
2.3 Non-Euclidean Geometry

Some of the material from this project is covered in the IB Geometry course (and in the given
reference).

1 Introduction

The aim of this project is to create some pictures that illustrate the action of certain groups of
isometries on the sphere, and on the disc model of the hyperbolic plane.

2 Spherical geometry

We work in the extended complex plane C∪ {∞}. In this project a spherical line will be either
a straight line through the origin, or a circle of the form

{z ∈ C : |z − a|2 = |a|2 + 1} (1)

where a ∈ C. In fact, under stereographic projection, a spherical line corresponds to a great
circle on the unit sphere. Moreover stereographic projection preserves angles. A spherical
triangle is obtained by joining points z1, z2, z3 ∈ C ∪ {∞} by spherical lines.

Question 1 If the spherical line (1) passes through distinct points z1 and z2, find a
formula for a in terms of z1 and z2. Write a program that given z1, z2, z3 ∈ C ∪ {∞},
draws and fills in the spherical triangle with vertices z1, z2, z3.

How do spherical lines meet the unit circle |z| = 1?

The second cosine rule states that if a spherical triangle has side lengths a, b, c and internal
angles α, β, γ (the side of length a being opposite the vertex with angle α) then

cosα+ cosβ cos γ = sinβ sin γ cos a. (2)

The side lengths here are “spherical distances” where for example the spherical distance between
0 and z is 2 tan−1 |z|.

3 Hyperbolic geometry

We work in the unit disc D = {z ∈ C : |z| < 1}. A hyperbolic line is (the intersection of D and)
either a straight line through the origin, or a circle of the form

{z ∈ C : |z − a|2 = |a|2 − 1} (3)

where a ∈ C with |a| > 1. Note that (1) and (3) differ by a change of sign. A hyperbolic triangle
is obtained by joining points z1, z2, z3 ∈ D by hyperbolic lines.

Question 2 Write a program that given z1, z2, z3 ∈ D, draws and fills in the hyperbolic
triangle with vertices z1, z2, z3.

How do hyperbolic lines meet the unit circle |z| = 1?
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The second cosine rule states that if a hyperbolic triangle has side lengths a, b, c and internal
angles α, β, γ (the side of length a being opposite the vertex with angle α) then

cosα+ cosβ cos γ = sinβ sin γ cosh a. (4)

The side lengths here are “hyperbolic distances” where for example the hyperbolic distance
between 0 and z is 2 tanh−1 |z|.

4 Regular polygons

A spherical or hyperbolic n-gon is obtained by joining n vertices by spherical or hyperbolic
lines.

Question 3 For which integers n does there exist r > 0 such that the spherical n-
gon with vertices at the roots of zn = rn has internal angle 2π/3? What happens if we
replace ‘spherical’ by ‘hyperbolic’? [Hint: Work out a formula for the area of an n-gon,
by subdividing into triangles and quoting a result from the Geometry course.]

Use your programs from Questions 1 and 2 to illustrate how these n-gons may be sub-
divided into 2n triangles each with internal angles π/2, π/3 and π/n. [Hint: Use the
formulae (2) and (4) to find the vertices.]

5 Symmetry groups and tesselations

Let p be an odd prime. Let SL(2, p) be the finite group of all 2 × 2 matrices whose entries
are integers mod p, and have determinant 1. Let PSL(2, p) be the quotient of SL(2, p) by the
subgroup {±I} of order 2. It can be shown that PSL(2, p) is generated by

σ1 = ±
(

0 1
−1 0

)
, σ2 = ±

(
0 −1
1 −1

)
, σ3 = ±

(
1 1
0 1

)
. (5)

Inversion in a Euclidean circle C is the unique map of the form

z 7→ az + b

cz + d

that fixes each point of C. For example inversion in the unit circle is z 7→ 1/z.

Let L be a spherical or hyperbolic line. We define reflection in L to be either the Euclidean
reflection (if L is a straight line) or inversion in L (if L is a Euclidean circle).

Let ∆0 be one of the triangles in Question 3, where now n = p is a prime. Let R1, R2, R3 be
the reflections in the sides of ∆0 opposite the vertices with internal angles π/2, π/3 and π/p (in
that order).

Question 4 Describe the transformations S1 = R2R3, S2 = R3R1 and S3 = R1R2

geometrically. Show that they have the same orders as the group elements in (5).

Let g ∈ PSL(2, p) and let ∆ be a triangle. The pair (g,∆) is admissible if it is obtained from
(±I,∆0) by a sequence of operations replacing (g,∆) by (σig, Si∆) for some i = 1, 2 or 3. Note
that we can list the elements of PSL(2, p) by starting with ±I and then repeatedly multiplying
by the generators σ1, σ2 and σ3 until no new elements are found.
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Question 5 Let p = 3. For each g ∈ PSL(2, p) find a triangle ∆ such that (g,∆) is
admissible. Use your programs to plot these triangles ∆. How many triangles are there
in total? Do the triangles ever overlap? Could we obtain any more triangles by applying
the transformations S1, S2 and S3? Repeat the question for p = 5 and p = 7.

Question 6 How do your pictures for p = 3 and p = 5 relate to the Platonic solids?
To which other well known groups are PSL(2, 3) and PSL(2, 5) isomorphic, and how is
this suggested by your pictures?

Reference

P.M.H. Wilson, Curved spaces, CUP 2008.
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