
1.2 Ordinary Differential Equations

This project builds on material covered in the Part IA lectures on Computational Projects,
see http: // www. maths. cam. ac. uk/ undergrad/ catam/ part-ia-lectures . The Part IA
Differential Equations and Part IB Methods courses are also relevant.

1 Background Theory

This project is concerned with the numerical step-by-step integration of ordinary differential
equations (ODEs) of the form

dy

dx
= f(x,y) , (1a)

where y and f are vectors of length m, subject to an initial condition

y = y0 at x = x0 (1b)

for some constants x0 and y0. The exact solution of (1a)–(1b) will be denoted by y = ye(x).
In the first part of the project (§2) the performance of three different numerical methods will
be examined. A first-order equation (m = 1) has been chosen for which ye(x) has a known
analytic form for comparison. In the second part (§3) one of the methods is extended to solve
a second-order problem.

The numerical methods to be investigated are as follows.

(a) The Euler method, or more precisely the forward Euler method, is the simple scheme

Yn+1 = Yn + h f(xn,Yn) , (2)

where Yn denotes the numerical solution at xn ≡ x0 + nh, that is, at the nth step with
step length h. The Euler method is called a single-step method since Yn+1 is determined
solely by the value Yn at the previous step.

Definition. The global error after the nth step is defined as

En = Yn − ye(xn) . (3a)

Definition. The local error of the first step is defined as e1 = Y1−ye(x1). For subsequent
steps the local error is defined as

en = Yn − ỹ(xn) , (3b)

where y = ỹ(x) is the exact solution to equation (1a) with y = Yn−1 at x = xn−1

(note that, in general, Yn−1 6= ye(xn−1) for n > 1).

A numerical method is said to be pth-order accurate if en is O
(
hp+1

)
as h→ 0. It can be

shown that the Euler method is first-order accurate.

(b) The second-order-accurate Adams-Bashforth (AB2) method employs the scheme

Yn+1 = Yn + h
[
3
2 f (xn,Yn)− 1

2 f (xn−1,Yn−1)
]
. (4)

This is a two-step method, using both Yn−1 and Yn to obtain Yn+1, and the first step
must be taken by a single-step method, such as the Euler method.
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(c) The fourth-order-accurate Runge–Kutta (RK4) method employs the scheme:

Yn+1 = Yn + 1
6h [k1 + 2k2 + 2k3 + k4] , (5a)

where

k1 = f(xn, Yn) , (5b)

k2 = f(xn + 1
2h, Yn + 1

2hk1) , (5c)

k3 = f(xn + 1
2h, Yn + 1

2hk2) , (5d)

k4 = f(xn + h, Yn + hk3) . (5e)

The theoretical background for the stability and accuracy of these methods is set out in, for
example, An Introduction to Numerical Methods and Analysis by J.F.Epperson, An Introduction
to Numerical Methods by A.Kharab and R.B.Guenther and Numerical Recipes by Press et al.

2 Stability and accuracy of the numerical methods

The example to be studied in detail in this section is the scalar version of equation (1a) with

f(x, y) = −8y + 6e−2x (6a)

and initial condition
y = 0 at x = 0. . (6b)

This has the exact solution
y = ye(x) ≡ e−2x − e−8x . (7)

Programming Task: Write programs to apply each of the methods (a), (b) and (c) to
this problem. For all the programming tasks in this project you should use 64-bit (8-byte)
double-precision floating-point values.

2.1 Stability

This subsection considers the stability of the AB2 method (with first step by Euler).

Question 1 Starting with Y0 = 0, compute Yn for x up to 3 with h = 0.5 (i.e. for
n up to 3/h = 6). Tabulate the values of xn, the numerical solution Yn, the analytic
solution ye(xn) from (7) and the global error En = Yn − ye(xn). You should find that
the numerical result is unstable: the error oscillates wildly and its magnitude ultimately
grows proportional to eγx, where the ‘growth rate’ γ is a positive constant which you
should estimate.

Repeat with h = 0.375, 0.25, 0.125, 0.1 and 0.05 (you need only present a judicious
selection of output to illustrate the behaviour). What effect does reducing h have on the
instability and its growth rate?

Question 2
(i) Find the analytic solution of the AB2 difference equation

Yn+1 = Yn + h

[
−12Yn + 9

(
e−2h

)n
+ 4Yn−1 − 3

(
e−2h

)n−1
]

(8)
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with
Y0 = 0 , Y1 = 6h (from the Euler method). (9)

(ii) Hence explain why and when instability occurs, and with what growth rate.

(iii) Show that in the limit h → 0, n → ∞ with xn ≡ nh fixed, the solution of
the difference-equation problem (8)–(9) converges to the solution (7) of the differential-
equation problem (1a), (6a), (6b).

How (if at all) would the conclusions in (ii) be altered if a more accurate method such as
RK4 were used for the first step?

2.2 Accuracy

This subsection considers the accuracy of the three methods.

Question 3 For each of the three methods, integrate with h = 0.08 from x = 0
to x = 2. Tabulate and plot the numerical solution Yn for each method against xn,
superposing a plot of the exact solution ye(xn) given by equation (7).

Question 4 For each of the three methods, tabulate the global error En at xn = 0.16
against h = 0.16/n for n = 2k, k = 0, 1, 2, . . . , 15, and plot a log–log graph of |En| against
h over this range. Comment on the relationship of your results to the theoretical accuracy
of the methods.

3 Numerical solutions of second-order ODEs

This section is concerned with small ‘normal-mode’ oscillations of a non-uniform string of length
L under uniform positive tension T0. The string’s transverse displacement, η(ξ, τ), a function
of longitudinal distance ξ and time τ , is assumed to satisfy the equation of motion (Newton’s
Second Law, linearised for small displacements and with gravity neglected)

µ(ξ)
∂2η

∂τ2
= T0

∂2η

∂ξ2
, (10a)

where µ(ξ) is the mass per unit length of the string. If the ends ξ = 0 and ξ = L are fixed, the
appropriate boundary conditions are

η(0, τ) = η(L, τ) = 0 for all τ . (10b)

Multiplying (10a) by ∂η/∂τ leads to the energy conservation equation

d

dτ

∫ ξ2

ξ1

[
1
2µ(ξ)

(
∂η

∂τ

)2

+ 1
2T0

(
∂η

∂ξ

)2
]

dξ =

[(
T0
∂η

∂ξ

)
∂η

∂τ

]ξ2
ξ1

for any ξ1, ξ2 ∈ [0, L], (11)

i.e. the rate of change of total energy (kinetic plus potential) in the section [ξ1, ξ2] is equal to the
rate at which work is done at the ends (linearised transverse force times transverse velocity).

The problem admits ‘normal-mode’ solutions of the form

η(ξ, τ) = Ly(x) cos (ωτ + θ) , (12)
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where the angular frequency ω and phase θ are constants, and dimensionless variables are
defined by

x =
ξ

L
, m(x) =

µ(ξ)

µ(0)
. (13)

From (10a) and (10b), it follows that the dimensionless y(x) satisfies

d2y

dx2
+ p2m(x)y = 0 and y(0) = y(1) = 0 , (14)

where p = ωL
√
µ(0)/T0 is a dimensionless constant and, without loss of generality, p > 0. The

system (14) is an example of a Sturm-Liouville eigenproblem: only for a discrete set of values
of p, i.e. the eigenvalues 0 6 p(1) < p(2) < . . . , are there non-zero eigenfunction solutions for y.

The remainder of this project specialises to a mass distribution of the form m(x) = (1 + x)−α

with α a constant, in which case (14) becomes

d2y

dx2
+ p2(1 + x)−αy = 0 , (15a)

subject to
y(0) = y(1) = 0 . (15b)

The eigenvalues and eigenfunctions can be found in explicit analytic form only for special values
of α, one such being α = 2.

Question 5 Find the analytic solution y = ye(x) of equation (15a) with α = 2 subject
to the initial condition

y = 0 ,
dy

dx
= 1 at x = 0 (16)

for a general value of p. [The substitution 1 + x = ez may be helpful.] Deduce carefully
that the smallest (non-negative) eigenvalue of (15a)–(15b) with α = 2 is

p = p(1) ≡
[
1
4 +

( π

ln 2

)2]1/2
(17)

and write down the general eigenvalue p(k) and corresponding eigenfunction y(k)(x).

Equation(15a) can be solved numerically by noting that it is equivalent to

dy

dx
= f(x, y, z) ≡ z , dz

dx
= g(x, y, z) ≡ −p2(1 + x)−αy (18)

which has the form (1a) with y = (y, z) and f = (f, g), and a numerical approximation Yn =
(Yn, Zn) can be obtained using any of the methods described in §1. Here you should use the
RK4 method.

Programming Task: Write a program to compute an RK4 numerical approximation
(Yn, Zn) to the solution of equations (18) with initial condition Y0 = 0, Z0 = 1 at x0 = 0.

Question 6 Taking α = 2, run your program with p = 4 and h = 0.1/2k for
k = 0, 1, 2, . . . , 12 in turn, tabulating the numerical solution Yn at xn = 1 and the global
error Yn − ye(1) against h ≡ 1/n. Repeat with p = 5. Do the errors behave as expected?

July 2024/Part IB/1.2 Page 4 of 6 ©c University of Cambridge



Programming Task: Write a program to search for eigenvalues using the ‘false position’
method – a variant of the bisection method where if a root of φ(p) = 0 has been located
to the interval (p1, p2) with φ(p1) and φ(p2) having opposite signs, an estimate ps for the
root is calculated using the linear interpolant

Φ(p) ≡ φ(p1)

(
p2 − p
p2 − p1

)
+ φ(p2)

(
p− p1
p2 − p1

)
. (19a)

Solving for Φ(p) = 0 gives the estimate

p = ps ≡
φ(p2) p1 − φ(p1) p2
φ(p2)− φ(p1)

(19b)

which is accepted if |φ(ps)| < ε where ε is a specified small value; if not, the process is
iterated with p1 or p2 replaced by ps such that φ(p1) and φ(p2) still have opposite signs.
For the current task, φ(p) is the numerical (RK4) solution Yn of (15a) and (16) at xn = 1
obtained with a suitably small value of h ≡ 1/n.

Question 7 Taking α = 2, run the program to obtain an approximation to the smallest
(positive) eigenvalue p(1) of (15a)–(15b) with error no more than ±5× 10−6, using (4, 5)
as the initial interval and tabulating all the iterates in your write-up. What values are
you using for ε and h and why? (If you can justify them without reference to the analytic
solution, so much the better.)

The final question addresses the case α = 10, which has no simple analytic solution.

Question 8 Find approximations to the five smallest (non-negative) eigenvalues p(k),
k = 1, 2, 3, 4, 5 of (15a)–(15b) with α = 10 correct to within ±5 × 10−6, and plot the
corresponding eigenfunctions y(k)(x) using the ‘energy’ normalisation∫ 1

0
(1 + x)−10

[
p(k)y(k)(x)

]2
dx = 1 . (20)

(If you wish, this integral may be approximated using a black-box integration routine
such as the function trapz in MATLAB or NumPy/Python.) Explain carefully why you
are satisfied that the eigenvalues found are indeed the smallest, and that they have the
required accuracy.

Comment on the results, e.g. on the shape of the eigenfunctions, both from a mathematical
point of view and in terms of the physical model.

Hint: it may be instructive to look at the form of the eigensolutions for larger p, and/or
to note that when p ≡ δ−1 is ‘large’, equation (15a) has solutions of the form eS(x;δ) with
complex exponent S(x; δ) = δ−1S0(x) + S1(x) + O (δ) (the so-called Liouville-Green or
WKB approximation.∗)

Additional Reference

Boyce, W. E., and DiPrima, R. C., 2001, Elementary Differential Equations and Boundary
Value Problems, 7th edition. Publ. John Wiley & Sons Inc.

∗See for example Bender, C.M. & Orszag, S.A., Advanced mathematical methods for scientists and engineers,
Chapter 10 (in particular §10.1, Example 5).
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Project 1.2: Ordinary Differential Equations

Marking Scheme and additional comments for the Project Report

The purpose of these additional comments is to provide guidance on the structure and length of your
CATAM report. Use the same concepts to write the rest of the reports. To help you assess where marks
have been lost, this marking scheme will be completed and returned to you during Lent Term. You are
advised to keep a copy of your write-up in order to correlate your answers to the marks awarded.

Question no. Marks Marks
available1 awarded2

Programming task Program: for instructions regarding printouts and
what needs to be in the write-up, refer to the introduction to the manual.
Question 1 Tables: for presentation and layout, refer to the introduction. C2
[up to six tables and a quarter page of writing]3

Question 2 Analytic solution: do not include trivial steps in your working.
[half page]3

M4.5

Question 3 Graphs: you may use one graph, or two, or three. C1
Question 4 Graphs: ditto. C1
Comments: what can be said about how the global error En for each
method varies with h? How is this reflected in the plots? [quarter page]3

M1

Question 5 Analytic solutions: do not include trivial steps in your working
[half page]3.

M1.5

Question 6 Analytic solution and numerical solution compared: The rea-
son for computing an analytic solution is to check that the program is
working correctly (‘validation’). [couple of lines]3.

C1

Question 7 Numerical approximations to the smallest eigenvalue: Tabu-
late all the iterates;

C1

explain how you have chosen ε and h to ensure that the final approximation
has the required accuracy. [table, graph(s) and quarter page of writing]3

M1

Question 8 Numerical solutions: explain how you have located the five
smallest eigenvalues, and computed them to the required accuracy.

C2

Comments: first identify the salient features of the graphs. Then try to
explain them using mathematical arguments; link to the theory of the
physical system under investigation. [one or two pages]3

M2

Excellence marks awarded for, among other things, mathematical clarity
and good, clear output (graphs and tables) — see the introduction to the
Project Manual.

E2

Total Raw Marks 20

Total Tripos Marks 40

1 C#, M# and E#: Computational, Mathematical and Excellence marks respectively.
2 For use by the assessor.
3 Your aim is to answer succinctly the questions including the graphs and tables, and to make all important

points. The length specified here should be sufficient space for you to do this but is not a target.
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