1.2 Ordinary Differential Equations

This project builds on material covered in the Part IA Differential Equations and the Part IA
lectures on Computational Projects.

1 Numerical solution of first order ODEs

The objective of this section is the numerical step-by-step integration of ordinary differential
equations (ODEs) of the form

d

o= fy). (1a)
An initial condition is specified at, say, x = xo, i.e.

y (z0) =Yo. (1b)

The numerical methods to be investigated are as follows:

(a) The Euler (or more precisely forward Euler) method employs the scheme
Yor1 = Yo + hf(zn, Ya), (2)

where Y,, denotes the numerical solution at x,, = x¢ + nh, that is, the solution at the nth
step with step length h, starting from x¢ and Yj.

Definition. The global error after the nth step is defined as
E,=Y,— y(xn) > (3&)

where y(z,,) is the exact solution to (1a) at x,.

Definition. The local error of the first step is defined as e; = Y7 — y(x1). For subsequent
steps the local error is defined as

en =Y, —w(x,), (3b)

where w(z,,) is the exact solution to (la) at = = xz,, starting from =z = x,,_1 and
y = Y,—1. Note that, in general, Y,,_1 # y(zp—1) for n > 1.

For the Euler method it can be shown that e, is O(h?) as h — 0. As a result the Euler
method is said to have first-order accuracy.

(b) The fourth-order Runge—Kutta (RK4) method employs the scheme:

Yor1 =Y, + %(k)l + 2ko + 2k3 + kq) , (4a)
where
k1= hf(xna Yn) ) (4b)
ko = hf(xn + %hy Yo + %kl) ) (4C)
ks =hf(xn, +h, Y, +ks). (4e)

The RK4 method has fourth-order accuracy, i.e. e, is O(h®) as h — 0.

Theoretical background for the stability and accuracy of these methods can be found in, for
example, An Introduction to Numerical Methods and Analysis by J.F.Epperson, An Introduction
to Numerical Methods by A.Kharab and R.B.Guenther and Numerical Recipes by Press et al.
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2 Stability and accuracy of the numerical methods

This section will explore numerical integration of equation (la) with

fla.y) = —16y + 15e* (52)
and initial condition
y(0)=0. (5b)
This has the exact solution
y(z) =e " —e 107 (6)

2.1

2.2

Programming Task: Write program(s) to apply the Euler and RK4 methods to this
problem.

Stability

Question 1 Using the Euler method, starting with Yy = 0, compute Y,, for x up to
x = 6 with A = 0.6, i.e. for n up to 6/h = 10. Tabulate the values of z,, the numerical
solution Y,,, the analytic solution y(x,) from (6), and the global error E,, =Y, — y(zy).
You should find that the numerical result is unstable: the error oscillates with a magnitude
that ultimately grows proportional to ¢7®, where the ‘growth rate’ v is a positive constant
which you should estimate.

Repeat with h = 0.4, 0.2, 0.125 and 0.1, presenting only a judicious selection of output to
illustrate the behaviour. What effect does reducing h have on the size of the instability,
and on its growth rate?

Question 2
(i) Find the analytic solution of the Euler difference equation

Yio1 = Yo+ h (—16Yn +15 (e*h)") with Yy =0. (7)

(ii) Hence explain why and when instability occurs, and with what growth rate.

(iii) Show that in the limit » — 0, n — oo with z, = nh fixed, the solution of the

difference equation (7) converges to the solution (6) of the differential equation specified
by (1a), (5a) and (5b).

Accuracy

Question 3  Integrate the ODE specified by specified by (1a), (5a) and (5b) numeri-
cally with A = 0.05 from = = 0 to = = 4 using both the Euler and RK4 methods. Plot Y,
against x,, for each method with the exact solution (6) superposed.

Question 4 For both the Euler and the RK4 methods, tabulate the global error E,
at z,, = 0.1 against h = 0.1/n for n = 2¥ with £ = 0,1,2,...,15, and plot a log-log graph
of |E,| against h over this range.

Comment on the relationship of your results to the theoretical accuracy of the methods.
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3 Numerical solutions of second-order ODEs

The same time-stepping methods can also be applied to higher order ODEs. This section will
explore solutions to a damped harmonic oscillator with a driving force. Specifically, start by
considering the following equation

d?y dy .
a2 T Vg Ty =sinwt), (8)

where v and w are non-negative real constants and ¢ and y are real variables.

Question 5 Find the general solution of (8) for the lightly damped case, 0 < v < 2.
Show that
y — Agsin (wt — ¢s) ast — oo (9)

where the ‘steady-state’ amplitude A; and ‘steady-state’ phase shift ¢; are to be found in
terms of v and w.

Equation (8) can be rewritten as a pair of coupled first-order ODEs for

dy(t
y(l)(t) = y(t) and y(2) (t) = Zilt) ’ (10)
namely
dy) oy, ) @y - @)
L = fO(y My @) =@ (1)
dy? .
?ZZT = Oty y@) = =@ —yV 4 sin(wt). (12)

This system of equations can be solved using either the Euler or the RK4 method, but here we
will just use the latter.

The RK4 method can be generalised to solve first order systems of equations by writing

Y, r1=Y,+=z (kl + 2ko + 2ks + k4> (13&)
where
ki = hf(zn, Yo) . (13b)
ko = hf(zn, + 1R, Y, + 1kq), (13c)
ks = hf(x, + 1h Y, + kg) (13d)
ky = hf(xy, + h, Y, +k3) (13e)

where f, Y, and k are two-dimensional vectors and the components of the vectors f and Y can
be written f = (f1), ) and Y = (Y1), Y(?),

Programming Task: Write a program to solve equation (8) using the RK4 method,
subject to the initial conditions

d
y:d—‘z:() at t=0. (14)
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Question 6 Taking v = 1 and w = /3, use your program to compute Y;, for t up to
10 with h = 0.4 [i.e. for n up to 25|, and tabulate the numerical solution Y;,, the analytic
solution y(t¢,) and the global error E,, =Y,, — y (t,) against t,,. Repeat with both h = 0.2
and h = 0.1 [integrating up to ¢t = 10, i.e. for n up to 50 and 100 respectively|, not
necessarily presenting all the output. Comment on the errors.

Question 7 Use your RK4 program (with suitable h) to generate and plot numerical
solutions of (8) and (14) up to t = 40 for w = 1 and v = 0.25, 0.5, 1.0 and 1.9, checking
that they agree with the analytic solutions. Do likewise for w = 2 and the same values of
~. Explain the differences between the various cases in terms of the mathematics and the
physics of the system under investigation.

The last question consider a case with nonlinear damping,

d>y d .
W—i_% (%53y3) +y =sint (15)

for which an analytic solution is not available. The initial conditions are as before,

y:%:() at t=0. (16)

Question 8 For 6 = 0.25, 0.5, 1.0 and 20, use your RK4 program to generate and plot
numerical solutions to (15)—(16) for ¢ up to 60, using suitable value(s) of h (justify your
choice). Comment on the solutions, comparing them with each other and with those of
Question 7 for w = 1.

Hint: it may be helpful to observe that when § is ‘small’, equation (15) has a 27-periodic
solution of the form

y= > 5"yn(t) (17)

n=-—1

where each y,(t) is periodic in ¢ with period 27 and
y_1(t) = Acost , wyo(t) = Bsint+ Csin3t (18)

for suitable values of the constants A, B and C [recall that cos®§ = %cos 0+ % cos 36, and
note that to determine yy completely it is necessary to consider terms of order §]. What
if 0 is ‘large’?

Additional Reference

Boyce, W. E., and DiPrima, R. C., 2001, Elementary Differential Equations and Boundary
Value Problems, Tth edition. Publ. John Wiley & Sons Inc.
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Project 1.2: Ordinary Differential Equations
Marking Scheme and additional comments for the Project Report

The purpose of these additional comments is to provide guidance on the structure and length of your
CATAM report. Use the same concepts to write the rest of the reports. To help you assess where marks
have been lost, this marking scheme will be completed and returned to you during Lent Term. You are
advised to keep a copy of your write-up in order to correlate your answers to the marks awarded.

Question no. Marks Marks
available' | awarded?

Programming task Program: for instructions regarding printouts and
what needs to be in the write-up, refer to the introduction to the manual.

Question 1 Tables: for presentation and layout, refer to the introduction. C2
[quarter page]?

Question 2 Analytic solution: do not include trivial steps in your working. M2
[approz. 15 lines]?

Question 3 Graphs: you may use one graph or two. C1
Question 4 Graphs: ditto. C1
Comments: what can be said about how the global error E,, for each M1
method varies with h? How is this reflected in the plots? [approz. & lines]?
Question 5 Analytic solution: do not include trivial steps in your working; M1

be sure to state the results unambiguously. [approz. 5 lines]?
Question 6 Analytic and numerical solutions compared: the purpose of C2+M2
this step is to check that the program works and gives accurate answers
(‘validation’). Do the errors behave as expected when h is decreased?
[quarter page]®

Question 7 Comments: first identify the salient features of the plots. C14+M2
Examine the nature of the functions that you are plotting: what are their
components and how do these contribute to the overall solutions? Then use
mathematical arguments (cf. the Part IA course Differential Equations) to
explain the behaviour of the plots; link to the theory of the physical system
under investigation. [one page]?

Question 8 Numerical solutions: explain why you are satisfied that your C1
chosen value(s) of h will deliver sufficiently accurate results.
Comments: identify the key similarities and differences between the vari- M2

ous solutions, and with the help of the hint, or otherwise, try to explain
them mathematically and/or physically. [one page]?

Excellence marks awarded for, among other things, mathematical clarity E2
and good, clear output (graphs and tables) — see the introduction to the
project manual.

Total Raw Marks 20

Total Tripos Marks 40

L C#, M# and E#: Computational, Mathematical and Ezcellence marks respectively.

2 For use by the assessor.

3 Your aim is to answer succinctly the questions including graphs and tables, and to make all important points.
The length specified here should b sufficient for you to do this but is not a target.
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