2.4 Sensitivity of Optimisation Algorithms to Initialisation

This project requires an understanding of the Part IA Probability and Part IA Analysis
courses.

1 Introduction

In modern statistics and machine learning, it is common to derive estimators and make
decisions by minimising some objective function f. This task can generally not be solved
in closed form. As such, a standard solution is to apply an iterative optimisation algorithm
to attempt to find an approximate minimiser.

However, increasingly, statistical problems lead to complicated objective functions which
admit multiple local minima. It is common practice to then run the optimisation algorithm
numerous times from different initial conditions, in hope of finding the true optimum or
a satisfactory one eventually. It is thus of interest to understand the sensitivity of our
optimisation algorithms to their initialisation, and to understand which features of the
objective function inform the outcomes of these algorithms.

2 Gradient Descent

The optimisation algorithm of study in this project is gradient descent. To run it, one
must specify a differentiable objective function f : D — R with domain D C R%,d > 1,
an initial point xg € D, and a step-size h > 0. The iterates of the algorithm are then
defined recursively as

xy =x4—1 —hVf(xi—1) forte{l,2,...}, (1)
and the hope is that as ¢ — oo, the iterates z; converge (numerically) to a minimiser of f

if h is sufficiently small.

In what follows, we will focus our attention on minimisation of the ‘double-well’ toy function
fo, defined for 6 € (0, 7) by

2
fo:[-1,1] = R, z+— <x2 - i) — zcosf. (2)

Question 1: Find the stationary points of this function in analytic form, and classify
them as local minima, maxima, or saddlepoints. [Hint: the stationary points can all be
expressed as trigonometric functions; in particular, in your calculations you may use an
expression for the cosine of the triple angle.|

Given that we know the analytic form of the stationary points of fy, we can easily evaluate
the performance of gradient descent (or indeed, any other optimisation algorithm).

Question 2: Take § = ¢, h = 0.01, and run gradient descent on f = fy for 1000 steps,
from initial points zo € {£}3% .. What do you observe about the outcomes?

July 2025/Part IB/2.4 Page 1 of 4 © University of Cambridge

3 The Monte Carlo Method

In computational settings, it is often the case that a quantity of interest v is naturally
expressed as an expectation, i.e. there is some random variable X and some function g
such that

v=E[g(X)]. (3)

The Monte Carlo method (MC) involves drawing N independent samples {X*}Y, which
are distributed like X, and forming the estimator

1L
Iy £ NEQ(XZ)- (4)
i=1

Question 3: Show that Uy is unbiased for v, i.e. E[Iy] = v. Assuming that Var(g(X)) <
00, obtain an expression for the variance of Dy.

Returning to our toy function above, fix 8 € (0,7), f = fy, and let {X'};—01.... be the se-
quence of random variables obtained by i) sampling an initial point X ~ Uniform([—1,1]),
and ii) iterating X} = X | — hVf(X]).

For some 7', h > 0 such that Th™! € N, we are interested in studying the behaviour of

A E [X;ih,l} and w2 lim p”, (5)

h—0t

i.e. the outcome of running gradient descent from a randomised initial point, using smaller
and smaller step-sizes, and run for longer and longer. We take 7' = 10 fixed throughout,
as in this example, this is approximately sufficient for convergence to take place.

A basic approach to estimating p is to take h as small as possible, and to estimate p” as
accurately as possible by the Monte Carlo estimate [L?V by taking N as large as possible.

Question 4: Test this method out: fix § = T, and for k € {0,1,--- ,10}, take b = 0.1-27%,
and estimate p using N = 2207% samples, so that the same amount of computational
time is used for each k. What do your estimates suggest about the behaviour of u* as h
decreases? What do they suggest about the variance of X{,Eh,l as h decreases?

In this approach, because h is not exactly 0, we incur a finite bias, i.e. even in the limit of
infinitely many samples, our estimator would converge to u # p. As such, the variance of
our estimator would not fully reflect its accuracy. Instead, it is standard to use the following
more general measure of accuracy. The mean squared error (MSE) of an estimator T of a
quantity 7 is defined by

MSE(T;7) £ E[(T —7)?. (6)
Question 5: Prove the ‘bias-variance decomposition’, i.e. show that

MSE(T;7) = (E[T] — 7)? + Var(T). (7)

We present the following facts without proof: for h sufficiently small, there are constants
Ay, Ag, A3 € (0,00) such that

1. the bias of the approximation p” is bounded as |u" — pu| < A1h,
2. the variance of X;Eh,l is bounded as Var(X%h,l) < Ag, and

3. for t € {0,1,...}, the cost of generating a sample of X} satisfies Cost(X]') = Ast.

July 2025/Part IB/2.4 Page 2 of 4 © University of Cambridge

Question 6: Suppose we estimate p by fixing h > 0, N € N, generating N i.i.d. samples

{Y#}N, distributed as X%h_l, and forming the estimator

1 N
~h E 7

Use the bias-variance decomposition to show that the MSE of [ﬂ](, can be bounded above
by A2h?+ %. Suppose now that the computational budget is C, i.e. the cost of generating
all of the random variables used in the MC estimator is bounded above by C. Assume that
we use our full budget, i.e. we choose (N, h) such that N - A?’TT = (. Use this to express
the upper bound on the MSE as a function of only A, and derive the h which minimises
this upper bound. How does the optimal MSE scale with C?

4 Multi-Level Monte Carlo

For a given computational budget C| it is possible construct estimators with less variability
than ,&}]{,, and hence improve our accuracy. We exploit the intuition that if the initial point

x is fixed, we expect that the paths of X' and th/z will stay close together, and thus
that p ~ ph/2.

In order to justify this later on, we introduce an extra fact without proof: for h sufficiently
small, there is a constant A4 € (0,00) such that

4. if two sequences of gradient descent iterates have the same initial point Xg ~

Uniform([~1,1]), then Var (ngh,l - X;ﬁ_l) < Auh?.

We note quickly that the facts presented before Question 6 remain true in what follows.

For Xo ~ Uniform([—1,1]) and I =0, ..., L, L € N, define h; = 0.1 x 27, let X;th_l be the
1

(Thl_l)th gradient descent iteration for fp, with Xé” = Xy, and with step-size h;. Define

the random variables

hj_
Yo = X0 and YI:X;lhl,l—X“

Tht s 1=1...L (9)

We can then formally write that

p=> E[]. (10)

>0

Question 7: Justify that the above sum converges absolutely, and find an upper bound
for the truncation error incurred by approximating p = Zsz cE Y.

With this in mind, we can aim to approximate p by taking a truncation level L, a sequence
of level sizes { N}, and forming the Multi-Level Monte Carlo estimator (MLMC)

L 1 N, ‘
/:LNLL 2 Z [-ZVZ Z}/ll
=1

=0

. (11)

where for each 1, {le}i\g , are independent, identically-distributed (iid) samples of Y}, i.e.,
for each (7,1) we independently draw an initial point X[()Z’l) ~ Uniform([—1, 1]) and define

Y} as in display (9) using Xéi’l) rather than X,. Hence, {Y}'};; are mutually independent.

July 2025/Part IB/2.4 Page 3 of 4 © University of Cambridge

6
Question 8: For 6 € {Ig—?}izl, compute fiy,,, , taking L = 10 and using level sizes i)
Ny =5andii) N; = 2L~ Which estimator exhibits greater variability?
Question 9: Derive an upper bound for the MSE of the MLMC estimator with truncation
level L and level sizes {N;},.

We now try to choose L and {NZ}IL:() such that the MSE of the resulting MLMC estimator
is minimised given a fixed computational budget.

Question 10: Suppose that the computational budget is C, i.e. the cost of generating
all of the random variables used in the MLMC estimator is bounded above by C. By
treating the N; as continuous variables, L = oo, derive an allocation of level sizes {N;};>o
which minimises the upper bound for the MSE of the resulting MLMC estimator derived
in question 9. [Hint: To minimise a function F(x) subject to the constraint that G(x) = c,
it suffices to identify stationary points of H(x,\) = F(z) + AN(G(x) — ¢). This is known as
the method of Lagrange multipliers.|

From now on, we move back to integer-valued levels by taking N; = LNIJ.

Question 11: How do you find that L scales with C?7 Derive an expression for how the
optimal MSE scales as C' grows, and compare this to the MC estimator from Question 5.

5 Application to Double-Well Loss Function

We will now use the estimators derived above to study the behaviour of gradient descent
on the double-well function fy defined earlier.

Question 12: Define mq(f) and mqo(f) as the local minima of fy in [—1,1], defined
such that mq(0) < ma(#). Suppose that h > 0 and 7' € N are sufficiently small and large,
respectively, so that min{|my () — X}, |m2(0) — X2|} ~ 0 for any initial point 2o € [~1,1].
Define

T—o0 T—o00

pi(f) =P < lim Xk = m1(9)> and py(f) =P (lim Xk = m2(9)> . (12)

Derive an expression for p1(6) and p2(0) in terms of u, m;(0) and ma(0).
Question 13: Use a Multi-Level Monte Carlo scheme with the optimal level sizes, as

. . . . 28
derived in Question 9, to form estimates of pi(#) and p2(@) for 6 € ’;—?}kzl. Plot your
estimates to show how they vary with 6. For which values of 8 does the outcome of running
gradient descent on fy vary most?

July 2025/Part 1B/2.4 Page 4 of 4 © University of Cambridge

	Introduction
	Gradient Descent
	The Monte Carlo Method
	Multi-Level Monte Carlo
	Application to Double-Well Loss Function

