod p
between 1 and 20, and for a few other values of p and a. Estimate the complexity of your
algorithm.

4 Computing roots of polynomials mod p

In this section we work with polynomials whose coefficients are integers mod p.
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Question 6 Write procedures to compute the quotient and remainder when we divide
one polynomial by another. Use them to write a procedure to find the greatest common
divisor of two polynomials. Illustrate by computing

gcd(x3 + 8x2 + 12x+ 4, x3 + 6x2 + 2x+ 10) with p = 109,
gcd(x3 + 2x2 + 6x+ 8, x3 + 11x2 + x+ 2) with p = 131,
gcd(x3 + 3x2 + 7x+ 1, x3 + 3x2 + 4x+ 12) with p = 157.

To compute the roots of a polynomial f(x) mod p we first compute gcd(f(x), xp − x). This
reduces us to the case where f(x) is a product of distinct linear factors. We then pick a
small integer v at random and attempt to factor f(x) by computing gcd(f(x), g(x)) where
g(x) = (x+ v)(p−1)/2 − 1. This will be successful unless the numbers α + v for α running over
the roots of f(x) are either all quadratic residues, or all non-residues. If unsuccessful we try
another value of v.

Question 7 Write a program for computing square roots mod p, based on the method
described above. Explain how your program avoids working with polynomials of exces-
sively large degree. Investigate how many values of v we expect to use (on average).
Compare this method with that of Question 5 and comment on the theoretical behaviour
for large p.

Question 8 Modify your program to compute the roots of any polynomial mod p,
and run it on the polynomials

f1(x) = x4 + 9x3 + 13x2 + 2x− 9,
f2(x) = x4 + x3 + x2 + x+ 25,
f3(x) = x4 + x3 − 10x2 − 749379x− 120288

with p = 10708729.

5 Programming

If you use Matlab then you may wish to use the DocPolynom class that is included as an
example in the help browser. To use this you should create a directory @DocPolynom and place
DocPolynom.m into it. This will enable you to define and display (non-zero) polynomials and to
carry out standard algebraic manipulations with them. There is no need to include the class file
in your program listings (assuming you do not modify it). [The latest version requires MATLAB
2022b or later to run.]

If you use a computer algebra package (such as MAPLE), then you may find that some of the
routines asked for in this project are included in the package. In such cases, no credit will be
given for using the packaged routines — you are expected to write your own programs.

References
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16 Algebra

16.8 The Character Table of a Finite Group (9 units)

This project is related to material in the Part II course Representation Theory.

1 Introduction

Let G be a finite group. A representation (ρ, V ) of G consists of a finite dimensional complex
vector space V and a group homomorphism ρ : G→ GL(V ). If V is m-dimensional then we may
identify GL(V ) with GL(m,C); the group of m×m invertible matrices over C. The character
of ρ is the function χ : G → C given by χ(g) = tr ρ(g). It is known that representations are
uniquely determined (up to equivalence) by their characters.

Let G have conjugacy classes C1, . . . , Cr. The character table of G is the r× r complex matrix
with entries χi(gj) where χ1, . . . , χr are the irreducible characters of G and g1, . . . , gr are rep-
resentatives for the conjugacy classes. The character table conveys a great deal of information
about the group G. For example, it can be used to decompose any given character as a sum of
irreducibles, or to find the normal subgroups of G.

2 Permutation groups

A permutation π of X = {1, . . . , n} is a bijective function from X to X. If x is an element of
X then the image of x under π is written πx. If π1 and π2 are permutations then their product
π1 · π2 maps x to π1(π2x). The set of all permutations of X is the symmetric group Sn. A
permutation group is a subgroup of Sn for some n. We specify a permutation group by giving
a (usually very small) set of generating permutations π1, . . . , πt.

Question 1 Write a program to compute the conjugacy classes in a permutation group.
The program should output the group order, the conjugacy class sizes and a representative
for each conjugacy class. Test your program for G = S3.

The permutation groups considered in this project will have order less than 10000. So it
should be feasible to store all the elements of G. However you should still try to make
your program reasonably efficient. What is the complexity of your method in terms of
|G|, t and n (where for example storing a permutation is O(n) operations)?

3 Burnside’s algorithm

A formal sum
∑

g∈G λgg (where λg ∈ C) belongs to the centre Z(C[G]) of the group ring C[G]
if and only if the function g 7→ λ g is constant on conjugacy classes. Thus Z(C[G]) is a complex
vector space with basis b1, . . . , br where bi =

∑
g∈Ci

g.

Question 2 Write a program to determine the integers νijk such that

bibj =
∑r

k=1 νijkbk

for all 1 6 i, j 6 r. Prove that if Ni is the matrix with (j, k)-entry νijk then the matrices
N1, . . . , Nr pairwise commute. Illustrate for the example in Question 1.
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Question 3 Let (ρ, V ) be an irreducible representation of G with character χ. An ar-
gument using Schur’s lemma shows that ρ(bi) =

∑
g∈Ci

ρ(g) is a scalar matrix. Determine
this scalar by taking the trace, and hence show that the vector |C1|χ(g1)

...
|Cr|χ(gr)


(where gi ∈ Ci) is an eigenvector for each of the matrices N1, . . . , Nr in Question 2. What
are the corresponding eigenvalues? Prove that some linear combination of N1, . . . , Nr has
r distinct eigenvalues.

The inner product of characters χ1 and χ2 is 〈χ1, χ2〉 = 1
|G|

∑
g∈G χ1(g)χ2(g). Computing the

simultaneous eigenvectors of N1, . . . , Nr determines each row of the character table up to a
scalar multiple. The scaling of each row is uniquely determined by the requirement that for
each irreducible character χ we have 〈χ, χ〉 = 1 and χ(1) > 0.

In computing simultaneous eigenvectors you should be careful to avoid problems due to rounding
errors. See also the note on programming at the end of the project.

Question 4 Write a program to compute the character table of a permutation group.
Run your program on some alternating and symmetric groups, and on the following groups.

P1 = 〈(1, 2, 3, 4)(5, 6, 7, 8), (1, 5, 3, 7)(2, 8, 4, 6)〉,
P2 = 〈(1, 2, 3, 4)(5, 6, 7, 8), (1, 8)(2, 7)(3, 6)(4, 5)〉,
G1 = 〈(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12), (2, 9)(4, 11)(5, 8)(7, 13)〉
G2 = 〈(1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12)(13, 14), (1, 3, 14, 5, 11, 7)(2, 4, 6, 10, 8, 13)〉,
G3 = 〈(1, 2, 3, 4, 5, 6, 7), (1, 4)(2, 3)(5, 8)(6, 7)〉,
G4 = 〈(1, 2, 3, 4)(5, 6, 7, 8), (3, 9, 8, 10)(4, 6, 11, 7)〉.

In giving your answers you should list the characters in increasing order of dimension and
the conjugacy classes in increasing order of size. You should also head each column with
the size of the corresponding conjugacy class. It may help to improve the readability of
your answers if you record the non-integer entries separately.

Is P1 isomorphic to P2?

Question 5 There is a risk of rounding errors in your answers to Question 4. For each
character that appears to take only integer values, how could you modify your program
to be sure that the corresponding entries are correct?

4 Some applications of the character table

Let G ⊂ Sn be a permutation group. There is a natural action of G on X(d), the set of
subsets of X = {1, . . . , n} of size d. Let φd be the character of the corresponding permutation
representation.

Question 6 Write a program that uses the character table to decompose a given
character as a sum of irreducibles. For each of the groups in Question 4 run your program
on the characters φ2 and φ3.
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Question 7 Which, if any, of the groups P1, P2, G1, G2, G3, G4 are simple? For each
of these groups, what is the smallest possible dimension of a faithful linear representation,
and what is the smallest possible dimension of a faithful permutation representation?
What is the smallest possible index of a proper subgroup?

Programming note

Your programs for Questions 1 and 2 will need to determine whether a given permutation π
appears in a list of permutations π1, . . . , πk. You may find that comparing π to each πi in turn
is unreasonably slow. One alternative is to use a hash function, i.e. make some ad hoc choice
of function h from permutations to integers that is not too far from being injective. Then use
the Matlab function find to find all occurrences of h(π) from the list h(π1), . . . , h(πk). A
better method would involve sorting the permutations (e.g. by hash value) but this should not
be necessary.

Depending on the method you use for Question 4, it may help to note that the Matlab function
rref for Gaussian elimination accepts a tolerance as its second argument.

References
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16 Algebra

16.9 Resultants and Resolvents (8 units)

Background material is contained in the Part IB course Groups, Rings and Modules. The later
questions relate to material in the Part II course Galois Theory.

1 Introduction

The resultant of polynomials f, g ∈ C[x] is a polynomial in the coefficients of f and g that
vanishes if and only if they have a common root. This project looks at some ways of computing
the resultant and gives some applications. The final section is concerned with the Galois group
of a polynomial, and for this we also need resolvents.

2 Resultants

The resultant of polynomials f(x) = a
∏m

i=1(x− αi) and g(x) = b
∏n

i=1(x− βi) is

Res(f, g) = anbm
m∏
i=1

n∏
j=1

(αi − βj) = an
m∏
i=1

g(αi).

Question 1 Write a procedure for computing the resultant of two polynomials in C[x].
(You may use any inbuilt procedure to compute the roots.) Test it on some polynomials
with small integer coefficients and comment on the results.

The Sylvester matrix of f(x) = amx
m+am−1x

m−1+. . .+a0 and g(x) = bnx
n+bn−1x

n−1+. . .+b0
is the (m+ n)× (m+ n) matrix

am am−1 . . . a1 a0 0 . . . 0

0 am am−1 . . . a1 a0
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0 am am−1 . . . a1 a0
bn bn−1 . . . b1 b0 0 . . . 0

0 bn bn−1 . . . b1 b0
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0 bn bn−1 . . . b1 b0


where the coefficients of f are repeated on n rows, and the coefficients of g are repeated on m
rows.

Question 2 Show that f and g have a common root if and only if the Sylvester matrix
is singular. (Hint: Consider dependence relations between the polynomials f, xf, . . . , xn−1f
and g, xg, . . . , xm−1g.) Compute the determinant of the Sylvester matrix for the examples
in Question 1 and comment on the results.
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We write ∂f for the degree of f . The resultant has the following properties.

Res(f, g) = (−1)∂f∂g Res(g, f) for f, g ∈ C[x],
Res(λf, µg) = λ∂gµ∂f Res(f, g), for f, g ∈ C[x] and λ, µ ∈ C,

Res(f, gh) = Res(f, g) Res(f, h) for f, g, h ∈ C[x],
Res(f, g) = Res(f, g + hf) for f, g, h ∈ C[x] with f monic.

Question 3 Write a procedure that given polynomials f, g ∈ Z[x] (with g non-zero)
computes 0 6= c ∈ Z and q, r ∈ Z[x] with cf = qg + r and ∂r < ∂g. Then write a
recursive procedure for computing the resultant of two polynomials in Z[x] using only
integer arithmetic. Briefly describe how your program works.

Question 4 Show that for all but finitely many primes p, the following pairs of poly-
nomials are coprime mod p, i.e. the polynomials obtained by reducing each coefficient
mod p are coprime in Fp[x].

• f1(x) = x3 − 3x2 + 2x+ 1 and g1(x) = 2x2 − x+ 1,

• f2(x) = x3 + 4x2 + 5x+ 13 and g2(x) = 3x3 + 2x2 + 4x− 9,

• f3(x) = x5 + x2 − 9x+ 25 and g3(x) = 2x3 + 7x2 + 31x+ 69,

• f4(x) = x6 + 7x2 + x− 3 and g4(x) = x5 + 3x2 + 31x+ 10.

In each case determine the finite set of exceptional primes.

The discriminant of f(x) =
∏m

i=1(x− αi) is ∆(f) =
∏

i<j(αi − αj)
2.

Question 5 Find a formula for the discriminant in terms of a resultant.

3 Solving polynomial equations

The resultant can be defined more generally for polynomials with coefficients in any ring R.
For instance R could itself be a polynomial ring.

Question 6 Write a program to compute the resultant of two polynomials with coef-
ficients in Z[y]. You should do this either by adapting your earlier programs or by using
the fact that a polynomial of degree r is uniquely determined by any r+ 1 values. For the
latter you will first need a bound on the degree of the answer as a polynomial in y.

Use your program to solve the following sets of polynomial equations.{
2x2 − 2xy + 6x− 3y2 + y + 4 = 0

3x2 − 3x− 2y2 − 6y − 4 = 0

}
{

2x2 + 3xy − x+ 2y2 − 2y − 4 = 0
5x2 + 4xy + 4y2 − 16 = 0

}
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4 The Galois group of a polynomial

Let f ∈ Z[x] be a monic polynomial of degree n, which we assume has no repeated roots.
The Galois group of f is Gal(f) = Gal(K/Q), where K is the splitting field of f . It acts by
permuting the roots α1, . . . , αn of f , and hence is a subgroup of Sn.

Now let Sn act on the multivariate polynomial ring P = Z[X1, . . . , Xn] by permuting the
indeterminates X1, . . . , Xn. Let h1, . . . , hm be the orbit of some multivariate polynomial h ∈ P
(with say h1 = h) under this action and write Stab(h) 6 Sn for the stabilizer. The resolvent of
f with respect to h is the polynomial

Rh(f) =

m∏
i=1

(x− hi(α1, . . . , αn)).

For example if f(x) = x4 + px2 + qx+ r and h = −(X1 +X2)(X3 +X4) then

Rh(f) = x3 + 2px2 + (p2 − 4r)x− q2.

If Rh(f) has distinct roots then it can be shown that Gal(f) is conjugate in Sn to a subgroup
of Stab(h) if and only if Rh(f) has an integer root.

Question 7 What does this construction tell us in the cases h(X1, . . . , Xn) = X1 and
h(X1, . . . , Xn) =

∏
i<j(Xi −Xj)?

We can use floating point approximations to exactly determine a number already known to be
an integer, or to prove that a number is not an integer. (Strictly speaking we need to bound
the rounding errors. Such an analysis is not expected for this project.) However it is in general
impossible to prove that a number is an integer using floating point approximations.

Question 8 Write a program to compute the resolvent in the following cases. Your
program should take as input a monic polynomial f with integer coefficients.

n = 4 h = X1X2 +X3X4,
n = 4 h = X1X

2
2 +X2X

2
3 +X3X

2
4 +X4X

2
1 ,

n = 5 h =
∑5

i=1X
2
i (Xi+1Xi+4 +Xi+2Xi+3).

In the third case the subscripts should be read as integers mod 5.

Question 9 Use the programs you have written for this project to investigate the
Galois groups of the following irreducible polynomials. Why can you assume that they do
not have repeated roots?

x4 − 7x2 − 6x+ 1, x5 − x3 − 7x2 − x− 3,
x4 − x3 + 9x+ 10, x5 − x4 + 8x2 − 7x+ 3,
x4 + 2x3 + 23x2 + 22x+ 6, x5 − 2x4 + 6x3 − 3x2 − x+ 6.

5 Programming

If you use Matlab then you may wish to use the DocPolynom class that is included as an
example in the help browser. To use this you should create a directory @DocPolynom and place
DocPolynom.m into it. This will enable you to define and display (non-zero) polynomials and
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to carry out standard algebraic manipulations with them (for instance adding, multiplying,
evaluating). There is no need to include the class file in your program listings, assuming you
do not modify it.

You may use inbuilt functions for integer arithmetic such as gcd and factor.

In Question 3 you are asked to write your own function, and so should not use the Matlab
function deconv.
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17 Combinatorics

17.5 Matchings (6 units)

This project is based on material found in the Part II course Graph Theory.

In this project you will need to be able to generate random n × n bipartite graphs, that is,
bipartite graphs whose each class has n vertices. The edges appear independently and at random
with probability p. Sometimes it will be necessary to generate a random bipartite graph process;
starting with an edgeless n×n bipartite graph, the edges are added one by one until the complete
bipartite graph is obtained, the edge to be added at any stage being chosen at random from those
currently absent.

A matching in a graph is a set of independent edges (edges with no common vertex). A 1-factor
in a graph is a 1-regular spanning subgraph, or, in other words, a matching meeting every
vertex. A 1-factor in a n× n bipartite graph is a matching of size n.

Let G be a bipartite graph with vertex classes X and Y , where |X| = |Y | = n. If A is a subset
of X its neighbourhood Γ(A) is the set of vertices in Y joined to at least one member of A. A
set A ⊆ X is called a blocking set if |Γ(A)| < |A|. Hall’s theorem tells us that G has a 1-factor
if and only if G has no blocking set. The main task in this project is to develop an algorithm
which, given input G, will output either a 1-factor or a blocking set.

Question 1 One algorithm to check whether G has a 1-factor is to check each subset
A to see if it is a blocking set. Why is this a poor method?

Our algorithm to find a 1-factor will consist of finding successively larger matchings, starting
with the empty matching. Let M be a matching meeting the sets of vertices A ⊆ X and B ⊆ Y .
Let u ∈ X \A. An alternating path is a path from u to a vertex v ∈ Y , such that every second
edge is in M . We say that v is reachable from u by an alternating path; let V be the subset of
Y consisting of vertices reachable from u.

Question 2 How can a matching larger than M be found if V 6⊆ B?

Question 3 How can a blocking set be found if V ⊆ B?

The set V can be computed by initially setting V = ∅. Add to V the neighbours of u, then find
the vertices of X matched to V , then add to V the neighbours of those vertices, and so on. For
each vertex added, the preceding vertex should be recorded which led to the addition.

Question 4 Write down clearly an algorithm to find a 1-factor based on these ideas.
You should give enough detail to make it clear exactly how the computation is done, but
do not give implementation details.

Question 5 Implement your algorithm. Your program should do its computation
using the adjacency matrix of the input graph, and the output should show (at least)
whether a 1-factor exists or, if not, the size of a blocking set. For each of the seven
values of p varying from 0.05 to 0.35 by steps of 0.05 and from 0.1 lnn/n to 1.9 lnn/n
by steps of 0.3 lnn/n, run the program on twenty random n × n bipartite graphs with
n = 60. Tabulate your results, and comment on them briefly; give some attention in your
comments to the sizes of the blocking sets that your algorithm finds.
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Question 6 Run your program on ten random bipartite graph processes, with n = 40.
Tabulate your results. What simple properties of a graph are necessary for a 1-factor to
exist? What do you notice about your results? Why do you think the above values of p
were chosen?

An alternative way to store the graph in the computer is by an adjacency list. This is where,
for each vertex in X and for each vertex in Y , a list of its neighbours is stored. Thus if x4 is
joined only to y1, y9 and y14, the list for x4 is just (y1, y9, y14).

Question 7 What is the (order of magnitude) complexity of your algorithm when the
adjacency matrix is used? What would be the effect of using the adjacency list instead?
(Do not implement a version using the adjacency list.)

Question 8 Is the alternating path method for finding a 1-factor effective for all
graphs, and not just bipartite ones? Justify your answer.

If a bipartite graph fails to have a 1-factor, it is nevertheless of interest to find a matching of
the maximum possible size.

Question 9 In what ways can your algorithm be modified to find a maximum match-
ing in a bipartite graph?
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17 Combinatorics

17.7 Graph planarity (10 units)

This project is based on material found in the Part II course Graph Theory.

A planar graph is one which can be drawn in the plane without edge crossings. Kuratowski’s
theorem gives a theoretical characterisation of planar graphs. However, it does not provide
a practical algorithm for testing whether a graph is planar, and finding such an algorithm is
not easy. This project describes one such algorithm. The focus is on simplicity rather than
efficiency, and the process is broken into several separate steps. Nonetheless, the total amount
of coding required for this project is still comparatively large.

Planar graphs are sparse, so graphs in the project are specified by means of an edge list: this
is just a list of edges, each edge being a pair of vertices. We may assume that the vertices are
labelled by integers. Note that the edge list does not identify isolated vertices: these don’t affect
planarity and you might as well assume that the number n of vertices is the largest integer label.
It is often convenient to have an adjacency list, which is a collection of n lists, the jth list giving
the neighbours of vertex j. You will find it useful to write a routine to derive an adjacency list
from an edge list.

Even though a planarity testing algorithm will tell whether a graph is planar, it might not
supply a way to actually draw the graph in the plane. Finding such a drawing is a separate
problem, and we begin with that.

1 Graph drawing

A beautiful theorem of Tutte gives a way to draw a 3-connected planar graph G in the plane.
Let C be a cycle with exactly one bridge (as defined in the next section). If C has k vertices,
place these at the corners of a convex k-gon. Place the remaining vertices so that each is at
the centroid of its neighbours: that is, if u has d neighbours placed at positions x1, . . . ,xd in
the plane, then u has position x = (1/d)

∑d
i=1 xi. Finding these positions requires solving a

system of linear equations. Tutte proved that, under the stated conditions, there is a unique
solution, and that, by adding straight line segments between adjacent vertices, we obtain a
planar drawing in which each face is a convex polygon.

Question 1 Write a program that, given a graph and a cycle C, draws the graph with
C at the vertices of a regular polygon. (You need not check that G is 3-connected or that
C has one bridge.)

Give your output for each of the five Platonic solids, whose edge lists can be found at
http : //www.maths.cam.ac.uk/undergrad/catam/data/Platonic x .txt, where x is one
of 4, 6, 8, 12 or 20 (representing the Tetrahedron, Cube, Octahedron, Dodecahedron and
Icosahedron respectively). In each case you can take the vertices of the outer face C to
be those labelled 1, 2, . . . , k for the appropriate k.

We define the graph K2 with vertex set {1, 2} and single edge 1–2, and the graph P5 with
vertex set {3, 4, 5, 6, 7} and edge set {3–4, 4–5, 5–6, 6–7}. From these, we define the graph
K2 + P5 with vertex set {1, 2, 3, 4, 5, 6, 7}, and edge set consisting of all edges of K2, all
edges of P5, and all possible edges between a vertex of K2 and a vertex of P5 (thus K2+P5

is a ‘complete bipartite union’ of K2 and P5). Draw the graph K2 + P5, using 1, 2, 3 as
the outer face.
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2 Bridges and components

Nowadays, a bridge is usually defined to be the same as an isthmus, that is, an edge whose
removal increases the number of components. Tutte used the word quite differently but we keep
his terminology, though with a different meaning.

Given a graph G and a cycle C in it, a bridge of C is a non-empty set of edges defined as
follows: it is the edges of a component of G[V (G) \ V (C)], together with any edges joining
that component to C. A chord of C is also defined to be a bridge of C, having a single edge.
Therefore the bridges partition E(G) \ E(C).

Notice that isolated vertices of G do not feature in any bridge. However, an isolated vertex of
G[V (G) \ V (C)] which is joined to C by some edges will give rise to a bridge consisting of just
those edges. Hence a bridge with one edge is either a chord of C, or it is an edge joining a
vertex of C to a vertex of degree one outside C, or it is an edge joining two vertices of degree
one both outside C.

The vertices of attachment of a bridge are the vertices of C which are end vertices of edges in
the bridge. So a bridge might have no vertices of attachment (if it is the edges of a component
of G[V (G) \ V (C)] not joined to C), or it might have one or more.

Note that bridges can meet each other, but only at vertices of attachment.

Question 2 Write a program to find the components of a graph. (For example, pick
a vertex, find its neighbours, then their neighbours, and so on.)

Write a further program to find the bridges of a given cycle C in a graph, together with
their vertices of attachment.

3 Interleaving

Two bridges B′ and B′′ of the cycle C are said to interleave if there are four distinct vertices
a, b, c, d ∈ V (C), appearing in that order on the cycle (but not necessarily adjacent), such
that a and c are vertices of attachment of B′, and b and d are vertices of attachment of B′′.
Additionally, B′ and B′′ are also said to interleave if they both have exactly three vertices
of attachment, these three vertices being the same for B′ as for B′′. Notice that this entire
definition is symmetric in B′, B′′.

If C has ` bridges B1, . . . , B`, then the interleave graph H has ` vertices h1, . . . , h`, with hihj ∈
E(H) if and only if Bi and Bj interleave.

Question 3 Suppose G is a graph with a cycle C that has ` bridges B1, . . . , B`. Explain
why G is planar if and only if the following holds: each of the subgraphs with edges
E(C) ∪Bi, 1 6 i 6 `, is planar, and the interleave graph H is bipartite.

Question 4 Write a program to construct the interleave graph from a cycle C and its
bridges. Write a program to test whether a graph is bipartite.

4 The core of a graph

Suppose G has a vertex v of degree one. We can remove the edge at v without affecting planarity.
Likewise if G has a vertex v of degree two, with edges uv and vw, we can remove these two
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edges, adding the edge uw if it is not already present. This does not affect planarity either.
Repeating such operations as much as possible, we arrive at the core G∗ of G, in which each
vertex has degree zero or at least three. (Possibly G∗ has no edges.) The labels of the vertices
in G∗ can depend on the order in which the operations are done but, other than that, G∗ is
determined by G. Hence we need not worry about the order of the operations.

Question 5 Write a program to find the core G∗ of a graph G.

Question 6 Describe a procedure for finding a cycle in a graph of minimum degree at
least two.

Describe a procedure for finding a cycle with a chord in a graph of minimum degree at
least three.

Write a program to find a cycle with a chord in a non-empty core G∗.

5 A planarity algorithm

Here is a recursive algorithm for testing whether a graph G is planar.

Find the core G∗ of G.

If G∗ is empty, G is planar.

Else find a cycle C in G∗ with a chord e.
Find the bridges of C in G∗ and the interleave graph H.

If H is not bipartite then G is not planar.

Else G is planar if and only if G∗ − e is planar.

Question 7 Explain why this algorithm works correctly.

Question 8 Write a program to determine whether a graph is planar.

Test your program on various examples. You might use the graphs in Question 1, and the
same graphs with one or two edges removed or added.

Question 9 As a further test, write a program to build a random maximal planar
graph with n vertices, by starting with the empty graph, and testing each of the

(
n
2

)
possible edges in a random order: if the addition of an edge maintains planarity, keep it
in the graph, but if it violates planarity, throw it away. For extra interest, your program
should tell you how many edges were added before the first violation.

How many edges should your graph have at the end?

Generate 30 random maximal planar graphs with 45 vertices. In each case, show how
many edges were added before the first violation.

Draw one of the graphs, using your program from Question 1.

Question 10 Estimate the complexity of the planarity algorithm from Question 8.
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19 Communication theory

19.2 Information content of natural language (4 units)

Background material for this project is given in the Part II course Coding and Cryptography.

Let Im be a set of m messages which may be transmitted with non-zero probability pi, i =
1, . . . ,m. If successive messages are independent the source is called Bernoulli — we do not
assume this in general. Define the source entropy to be

h = −
m∑
i=1

pi log2 pi.

The Huffman binary code for Im is produced by the algorithm:

(i) Order the messages in Im so that p1 > p2 > · · · > pm.

(ii) Assign 0 to be the last character of the codeword for message m − 1, and 1 for message
m.

(iii) If m > 2, combine messages m−1 and m to form a reduced alphabet Im−1 = {1, 2, . . . ,m−
2, (m−1,m)} with respective probabilities p1, p2, . . . , pm−2 and pm−1+pm and start again
at step (i).

Whether or not a message source is Bernoulli, we can often improve the expected codeword
length on a per-message basis by segmentation, that is, grouping messages in blocks of n and
regarding them as coming from the message set Inm.

The files http : //www.maths.cam.ac.uk/undergrad/catam/data/II−19−2−datax .txt, where
x is one of A, B, C or D, contain samples of English texts encoded by A = 1, ..., Z = 26 with space
= 0. Each file contains 401 records with 25 numbers per record, except the last, which contains
a single negative number.

Choose one of the data files to work with.

Question 1 Estimate the source entropy of English text, construct the corresponding
Huffman code and find the expected codeword length. Do the same for the Shannon–Fano
code and compare the two. Discuss how segmentation would improve the expected length
if the source were assumed Bernoulli.

Question 2 Discuss the extent to which English text is not Bernoulli. Construct
the Huffman code for pairs of letters. What effect does segmentation have in this case?
Compare the effect of segmentation on English text with its effect on a Bernoulli source
with the same distribution of letter frequencies as English.

The text is derived from the Oxford Text Archive and is protected by copyright. Permission has been

granted to use it for educational purposes only. Further copying of the data file is forbidden.
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20 Probability

20.1 The Percolation Model (7 units)

This project does not presuppose attendance at any particular Part IB or Part II course.

1 Introduction

The percolation process is a standard model for a random medium. Such a process possesses
a singularity about which it is hard to prove much rigorous mathematics. The purpose of this
project is to explore such a singularity by numerical methods.

Take as (directed) graph G the first quadrant of the square lattice, with northerly and easterly
orientations. The vertices are the points x = (x1, x2) with x1, x2 ∈ {0, 1, 2, . . .}. We set
|x−y| = |x1−y1|+ |x2−y2| for two such x, y, and we join x to y by an edge 〈x, y〉 if |x−y| = 1;
this edge is directed upwards or rightwards as appropriate.

Let p satisfy 0 6 p 6 1. Each edge of G is designated open with probability p, different
edges having independent designations. Edges not designated open are called closed . Water
is supplied at the origin (0,0), and is allowed to flow along open edges in the directions given.
The problem is to study the geometry of the random set C containing all wetted points. In
particular, for what values of p is there strictly positive probability that C is infinite?

Writing ‘Pp’ for the probability function when p is the parameter given above, we define θ(p) =
Pp(|C| =∞). It may be shown that θ is a non-decreasing function, and the critical probability
is defined by

pc = sup{p : θ(p) = 0}.

It may be shown that 0 < pc < 1 (and better bounds are known), but the true value of pc is
unknown.

You are required to investigate this percolation numerically and to comment on various aspects
of the behaviour as described below. You are only expected to comment on results that you can
obtain using a reasonable amount of computer time, and sensible discussions of the limitations
of your methods will receive more credit than reports of excessive computations. You should,
however, give some thought to how you design your programs in order to achieve larger values
of n and m (defined below) than otherwise might be the case. You should comment on any
such special features of your programs in each section of your write-up.

2 Estimating θ(p)

One method for estimating θ(p) is as follows. Let Qn be the set of all points x = (x1, x2) with
x1 +x2 = n. Define the sequence C0, C1, C2, . . . of sets in the following inductive manner. First,
C0 = {(0, 0)}. Having found C0, C1, . . . , CK , we next define CK+1. For y = (y1, y2) ∈ QK+1,
we place y in CK+1 if and only if

either: y′ = (y1 − 1, y2) ∈ CK , and 〈y′, y〉 is open,
and/or: y′′ = (y1, y2 − 1) ∈ CK , and 〈y′′, y〉 is open.

(1)

By generating pseudo-random numbers, we may obtain a realization of the model, and an
associated sequence C0, C1, . . . ; for each such realization, define In to be 0 or 1 depending on
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whether Cn is empty or non-empty (respectively). If In(1), In(2), . . . , In(m) are the values of In
obtained in m independent realizations of the model, then

θ̂m,n(p) =
1

m

m∑
j=1

In(j)

may be used to estimate θn(p) = Pp(Cn 6= ∅). If n is sufficiently large, then θ̂m,n(p) may be
used to estimate θ(p) = limn→∞ θn(p).

Question 1 Give an explanation of why θ is non-decreasing in p, that is θ(p1) 6 θ(p2)
if p1 6 p2. Show also that θn(p) is decreasing in n. Give an estimate for the likely size of
the error θ̂m,n(p)− θn(p).

Question 2 Use the scheme described above (but see the notes below) to plot θ̂m,n(p)
for p ∈ [0.5, 0.75] for suitable n and m. How would you expect a graph of the true value
θ(p) to look like in relation to your graph?

3 Estimating pc

For fixed n and m an estimate of pc may be obtained by finding sup{p : θ̂m,n(p) = 0} . Denote
this estimate by p̂c = p̂c(m,n).

Question 3 Investigate the dependence of the estimate p̂c on the values of n and m.
For fixed m, describe how the estimate varies with n, and explain why this should be so.
How does the estimate vary with m for fixed n?

4 Subcritical behaviour

As above, let Cn be the set of points x = (x1, x2) which satisfy x ∈ C, x1 + x2 = n. When
p < pc, it may be shown that there is a constant γ > 0 (depending on p) for which Pp(Cn 6=
∅) 6 exp (−γn) and

1

n
logPp(Cn 6= ∅)→ −γ as n→∞.

Question 4 Estimate γ for p = 0.3, 0.4, 0.5 and 0.6, choosing appropriate values of n
and m for each case. Describe briefly how you chose n and m in each case and why you
did so. What behaviour do you expect as p ↑ pc?

5 Notes

(i) You may find it helpful to know that we believe pc ≈ 0.644 (though you may obtain a
different estimate).

(ii) At first sight, the scheme described above appears to require m realizations of the model
for each value of p. The following construction enables the same realizations to be used
for all values of p simultaneously . For each edge e, we choose a pseudo-random number
Re which is uniformly distributed on [0, 1]; different edges receive independent numbers.
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To each vertex x we assign a real number Z(x) defined as follows. First, Z(0) = 0, where
0 = (0, 0) is the origin. Having calculated Z(x) for x ∈ Q0∪Q1∪ . . .∪QK , we define Z(y)
for y ∈ QK+1 by

Z(y) = min{A′, A′′}

where
A′ = max{Z(y′), R〈y′,y〉}, A′′ = max{Z(y′′), R〈y′′,y〉} ,

where y′ and y′′ are given in (1). For given p, we may obtain a percolation realization as
follows. Call an edge e open if Re 6 p (an event having probability p). It may now be
seen that the set {y : Z(y) 6 p} has the same distribution as the set C of wetted points
given above. Much computational time may be saved by this device.

(iii) In practice, you may find that much of the computation time is spent in generating the
pseudo-random numbers. Time may be saved if they are not calculated to excessive
precision.

(iv) There are many interesting features of the super-critical behaviour (p > pc); in particular
the ‘shape’ of the infinite cluster when it exists. You are not asked to comment on these
features for this project.

(v) Further details about percolation in general may be found in: Percolation, G R Grimmett,
Springer, Berlin 1999. Further details about the particular percolation used in this project
(two-dimensional oriented bond percolation) can be found in, for example, R. Durrett,
The Annals of Probability 12:999-1040 (1984). It is not necessary (nor even particularly
desirable) to consult either of these references before attempting this project.
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20 Probability

20.2 Importance Sampling and Fast Simulation (5 units)

This project assumes some basic knowledge of discrete-time Markov Chains, as covered in the
Part IB course.

1 Importance sampling

Importance sampling is a technique for simulating random variables. Suppose that X is a ran-
dom variable with density π, and suppose we wish to use simulation to estimate the probability
that X takes a value in some set A. If X is difficult to simulate, or if the event that X is in A
is very rare, then this might be hard to do.

Suppose that we have some other random variable Y with density π′, such that π′(x) > 0
whenever π(x) > 0. Let L be the likelihood ratio,

L(y) =
π(y)

π′(y)
.

Let γ = P(X ∈ A), and consider the estimator

γ̂ = L(Y )1[Y ∈ A]

where 1[·] is the indicator function. We call π′ the twisted density.

Question 1 Show that γ̂ is an unbiased estimator of γ. How could you run a simulation
to estimate γ using this fact?

This method for estimating γ is called importance sampling. Now let X be an exponential
random variable with mean 3, and consider the event B = {X > 30}. Suppose we wish to
estimate P(B) by importance sampling, using as our twisted distribution an exponential with
mean λ−1.

Question 2 What is P(B)? Write a program to estimate this probability using im-
portance sampling. Simulate for different values of λ and include in your report some
typical outputs for each λ. (Programming hint. If U is a uniform random variable on
[0, 1], then − logU is an exponential random variable with mean 1.)

You should find that some values of λ lead to better estimators than others.

Question 3 Modify your program to estimate how long a simulation you need in order
to obtain a good estimate, for a range of values of λ. Explain your method. What value
of λ seems best? Give an intuitive reason why it is so.

Question 4 Prove that for λ > 2
3 the simulation is useless. Calculate the optimal

value of λ.
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This shows that importance sampling isn’t automatically good—it is important to choose the
distribution carefully.

Of course, the probability that an exponential random variable exceeds some amount doesn’t
need simulating, but it is still useful to be able to do importance sampling of exponential random
variables for the following reason:

The exponential distribution is often used to model the time until an event occurs. Now imagine
trying to simulate, say, breakdowns in a large system. It is useful to be able to increase the rate
of breakdowns while leaving the rate of other events unchanged. Importance sampling can be
used to do this.

2 Fast simulation

Importance sampling can be applied to Markov chains, when it is often called fast simulation.
Suppose we have a discrete-time Markov chain with jump probabilities Pij . The path which the
Markov chain takes can be regarded as a random variable in the space of sample paths, and we
might be interested in the probability that the path is in some particular set of paths.

Consider another Markov chain with twisted jump probabilities P ′ij such that P ′ij > 0 whenever
Pij > 0.

Question 5 If we observe a path x0 → x1 → · · · → xn, what is the likelihood ratio L
of that path?

Consider a simple random walk (Xn)n>0 on the non-negative integers with up probability p <
1/2 and down probability 1 − p, except up probability 1 when the walk is at 0. We might be
interested in the event that, on a single excursion away from 0, the random walk hits some high
level C before it returns to 0.

Question 6 Calculate the probability of this event, for p = 1/4 and C = 30. That
is, find P(TC < T0|X0 = 0), where Tx = inf{n > 1 : Xn = x}, for these values of the
parameters.

This probability is too small to simulate directly. Now consider a fast simulation using another
random walk with up probability p′ > 1/2 and down probability 1− p′.

Question 7 What is the probability that the twisted random walk reaches C on a
single excursion away from 0? How does this change as C becomes large, compared to the
random walk with up probability p? What consequences does this have for simulation?

Question 8 Carry out a simulation to estimate the probability referred to in Ques-
tion 6. Try a range of values of p′ > 1/2. Comment on your results, keeping in mind that
the estimate should be unbiased.

Question 9 In the case p′ = 1− p, calculate the exact distribution of your estimator.
How close would you expect your estimator to be to the true value, after 10, 000 trials?

This model might represent the behaviour of a buffer in a computer network, where we would
be interested in the probability that the buffer became full and started losing messages. Again,
a single buffer does not need simulating, but in a more complicated network, it may not be
possible to calculate the overflow probability analytically. The sort of overflow probability
which one sees in real computer networks is often of the order of 10−8, so there is a genuine
need for fast simulation in these situations.
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23 Astrophysics

23.1 Generating a Consistent Self-Gravitating

System

(8 units)

The project is self-contained, though some knowledge of galactic structure may be advantageous.

Introduction: distribution functions of gravitating systems

A collection of N particles moving under their mutual gravitational attraction only, can be well
described by a continuous distribution function, f(x,v, t) d3x d3v, in the limits where N is large
and the particles have some positions xi and velocities vi, i ∈ {1, . . . , N}, at time t.

In the limit where two–body interactions can be neglected (N large enough), the flow in phase
space is said to be collisionless and the distribution function satisfies the Boltzmann equation:

df

dt
= 0. (1)

The dynamics of the system are governed by the Poisson equation,

∇2Φ(x) = 4πGρ(x), (2)

where the spatial density is ρ(x, t) =
∫
fd3v, Φ is the potential and G is the gravitational

constant.

Instructions

The aim of this project is to generate a discrete particle realisation of a spherical self-gravitating
system, given a potential–density pair describing the system, and compare the results for a finite
number of particles with those from continuous distributions. Here we will consider a specific
example of a spherical, isotropic distribution, the so-called γ distribution functions ([2]). The γ
functions have density profiles that are proportional to r−γ as r → 0. Here we consider γ = 0.

For a spherical, isotropic system, f can be expressed as a function of the specific energy, E,
only. For a particle i, Ei = 1

2v
2
i + Φ(ri), where ri = |xi| and vi = |vi|.

Question 1 The γ = 0 model is specified by the density profile

ρ(r) =
3Ma

4π(r + a)4
. (3)

The associated potential is determined by solving (2). Show that in this case

Φ(r) = −GM
2a

[
(r + a)2 − r2

(r + a)2

]
(4)

where M is the total mass.
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The enclosed mass within radius r is given by

M(r) =

∫ r

0
4πρ(r′)r′

2
dr′ = M

(
r

r + a

)3

.

Without loss of generality, we take a = 1, G = 1, and M(r →∞) = 1. Additionally define the
dimensionless binding energy ε = −E × (a/GM) and potential Ψ = −Φ× (a/GM).

Given ρ(Φ), it is straightforward to derive f(ε) with an Abel transform ([1], especially page
651). For this model

f(ε) =
3

4
√

2π3

∫ ε

0

(1− y)2(2y + 4y2)

y4
√
ε−Ψ

dΨ, (5)

where y(Ψ) =
√

1− 2Ψ.

Question 2 Verify that

f(ε) =
3

2π3

[
(3− 4ε)

√
2ε

1− 2ε
− 3 sinh−1

√
2ε

1− 2ε

]
. (6)

The incremental mass of particles, dM , with binding energies in the energy interval ε to ε+ dε
is given by the differential energy distribution

dM

dε
= f(ε)g(ε), (7)

where the density of states g(ε) ([2]) is given by

g(ε) = 8π2

[√
1− 2ε

3− 14ε− 8ε2

12ε2
− π +

1− 6ε+ 16ε2

(2ε)5/2
cos−1(−

√
1− 2ε)

]
. (8)

We wish to generate a realisation of our (γ = 0) distribution, using a Monte–Carlo acceptance–
rejection algorithm, as discussed below.

Programming Task: Generate an N = 5000 particle realisation of the distribution func-
tion above. You should truncate the distribution at some finite radius rT (recommended
values are 100 or 300) and renormalise your particle mass after generating the realisation
so that M = 1.

To do this you may find the following information useful: the maximum value of the
quantity r2v2 × f(ε) is 2.884 × 10−3; the maximum binding energy εmax is 1

2 ; and the
maximum speed of a particle vmax is

√
2εmax.

One way to approach this problem is to draw a pair of uniform random numbers with
rr ∈ [0, rT ) and vr ∈ [0, vmax). Then compare the quantity (rr/a)2(v2

r/(M/a))f(ε(rr, vr))
and its maximum value with another uniform random variable ξi and accept or reject your
draw from phase space accordingly.

Comparisons with analytic results

Question 3 Compare your numerical energy distribution dM(ε)/dε with the expected
analytic differential energy distribution.
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Question 4 Given your set of N particles, ri, vi, i = 1, . . . , N , generate a uni-
form three-dimensional realisation of your distribution in Cartesian co-ordinates. That is,
form the set {xi, yi, zi, vxi, vyi, vzi} by Monte-Carlo generation of a uniform distribution
of Cartesian components of ri, vi.

What is the actual mass of your N particles and how does it compare with the mass you
expected given the choice of rT ? You may want to try different values of rT to see how
M(rT ) varies with rT .

Question 5 Write a short routine that sorts the particles into radius bins and generates
a numerical density profile of your distribution. How does your actual density profile
compare with the expected analytic density profile? How does the density profile fit
change as you vary your bin size? (Hint: use a log–log plot.)

Question 6 Show that for this distribution the dispersion σ2(r) = 〈v2〉, where angle
brackets denote the average value over the particles, is given by

σ2(r) =
GM(a+ 6r)

10(r + a)2
. (9)

Compare your numerical dispersion with the analytic estimate. Calculate the angular
momentum L(r,∆r) =

∑
r<ri<r+∆rmixi×vi, in radial bins. Does your distribution have

any net angular momentum? Should it?

Question 7 The anisotropy is defined as β(r) = 1−〈v2
t 〉/2〈v2

r 〉, where 〈v2
t 〉 = 〈v2〉−〈v2

r 〉
and 〈v2

r 〉 = 〈(v · x/r)2〉. Plot the anisotropy as a function of radius. Is your distribution
anisotropic? Should it be?

Question 8 As a function of radius, what is the potential of your realisation and how
does it compare with the analytic potential estimated? How does the 〈v2〉 compare with
the local escape speed as a function of radius? How does varying the particle number
affect your results?
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23 Astrophysics

23.4 Stellar Structure (8 units)

The project involves the structure of stars. Knowledge of the Structure and Evolution of Stars
course in Part II Astrophysics is useful but all relevant equations are defined and explained in
the project itself.

1 Introduction

The physics of stars can be encapsulated in a set of differential equations which can be solved
with appropriate boundary conditions. The most efficient method of solving the equations is by
a relaxation technique. In order to converge, it relies on an initial guess to the solution that is
not far from the actual solution. In this project we construct such an initial model of a star by a
shooting technique that directly integrates the equations from the boundaries, where conditions
are varied, until the two solutions meet in the middle.

2 The Equations of Stellar Structure

The structure of a spherically symmetric star of uniform and unchanging composition, in thermal
equilibrium, can be described by four non-linear differential equations in five variables together
with an equation of state and boundary conditions.

1) Hydrostatic Equilibrium,
dp

dr
= −ρGm

r2
, (1)

where p is the pressure and ρ the density at radius r, measured from the centre, m is the mass
interior to r and G is Newton’s gravitational constant (6.6726× 10−11 m3kg−1s−2) .

2) Mass continuity,
dm

dr
= 4πr2ρ. (2)

3) Energy generation,
dLr
dr

= 4πr2ρε, (3)

where Lr is the luminosity, the outward flow of energy through a sphere at radius r, and

ε = ε(ρ, T, composition) (4)

is the energy generation rate per unit mass.

4) Energy can be transported by radiation (or equivalently conduction) or by bulk convective
motions. In the radiative case

dT

dr
= − 3κρLr

16πacr2T 3
, (5)

where
κ = κ(ρ, T, composition) (6)

is the opacity, a is the radiation constant (7.5646× 10−16J m−3K−4) and c the speed of light in
a vacuum (2.9979× 108 m s−1).
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The equation of state relates pressure to density, temperature and composition throughout the
star,

p = p(ρ, T, composition). (7)

Appropriate boundary conditions at the centre are

m = 0, Lr = 0 at r = 0. (8)

At the surface, r = R∗, the radius of the photosphere, an Eddington approximation to a plane
parallel grey∗ atmosphere leads to

L∗ = 4πR2
∗σT

4, (9)

where σ = ac/4 is the Stefan–Boltzmann constant, L∗ is the bolometric luminosity of the star
and

pκ =
2

3

GM∗
R2

∗
, (10)

where M∗ is the stellar mass. There are four independent variables p(r), m(r), Lr and T (r),
when ρ(r) is determined by equation (7), for which a unique solution can be found.

2.1 Choice of variables

In practice it is better to use m rather than r as independent variable and, for uniform com-
position, the solution is unique for a given stellar mass. We then apply the surface boundary
conditions at m = M∗.

Question 1 Find the derivatives with respect to m of the new dependent variables,
r3, Lr, T

4 and ln p.

2.2 Equations at the centre

As they stand the equations are not suitable for numerical integration at the centre. It is
therefore necessary to develop them to obtain conditions at some small but finite value of r.

Question 2 Develop the differential equations obtained in Question 1 at the centre
to obtain equations such as

p = pc −
2

3
πGρ2

cr
2 (11)

for small r, where pc and ρc are the central values. Do not forget to take account of the
central boundary conditions.

3 The Physics of the Equation of State, Energy Generation and
Opacity

For the purposes of this project we shall assume that stars are composed entirely of hydrogen
(mass fraction X, assumed to be 0.7 throughout this project) and helium (mass fraction Y =
1−X) and that the contributions to pressure, other than that of the perfect gas, are negligible
so that

p =
ρR∗T

µ
, (12)

∗A grey atmosphere is one in which the opacity is independent of wavelength.
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where R∗ is the gas constant (8.3145× 103 J kg−1 K−1) and µ is the mean molecular weight. It
is sufficient to calculate µ on the assumption that the material is completely ionized so that

1

µ
= 2X +

3

4
Y. (13)

The same applies to γ (see question 4), the adiabatic exponent, which may be taken to be
constant at 5

3 for a monatomic ideal gas. We shall further assume that the opacity, κ, may be
approximated by the contribution from electron scattering

κes = 0.02(1 +X)m2 kg−1. (14)

Finally we assume that nuclear burning proceeds via a combination of the proton-proton chain
and CNO cycle, producing energy at a rate

ε =
(

0.25X2e−33.8T
−1/3
6 + 8.8× 1018Xe−152.28T

−1/3
6

)
T
−2/3
6

ρ

kg m−3
W kg−1 (15)

where T6 = T/106 K.

Question 3 The Sun is observed to have mass M� = 1.9891 × 1030 kg, radius R� =
6.9598× 108 m and luminosity L� = 3.8515× 1026 W. Estimate the temperature at which
nuclear reactions can halt the gravitational collapse of a solar mass star and argue that
this is a good initial guess for Tc. Also, make a linear approximation to the pressure
gradient through the Sun, choosing a sensible boundary condition for the pressure at the
the stellar surface, to obtain an estimate of the central pressure pc.

4 A Shooting Solution

We are now set up to find a numerical solution to the equations. A logical way to proceed is
to guess central values of the variables, Tc and pc and integrate the equations to the surface
where the solution will not necessarily fit the boundary conditions. Unfortunately, it turns out
that such direct integrations either from the centre to the surface or from the surface to the
centre diverge unacceptably at the surface or the centre for small changes in the undetermined
boundary variables (the equations are non-linear). They are, however, well behaved in between.
We can therefore integrate both outwards from the centre and inwards from the surface (guessing
the radius r = R∗ and luminosity Lr = L∗ at m = M∗) and meet at some point in the interior
m = Ms. We can then vary R∗, L∗, pc and Tc until the two solutions are continuous at
m = Ms. Hint: The boundary conditions need to be specified at the centre (Mr = 0) and surface
(Mr = M∗), then quantities found from solving the model ODEs.

The questions below seek solutions for a star of mass 3M�.

Question 4 Use the shooting method to solve for a simplified stellar structure from
equations (1) and (2). Just for this question, make the approximation that T ∝ ργ−1,
and take the radius of the star to be R∗ = 1.5R�. Integrate both inwards and outwards
to some suitable intermediate point (e.g., Ms = 0.5M). Describe how the boundary
conditions at the surface and centre are implemented in your integrations. Using the
differences of the dependent variables at Ms as a measure of the quality of the fit, discuss
how the fit varies with pc and Tc and use this knowledge to find values for pc and Tc that
match the dependent variables at Ms to within 1% of their values there. Provide a plot
with your best solution. Also indicate on this plot how the solution changes with pc and
Tc.
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Question 5 Now include equations (3), (5) and the associated boundary conditions to
implement the shooting method to find a more detailed stellar structure model. Describe
how the new boundary conditions differ from those used in question 4. From question 4
you have a reasonable first estimate for pc, Tc and R∗, but an estimate of L∗ is required
because a 3M� star is significantly brighter than the Sun. An estimate may be made by
shooting inwards from the surface to close to the centre using the complete set of equations.
Discuss, and illustrate concisely, how the values of each of the dependent variables close
to the centre vary as L∗ is varied. Use this knowledge to give an estimate of L∗. Hint:
When do the estimates of L∗ become unphysical?

Question 6 Now shoot both in and out to an intermediate point, and as before, use
the differences of the dependent variables at that point to determine the quality of the
solution. Use your initial estimates for R∗, L∗, pc and Tc, and your observations of how
the fit changes as these parameters are varied, to describe how to obtain by hand a relative
difference in the dependent variables at Ms that is less than 10%. Provide your best-fitting
parameters, the relative difference in each of the dependent variables at Ms and a plot of
each dependent variable against m.

Adjusting the solution by hand is not a very effective way of refining the parameters to get an
accurate solution. Let ∆xi(R∗, L∗, pc, Tc), i ∈ 1, 2, 3, 4 be the differences between the inward
and outward values of each variable xi at the intermediate point. A better estimate for these
parameters can be found by applying the correction (∆R∗,∆L∗,∆pc,∆Tc) from the solution to
the matrix equation:

∂∆x1
∂R∗

∂∆x1
∂L∗

∂∆x1
∂pc

∂∆x1
∂Tc

∂∆x2
∂R∗

∂∆x2
∂L∗

∂∆x2
∂pc

∂∆x2
∂Tc

∂∆x3
∂R∗

∂∆x3
∂L∗

∂∆x3
∂pc

∂∆x3
∂Tc

∂∆x4
∂R∗

∂∆x4
∂L∗

∂∆x4
∂pc

∂∆x4
∂Tc




∆R∗
∆L∗
∆pc

∆Tc

 = −


∆x1

∆x2

∆x3

∆x4


(R∗,L∗,pc,Tc)

, (16)

where ∂∆xi
∂R∗

can be determined by computing ∆xi(R∗ + dR∗, L∗, pc, Tc), and likewise for the
other partial derivatives. This procedure can be iterated until a desired accuracy is achieved.

Question 7 Implement the matrix method described above and iterate until the pa-
rameters are accurate to within four significant figures. Provide plots of each variable
with respect to m, a table with the values of each variable at the meeting point and your
values of the parameters. Hint: You may need to rescale the variables and parameters so
that the matrix is well-conditioned and the inversion is stable.

Question 8 The model you find does not agree with observations of such stars. Sug-
gest what needs to be added to the model to make it more realistic.
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