
2.4 Sensitivity of Optimisation Algorithms to Initialisation

This project requires an understanding of the Part IA Probability and Part IA Analysis

courses.

1 Introduction

In modern statistics and machine learning, it is common to derive estimators and make
decisions by minimising some objective function f . This task can generally not be solved
in closed form. As such, a standard solution is to apply an iterative optimisation algorithm
to attempt to �nd an approximate minimiser.

However, increasingly, statistical problems lead to complicated objective functions which
admit multiple local minima. It is common practice to then run the optimisation algorithm
numerous times from di�erent initial conditions, in hope of �nding the true optimum or
a satisfactory one eventually. It is thus of interest to understand the sensitivity of our
optimisation algorithms to their initialisation, and to understand which features of the
objective function inform the outcomes of these algorithms.

2 Gradient Descent

The optimisation algorithm of study in this project is gradient descent. To run it, one
must specify a di�erentiable objective function f : D → R with domain D ⊆ Rd, d ⩾ 1,
an initial point x0 ∈ D, and a step-size h > 0. The iterates of the algorithm are then
de�ned recursively as

xt = xt−1 − h∇f(xt−1) for t ∈ {1, 2, . . .}, (1)

and the hope is that as t → ∞, the iterates xt converge (numerically) to a minimiser of f
if h is su�ciently small.

In what follows, we will focus our attention on minimisation of the `double-well' toy function
fθ, de�ned for θ ∈ (0, π) by

fθ :[−1, 1] → R, x 7→
(
x2 − 3

4

)2

− x cos θ. (2)

Question 1: Find the stationary points of this function in analytic form, and classify
them as local minima, maxima, or saddlepoints. [Hint: the stationary points can all be

expressed as trigonometric functions; in particular, in your calculations you may use an

expression for the cosine of the triple angle.]

Given that we know the analytic form of the stationary points of fθ, we can easily evaluate
the performance of gradient descent (or indeed, any other optimisation algorithm).

Question 2: Take θ = π
6 , h = 0.01, and run gradient descent on f = fθ for 1000 steps,

from initial points x0 ∈ { k
50}

50
k=−50. What do you observe about the outcomes?

July 2025/Part IB/2.4 Page 1 of 4 ⃝c University of Cambridge

3 The Monte Carlo Method

In computational settings, it is often the case that a quantity of interest ν is naturally
expressed as an expectation, i.e. there is some random variable X and some function g
such that

ν = E [g(X)] . (3)

The Monte Carlo method (MC) involves drawing N independent samples {Xi}Ni=1 which
are distributed like X, and forming the estimator

ν̂N ≜
1

N

N∑
i=1

g(Xi). (4)

Question 3: Show that ν̂N is unbiased for ν, i.e. E [ν̂N] = ν. Assuming thatVar(g(X)) <
∞, obtain an expression for the variance of ν̂N .

Returning to our toy function above, �x θ ∈ (0, π), f = fθ, and let {Xh
t }t=0,1,... be the se-

quence of random variables obtained by i) sampling an initial point Xh
0 ∼ Uniform([−1, 1]),

and ii) iterating Xh
t = Xh

t−1 − h∇f(Xh
t−1).

For some T, h > 0 such that Th−1 ∈ N , we are interested in studying the behaviour of

µh ≜ E
[
Xh

Th−1

]
and µ ≜ lim

h→0+
µh, (5)

i.e. the outcome of running gradient descent from a randomised initial point, using smaller
and smaller step-sizes, and run for longer and longer. We take T = 10 �xed throughout,
as in this example, this is approximately su�cient for convergence to take place.

A basic approach to estimating µ is to take h as small as possible, and to estimate µh as
accurately as possible by the Monte Carlo estimate µ̂h

N by taking N as large as possible.

Question 4: Test this method out: �x θ = π
4 , and for k ∈ {0, 1, · · · , 10}, take h = 0.1·2−k,

and estimate µh using Nk = 220−k samples, so that the same amount of computational
time is used for each k. What do your estimates suggest about the behaviour of µh as h
decreases? What do they suggest about the variance of Xh

Th−1 as h decreases?

In this approach, because h is not exactly 0, we incur a �nite bias, i.e. even in the limit of
in�nitely many samples, our estimator would converge to µh ̸= µ. As such, the variance of
our estimator would not fully re�ect its accuracy. Instead, it is standard to use the following
more general measure of accuracy. The mean squared error (MSE) of an estimator T of a
quantity τ is de�ned by

MSE(T ; τ) ≜ E[(T − τ)2]. (6)

Question 5: Prove the `bias-variance decomposition', i.e. show that

MSE(T ; τ) = (E[T]− τ)2 +Var(T). (7)

We present the following facts without proof: for h su�ciently small, there are constants
A1, A2, A3 ∈ (0,∞) such that

1. the bias of the approximation µh is bounded as |µh − µ| ⩽ A1h,

2. the variance of Xh
Th−1 is bounded as Var(Xh

Th−1) ⩽ A2, and

3. for t ∈ {0, 1, . . .}, the cost of generating a sample of Xh
t satis�es Cost(Xh

t) = A3t.

July 2025/Part IB/2.4 Page 2 of 4 ⃝c University of Cambridge

Question 6: Suppose we estimate µ by �xing h > 0, N ∈ N, generating N i.i.d. samples
{Y i}Ni=1 distributed as Xh

Th−1 , and forming the estimator

µ̂h
N =

1

N

N∑
i=1

Y i. (8)

Use the bias-variance decomposition to show that the MSE of µ̂h
N can be bounded above

by A2
1h

2+ A2
N . Suppose now that the computational budget is C, i.e. the cost of generating

all of the random variables used in the MC estimator is bounded above by C. Assume that
we use our full budget, i.e. we choose (N,h) such that N · A3T

h = C. Use this to express
the upper bound on the MSE as a function of only h, and derive the h which minimises
this upper bound. How does the optimal MSE scale with C?

4 Multi-Level Monte Carlo

For a given computational budget C, it is possible construct estimators with less variability
than µ̂h

N , and hence improve our accuracy. We exploit the intuition that if the initial point

x0 is �xed, we expect that the paths of Xh
t and X

h/2
2t will stay close together, and thus

that µh ≈ µh/2.

In order to justify this later on, we introduce an extra fact without proof: for h su�ciently
small, there is a constant A4 ∈ (0,∞) such that

4. if two sequences of gradient descent iterates have the same initial point X0 ∼
Uniform([−1, 1]), then Var

(
Xh

Th−1 −X
h/2
2Th−1

)
⩽ A4h

2.

We note quickly that the facts presented before Question 6 remain true in what follows.

For X0 ∼ Uniform([−1, 1]) and l = 0, . . . , L, L ∈ N, de�ne hl = 0.1×2−l, let Xhl

Th−1
l

be the

(Th−1
l)th gradient descent iteration for fθ, with Xhl

0 = X0, and with step-size hl. De�ne
the random variables

Y0 = Xh0

Th−1
0

and Yl = Xhl

Th−1
l

−X
hl−1

Th−1
l−1

, l = 1, . . . , L. (9)

We can then formally write that

µ =
∑
l⩾0

E [Yl] . (10)

Question 7: Justify that the above sum converges absolutely, and �nd an upper bound
for the truncation error incurred by approximating µ ≈

∑L
l=0E [Yl].

With this in mind, we can aim to approximate µ by taking a truncation level L, a sequence
of level sizes {Nl}Ll=0, and forming the Multi-Level Monte Carlo estimator (MLMC)

µ̂N1:L
≜

L∑
l=0

[
1

Nl

Nl∑
i=1

Y i
l

]
. (11)

where for each i, {Y i
l }

Nl
i=1 are independent, identically-distributed (iid) samples of Yl, i.e.,

for each (i, l) we independently draw an initial point X
(i,l)
0 ∼ Uniform([−1, 1]) and de�ne

Y i
l as in display (9) using X

(i,l)
0 rather than X0. Hence, {Y i

l }i,l are mutually independent.

July 2025/Part IB/2.4 Page 3 of 4 ⃝c University of Cambridge

Question 8: For θ ∈
{
k·π
27

}26

k=1
, compute µ̂N1:L

, taking L = 10 and using level sizes i)

Nl ≡ 5 and ii) Nl = 2L−l. Which estimator exhibits greater variability?

Question 9: Derive an upper bound for the MSE of the MLMC estimator with truncation
level L and level sizes {Nl}Ll=0.

We now try to choose L and {Nl}Ll=0 such that the MSE of the resulting MLMC estimator
is minimised given a �xed computational budget.

Question 10: Suppose that the computational budget is C, i.e. the cost of generating
all of the random variables used in the MLMC estimator is bounded above by C. By
treating the Nl as continuous variables, L = ∞, derive an allocation of level sizes {Ñl}l⩾0

which minimises the upper bound for the MSE of the resulting MLMC estimator derived
in question 9. [Hint: To minimise a function F (x) subject to the constraint that G(x) = c,
it su�ces to identify stationary points of H(x, λ) = F (x) + λ(G(x)− c). This is known as

the method of Lagrange multipliers.]

From now on, we move back to integer-valued levels by taking Nl = ⌊Ñl⌋.
Question 11: How do you �nd that L scales with C? Derive an expression for how the
optimal MSE scales as C grows, and compare this to the MC estimator from Question 5.

5 Application to Double-Well Loss Function

We will now use the estimators derived above to study the behaviour of gradient descent
on the double-well function fθ de�ned earlier.

Question 12: De�ne m1(θ) and m2(θ) as the local minima of fθ in [−1, 1], de�ned
such that m1(θ) < m2(θ). Suppose that h > 0 and T ∈ N are su�ciently small and large,
respectively, so that min{|m1(θ)−Xh

T |, |m2(θ)−Xh
T |} ≈ 0 for any initial point x0 ∈ [−1, 1].

De�ne

p1(θ) = P

(
lim
T→∞

Xh
T = m1(θ)

)
and p2(θ) = P

(
lim
T→∞

Xh
T = m2(θ)

)
. (12)

Derive an expression for p1(θ) and p2(θ) in terms of µ,m1(θ) and m2(θ).

Question 13: Use a Multi-Level Monte Carlo scheme with the optimal level sizes, as

derived in Question 9, to form estimates of p1(θ) and p2(θ) for θ ∈
{
k·π
27

}26

k=1
. Plot your

estimates to show how they vary with θ. For which values of θ does the outcome of running
gradient descent on fθ vary most?

July 2025/Part IB/2.4 Page 4 of 4 ⃝c University of Cambridge

	Introduction
	Gradient Descent
	The Monte Carlo Method
	Multi-Level Monte Carlo
	Application to Double-Well Loss Function

